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Abstract
In this paper, it is shown that under an extra observability assumption
the nonlinear Luenberger observer as introduced recently in a previous
publication may have an exponential convergence towards the state of the
system. This version is the corrected version of the same paper in [1] in
which there is mistake.

1 Introduction

State estimation is one of the main problem in engineering. In the deterministic
framework, an algorithm which can solve this problem is called a state observer.
This algorithm is based on the knowledge of a dynamical model with measured
outputs representing in a good way the considered physical phenomena and the
sensors available. Since 1964 and the seminal work of Luenberger in [10], design-
ing an observer for detectable linear systems is now well known. The approach
of Luenberger can be decomposed into two steps. In the first one, a linear dy-
namic extension which defines a contraction uniform in the measured output of
the system is introduced. In the second step, based on some observability prop-
erties of the considered model, a linear map can be obtained such that when
applied to the state of the dynamic extension a state observer is obtained.

For nonlinear models, the problem is much more complicated and many
different routes have been followed in order to extend this strategy. Few years
back, Shoshitaishvili in [17] and more recently Kazantzis and Kravaris in [7] (see
also [9]) have introduced a nonlinear local extension of the linear Luenberger
observer. With their approach, it was shown that the existence of an observer
around an equilibrium was obtained assuming local observability.

Recently, the non-local version of this tool has been studied in [2]. The
interest of this approach is that with a weak observability assumption (distin-
guishability of the state from the past output), a nonlinear Luenberger observer
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exists provided the trajectories of the system remain in a bounded forward in-
variant set.

However, although the observer of [2] ensures the asymptotic convergence of
the estimate to the state of the system, no characterization of the convergence
speed is given. In this paper, with an extra observability assumption it is shown
that the convergence speed of a nonlinear Luenberger observer is exponential
and that the argument of the exponential decay can be selected arbitrary large.

The paper is organized as follows. In Section 2, the nonlinear Luenberger
observer as introduced in [17] is presented and one of the result obtained from
[2] is given. Section 3 is devoted to the statement of the main result. The proof
of this result is given in Section 4. Finally Section 5 gives the conclusion.

2 Existence of a Nonlinear Luenberger observer

Consider a nonlinear system described by the following equation':

i=f@) .  y=h). (1)

where f: R" — R" and h : R” — R are two C? functions and where the initial
value of the state is in a given compact set denoted C. For all x in R", the
solution of System (1) initiated from x at time 0 is denoted X (x,t).

For all z in a given open set O in R™, the maximal time interval of definition
in O is denoted (05, (x), 04 (x)). More precisely, for all z in O, X (z,t) is in O for
all t in (0p(z),08(z)). And if X(z,04,(x)) (respectively X (z,04(z))) exists,
then X (z,05(z)) ¢ O (resp. X(x,05(x)) ¢ O).

The main structural assumption imposed on System (1) is the following:

Assumption 1 (Bounded forward invariant set) There exists a forward in-
variant and compact set T C R™ containing C, the given set of initial value. In
other words, C CZ C R™ and for all z in T and all t in Ry, X (x,t) is in T.

Following [17, 7, 8, 2] a nonlinear Luenberger observer is a dynamical system
of the form:
2 = Az + By & =T"(2), (2)

with state z (a complex vector) in C"*! A is a diagonal Hurwitz matrix in
Cn+Dx(n+1) B in R+ is defined as

B=(1,...,1), (3)

and T* : C"*t! — R" is a continuous functions.

Note that in [2] the nonlinear Luenberger observer considered is slightly more
general since the matrix B is a nonlinear function of the output. However due
to the existence of a bounded invariant set (i.e. Assumption 1) no generality
are lost by imposing this observer structure.

Mn this paper, for the sake of clarity only time invariant systems are considered. However,
following [13] it is possible to extend all these results to time varying systems provided all
Assumptions imposed are uniform in the time.



