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Abstract

In this paper, we consider a mixed diffusion version of the stochastic target problem

introduced in [3]. This consists in finding the minimum initial value of a controlled process

which guarantees to reach a controlled stochastic target with a given level of expected loss.

It can be converted into a standard stochastic target problem, by increasing both the state

space and the dimension of the control. In our mixed-diffusion setting, the main difficulty

comes from the presence of jumps, which leads to the introduction of a new kind of controls

that take values in an unbounded set of measurable maps. This has non trivial technical

impacts on the formulation and derivation of the associated partial differential equations.

Key words: Stochastic target problem, mixed diffusion process, discontinuous viscosity solu-

tions, quantile hedging.

1 Introduction

A general stochastic target problem with controlled loss can be formulated as follows. For 0 ≤
t ≤ T , we are given two controlled diffusion processes

{
Xν
t,x(s), t ≤ s ≤ T

}
and {Y νt,x,y(s), t ≤

s ≤ T} with values respectively in Rd and R, satisfying the initial condition
(
Xν
t,x(t), Y νt,x,y(t)

)
=

(x, y). The aim of the controller is to find the minimal initial condition y for which it is possible

to find a control ν satisfying E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
≥ p for some given measurable map Ψ,

non-decreasing in the y-variable, and for a level p. Namely, he wants to compute:

v̂(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
≥ p for some control ν

}
, (1.1)

where κ ∈ R+. When p = 1 and Ψ(x, y) = 1{V (x,y)≥0} for some map V , then

v(t, x) := v̂(t, x, 1) = inf
{
y ≥ −κ : P

[
V
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0
]
≥ 1 for some control ν

}
(1.2)

coincides with the stochastic target problem studied in Bouchard [2], and in Soner and