The main interest of this approach is that with the only assumption that the
past output path ¢ — h(X(z,t)) restricted to the time in which the trajectory
remains in a certain set is injective in x, it is sufficient to choose n + 1 generic
complex eigenvalues for A to get the existence of the function 7* making System
(2) an observer which asymptotically estimates the state of System (1). The
specific observability condition made is :

Assumption 2 (Backward distinguishability Property) There exists two
strictly positive real numbers 6y < 64 such that, for each pair of distinct points x1
and x5 in® T+, there exists a negative timet in (max {O-E+6d (1), 0I4s, (mg)} ,O]
such that :

WX (@1,8) # h(X(22,1)) -

This distinguishability assumption says that the present state x can be dis-
tinguished from other states in an open set containing Z by looking at the past
output path restricted to the time in which the solution remains in Z + d4.

With the existence of a forward invariant bounded set and the backward
distinguishability property the following result can be obtained from? [2].

Theorem 1 ([2] Generic existence of Luenberger observer) Assume Sys-
tem (1) satisfies Assumptions 1 and Assumption 2. Then there exists a negative
real number p and zero Lebesques measure subset Aq of* ((Cp)nJr1 such that for
each (A1,..., Any1) in ((Cp)"+1 \ Ay there exists a function T* such that for all
x in C and all z in C™H!

lim X(z,2t)— X(x,t)=0,

t——+oo

where,

X(x,z,t) =T (Z(x,21))
and where (Z(x,z,t), X (x,t)) is the solution of System (1) and (2) with A =
D'zla,g{)\l, ey )‘n-i-l}-

In [2], this result was not stated in this way. However it is a direct consequence
of the extra assumption made on the boundedness of the solution in positive
time (i.e Assumption 1).

Consequently, with this result, as long as the trajectories of the system
remain in a bounded set in forward time, there exists a nonlinear Luenberger

2Given a subset S C R™ and a strictly positive real real number &, S + § is the open set
defined as
S+d={zeR",Jzs €S, |z —zs|<d}. (4)

3Compare to the published version in [1] a mistake has been corrected by introducing a
negative real number p.
4C,, is the open subset of C defined as

Cp = {A € C:Re(N) < p}, (5)

where Re is the real part.



observer which provides an estimate converging asymptotically to the state.
Note however that no characterization of the convergence speed is given. In the
next Section a sufficient conditions is given under which exponential convergence
of the estimation error towards the origin is obtained. In other words, the
estimate satisfies an inequality like

| X (z, 2,t) — X(x,t)] < M(x,2) exp(—ct) ,

where c is a positive real number.

3 Exponential convergence

3.1 Main result

In this section a sufficient condition guaranteeing exponential convergence of the
observer (2) is given. This sufficient condition is an observability assumption
which characterizes how a small change of the state modifies the backward
output path restricted to the set Z + . More precisely, in this Section the
following observability assumption is imposed.

Assumption 3 (Locally linearly independent output) There exists two strictly
positive real numbers 6y < §4 such that, for all v in R™/{0} and for all z in Z,
there exists a negative time t in (UEHd (),0] such that

(X (1))

5 v #0. (6)

The main result of our paper can now be stated®.

Theorem 2 (Exponential Luenberger observers) Assume System (1) sat-
isfies Assumptions 1, 2 and 3 (with the same 04 and dv). Then there exist a
negative real number p, a zero Lebesques measure subset A, of ((Cp)"Jrl such
that for each (A1,..., Apy1) in ((Cp)n+1 \ A there ezists T* : C"*! — R" and a
function M : R™ x C"*1 — Ry such that for all (x,z) in C x C*+1

T*(Z(x, 2,t) = X (2, )] < (7)
M (z,x) exp (max;{Re(\;) }t) ,
and where (Z(x, z,t), X (z,t)) is the solution of System (1) and (2) with A =
Diag{Ai,..., Ant1}-

This result is proved in Section 4. The next Subsection contains some discussions
about Assumptions 1, 2 and 3.

5Compare to the published version in [1] a mistake has been corrected by introducing a
negative real number p.



3.2 Discussion on Assumptions

Note that requiring the existence of a bounded invariant set in positive time is
the main restriction made on System (1). Note however that from a practical
point of view, it is not surprising to require that the state solution is bounded
in positive time.

Also, it is possible to modify the dynamics of the model (1) to fit in this
context. For instance, assume we have an a priori knowledge of a compact set
denoted O C R™ which contains the state trajectory. In this case, one trick is
to modify the dynamics of system (1) outside O to ensure the existence of a
forward invariant compact set. More precisely, the following modified system is
considered:

&= x(x)f(x) (8)

where x : R® — R is a continuous function such that

0 O+ 6y
X(x){ 1 iio

In this case, Z := O + §,, becomes invariant for trajectories of the modified
system (8). Note however, that the validity of the observability assumptions,
i.e. Assumptions 2 and 3 may be impacted by the use of this modification.

Assumptions 2 and 3 are observability assumptions. To describe these As-
sumptions with usual tools, assume that the output map h is sufficiently smooth
so that the observability mapping of order p as defined in [5] by:

Hy () = [h@), Leh(a), .., Lh()]

is properly defined. The following result can be obtained.

Proposition 1 ([5]) If there exist a positive real number §4 and an integer p
such that H, is injective in the set T + 64, then Assumption 2 is satisfied for
System (1) for all oy < d4.

Proof: Assume Assumption 2 is not satisfied. Then for all 6y such that §y < dq4
there exists 1 and 22 in Z + 6y such that:

h(X (x1,t)) = h(X(x2,1)) ,

for all ¢ in (max {afﬂsd (x1),07,5, (z2)},0]. This implies that the p first time
derivatives of h(X(z1,t)) and h(X(x2,t)) are the same which implies that H,
is not injective. O

Note that a link between Assumption 3 and the observability mapping can
be expressed as follows.



Proposition 2 If there exist a positive real number §; and an integer p such
that for all x in T + 64 and for all v in R™\ {0},

OH,
ox

then Assumption 3 is satisfied for System (1).

(x)v#0

Proof: Assume Assumption 3 is not satisfied. Then for all 6y such that §y < dq4
there exists v in R™/{0} and = in Z 4+ dy such that for all negative time ¢ in

(O-EJr(;d (.13), 0]

Oh(X(x,t) =
This implies that,
—_—
X (@0) 9 B

By differentiating with time, it yields finally:

OH(X (z,1))

=0 11
oty — o, ()
hence the result. O

In the context of Propositions 1 and 2, it is possible to apply the result presented
in [15] to design a high-gain observer of dimension p employing embedding
techniques which ensures exponential convergence of the estimate towards the
state. Note moreover that it was shown in [4] that generically the context of
Propositions 1 and 2 is satisfied by taking p = 2n + 1.

4 Proof of Theorem 2

4.1 A constructive proposition
The proof of Theorem 2 is based on the following Proposition.

Proposition 3 Assume that Assumption 1 is satisfied for system (1). If there
exists a C' function T : R™ — C"*1 which satisfies the following three points:

1. T is solution of the partial differential equation

ar
ox

where A = diag{A1,..., A\nt1} and A; is in Cqy (see the definition in (5))
and B is defined in (3).

(x)f(x) = AT(z)+ Bh(z) V2 €T ; (12)

2. The function T is injective on I;



—_—
3. For all x in T the matriz ‘g—f(m) %(x) is positive definite;

then there exists T* : C"*1 — R™ and M : R® x C"*' — R, such that for all
(x,2) in T x C** equation (7) is satisfied.

Proof : Consider the function A : Z x Z — C"*! defined by,

A(J?l,l‘g) = T(l‘l) — T(.Z‘Q) — %(.232)(1‘1 — 372) .

The function T being C, this function is properly defined and moreover, for all
To in Z:

A
lim Az, 22) _ 0. (13)
T1—T2 |l‘1 - 502|

Moreover, the function ?TZ taking value in C("tV*" is continuous and by as-
sumption full rank. Hence, the function R given by,

-1 ,
aT, 'aT aT
R(z) = (axw 8%@) (5@
is continuous and satisfies for all z in Z,

R() # 0, R() 90 () = I

where I, is the identity matrix in R™*™. For all (z1,22) in Z x Z, it yields :

|71 — 22| < [R(22)| (T (21) — T'(2)| + [A(z1,22)]) ,

; Rmax (|T(.’E1) —T($2)| + |A(:U1,x2)\) ) (14)

where,

Ruax = r$nEa>I<R(:v) #0, (15)

It yields, for all (x1,22) in Z x T
|A(=’Ela$2)|>

|IIZ’1 - x2| (1 - Rmax
|71 — 22|
S Rmax |T(.’1?1) —T($2)| ’
Moreover, with (13), for all a in Z, there exists §(a) > 0, such that, for all z;
in® Bs(ay(a) NI, it gives :
1
4Rmax

The function A being continuous in its second argument, for all a in Z, there
exists a positive real number €(a) such that, for all (z1,z2) in Beq)(a)? NZ? :

1
2Rmax

5B,.(z.) denotes the subset of R™: {z € R", |z — x| < r}

|A(z1,0)] <

|1 —al .

|A(r1,22)] <

|£U1 —{EQI .




With (14) it yields that for all a in Z,
|21 — 22| < 2 Ruax |T(21) — T'(22)| ,

V (21,22) € Beay(a)?NI?.
On another hand, {B.,(a), a € I} is a covering by open subset of the

compact subset Z. Hence, there exists {ai,...,ax} in ZV with N a positive
integer, such that
T - Ui:lwwNB%e(ai)(ai) .

Since the function T is injective on Z, it is possible to define the positive

real number :

|z1 — 22
Npax = max o 16
a (z1,02) € Q T(xl) — T(ﬁz) ( )

where 2 is the compact subset defined by,

QO = {(.Tl,.rg) €cIxT: |.’171 —.Z'2| > emin} s (17)
where,
o1 (a5)
€min — ZH<11]I\1[ 26 a;) .

Consider now (x1,22) in Z x Z. Two cases can be distinguished:

1. |x1 — 22| < €min : since there exists ¢ < N such that 25 € B%E(ai)(ai), it
yields,

IN

|z1 — a;l |21 — 22| + |22 — as]

IA

€min + 56(042')
E(Qi) .

Hence, 1 € Be(,,)(ai), and consequently:

IA

‘1:1 - 132‘ < 2Rpax ‘T(ZEI) - T(I2)| .

2. |z1 — 22| > €min ¢ In this case (z1,z2) is in © and consequently :

|z1 — 22| < Npax |T(x1) — T(z2)] . (18)

Consequently, it yields that for all (z1,22) in Z x Z :
lvy — x2| < K|T(21) — T(x2)] ,

with, K = max{Nnyax,2 Rmax } -
Hence, it is possible to define the function T-! : T(Z) — Z and this one
satisfies,
[T7 (w1) = T (wa)| < K |wi —wol

for all (wy,wsy) in C*t1 x C**L. Tt yields that the function 77! : T(Z) — Z
is globally Lipschitz. Hence, the function T* : C"*! — 7 solution to our



problem is a Lispchitz extension on the set C**! of this function. As exposed
in [15] different solutions are possible. A constructive solution may be to use
the Mc-Shane formula (see [12] and more recently [11]) and to introduce T* =
(T, ..., Tr) as the function defined by:

77(w):zg¥g3{tff%z»i+lﬂ244w}. (19)

This function is such that,
T*(T(z) ==z,
and for all w in C™*! it yields,
IT"(w) — x| < nK|w-—"T(z)|.
This implies that the estimation error satisfies
T*(Z(z,2,t)) — X(x,t)| <nK |Z(x,2,t) = T(X(x,1))|
On another hand, the function T is solution of the partial differential equation
(12), consequently, this implies that along the trajectories of system (1) and (2)
Z(x,z,t) — T(X(x,t)) = exp(At)(z — T(x)) .

Note that since A = Diag(A1,..., Apt1) with A; in Co, it yields that equation
(7) holds with the function M defined as M (z, z) = nK|z—T(z)| and concludes
the proof of Proposition 3. a

With Proposition 3 it can be checked that to prove Theorem 2, it is required
to find an injective solution to the partial differential equation (12) for all z in
7 such that this one is injective in Z and such that its gradient is full rank. In
the rest of this Section, it is shown that this is indeed the case for almost all
Hurwitz diagonal matrix A.

4.2 Solutions of the PDE given in (12)

As proposed in [2] (see also [8]), given 8, > &4, a function 7' : R* — Cn*!
solution of the partial differential equation (12) can be simply expressed as,

0
T() = / exp(—As)Bh(X (x, 5))ds , (20)

where X : R” x R — R” is the solution of the modified system
&= x(x)f(x), (21)

where y : R™ — R is a continuous function such that

[0 ¢TI+
X(f”)_{ 1 2T+,

In the case where the set Z is not bounded, the existence of a solution to a
partial differential equation similar to (12) can still be obtained provided linear
vector B is replaced by a continuous function (see [2] for more details).

Moreover, when the set Z is also backward invariant, it can be shown that
the restriction of the solution of (12) to Z is unique.



4.3 Generic properties of the solution of the PDE given
in (12)

In the paper [2], it was shown that generically on the eigenvalues of the matrix
A the function T defined in (20), solution of the PDE (12), is injective provided
System (1) is backward distinguishable (i.e. Assumption 2 is satisfied). More
precisely the result obtained in [2] is:

Theorem 3 (Generic Injectivity, [2]) Assume that Assumption 2 is satis-
fied for System (1) for given positive real numbers év and 04. Then there exist
a negative real number py and a subset Ag C ((Q,d)"+1 of zero Lebesgque mea-
sure such that the function T : R — C"*1 defined by (20) (with same §4) is C*
and injective on L provided A is a diagonal Hurwitz matriz with n + 1 complex
eigenvalues \; arbitrarily chosen in ((de)"'s_1 \ Ag.

Consequently, to apply Proposition 3, it has to be shown that generically on
A and under Assumption 3, the function T" defined in (20) is such that for all

T [~ OT

in Z the matrix §-(x) 4 () is positive definite. This is proved by the following
Theorem.

Theorem 4 (Generically a local embedding) Assume that Assumption 3
is satisfied for system (1) for given positive real numbers éx and §q. Then there
exist a negative real number pe; and a subset Ay, C ((Cpel)m—l of zero Lebesgue
measure such that the function T : R™ — C(TUXP defined by (20) (with same
8a) is C% and such that for all v in I, g—f(x) 18 full rank provided A is a diagonal

matriz with n + 1 complex eigenvalues \; arbitrarily chosen in ((de)nJrl \ Ale.

Proof : The proof of this theorem follows the same line as the one of Theorem
3 (a proof of which is given in [2]) and is based on the use of Coron’s Lemma:

Lemma 1 (Coron) Let I' and Y be open subsets of C and R*" respectively.
Let g : ¥ x ' = CP be a function which is holomorphic in \ for each x in Y
and C in x for each X in T. If, for each pair (z,)\) in ¥ x T for which g(z, \)
is zero it is possible to find, for at least one of the p components g; of g, an
integer k satisfying :

dig;
Ii(z,\) = 0Vie{0,... . k—1},
oN
(22)
95 (2 3) # 0
ANk 7
then the following set has zero Lebesque measure in C*11:
A= U,er {(Al,...,xnﬂ) el (23)
gz, 1) =... =gz, \py1) = 0} .

10



This result has been established by Coron in [3, Lemma 3.2] in a stronger
form except for the very minor point that, here, g is not C* in both x and A.
A proof of this specific result can be found in [2].

To show Theorem 4, the idea is to introduce an appropriate function g. Let
I' and T be open sets defined by:

I' = (Cpez ) (24)
where pg; is a negative real number defined later on and
T = {w=(x,v) € ZT+éyrxR" : v # 0}. (25)

With the fact that Z + d; is bounded and backward invariant for the modified
system (21), it yields that for all (z,\,¢) in Z + éy x T’ x (—o0, 0],

| exp(=At)h(X (z,1))| < exp([~Re(A)]t)c (26)
where c is a positive real number. By Lebesgue dominated convergence Theorem
it yields that for all  in Z 4 v, the function

Y

0
Ty(z) = / exp(—As)(X (. 5)) ds | (27)
defines a continuous function Ty : Z + dr — Ct1
Now following [14, Theorem 2.50], we show that by taking Re(\) sufficiently
negative, the function T) defined in (27) is C2. First of all, for all z in Z + dy
and all s in R_ we have
0?X of , + X
= — X —_—
55 Lr8) = 5o (X(@,8)) 5~ (2, 5)

where f(z) = x(z)f(z). We can introduce the function U defined as

0X .
U(x,s) = trace (ax(x,s) ax(sc,s)) .

Note that we have U(z,0) = n. Moreover for all z in Z+ dy and for all s in R_,
2

0X

U(z,s) > %(x, s)

Also, it satisfies for all s in R_
W eenen (P 0 [ a2 2 ] 2
g(.’l/‘,s) = trace <8$ (.’17,8) lax(X(x78)) + aw(X(xas))] ox ($,S)> .

Hence, employing the fact that for all = in Z + &y the trajectories s — X (x, s)
are bounded it gives the existence of a negative real number p; such that for all
zinZ + 6y and for all s in R_,

ou
g(x,s) < =2pU(x,s) .

11



Consequently, we obtain for all  in Z 4+ dy and for all s in R_,

X
| < Vnexp(ps) .

87(3’38)

Hence, employing the fact the trajectories s — X(w, s) is bounded in Z + oy we
can find a positive real number ¢ such that for all x in Z + §y and s in R_,

< exp([p1 —Re(N)]s)c .

exp(—/\s)%()u((a:7 s))%—i{(a:, s)

With Lebesgue dominate convergence Theorem, it can be established that the
function

0 u
(@) = [ oA G (X rs) G ) ds (28)

— o0

oT
ox
is continuous and properly defined provided Re(\) < p; and consequently the
function T is C'. Similarly, it can be shown that this function is C? provided

Re(A) < pe where pg; is a negative real number.
Now, consider the function GT' : T x I' — C"*! defined by :

GT(w,3) = 22 @), (20)

with w = (z,v). This function is C! in w in Y for all X in I'. Moreover, it can
be shown in [16, chap 19, p. 367] that the Theorem of Morera and Fubini yields
that this function is holomorphic in A in I, for all w in Y. Again, the set Z + o~
being bounded and backward invariant for System (21), it yields

On(X (z,s))

/ exp(~2Re(N)s)| 7

— o0

v‘ ds < 400 .

Consequently, Plancherel Theorem can be employed to get for all w in T,
1 [+

o |GT (w,Re(N) +is)[*ds = (30)

— o0

Oh(X(z,5)) ’

ds .
ox iy

0
/ exp(—2Re()\)s)

— 00

Now, for all w in T, exploiting Assumption 3 and the continuity with respect
to the time, it yields the existence of an open interval (tg,¢;) for which

‘ Oh(X (x,s))

O ’U‘ > 0 Vs € (to,tl) , (31)

with o7, 5 (2) <to <t1 <0. With the definition of the modified system (21),
it yields .
h(X(z,s)) = h(X(z,s)) Vs € (to,t1) .

12



Hence, with (30), the last equality and inequality (31) yield that:

+oo
/ |GT (w,Re(N) +is)|*ds > 0.
— 00

This implies that for all w in T, the function A — GT(w, A) is not identically
zero on I'. Since this function is holomorphic, it yields that for all (w,A) in
T x I', there exists, for at least one of the n + 1 components G71; of GT', an
integer k which satisfies:

o'aT, - .
N (w,\) = 0 Vie {0,...,k—1},
okGT;

Hence, employing Coron’s Lemma with G as the g function, and by using (29),
it allows to conclude that the set A;. defined by :

Ale = {(Al,...,)\nJrl)EFnJ'_lt 3($,U)€T :

0Ty,
ox

has a zero Lebesgue measure in C"*1. O

(m)szViG{l,...,n—&-l}}

4.4 Proof of Theorem 2

With Theorem 3 and 4 there exist a negative real number p, a subset A, C
C"™*! of zero Lebesgue measure and defined as A4 U A;. such that the function
T : T — CTUXP defined by (20) (with §4 given in Assumption 2 and 3) is
such that, provided A is a diagonal matrix with n 4+ 1 complex eigenvalues \;
arbitrarily chosen in (C,)"*!\ A, the following holds.

1. For all z in Z, T is a C? solution of the PDE (12);
2. the function T it is injective in Z;
3. forall z in Z, g—f(x) is full rank.

Consequently, given a matrix A with eigenvalues in (C,)"*! \ A, and with
Proposition 3 the nonlinear Luenberger observer (2) estimates the state of Sys-
tem (1) and satisfies the exponential convergence property (7).

5 Conclusion

In this paper is presented a sufficient condition guaranteeing that a nonlinear
Luenberger observer as introduced in [17], [7] and [2] converges exponentially

13



towards the state of the model. This fact may be used to design some output
feedback based on this observer. For instance some of these arguments have
been used in output regulations in [6].
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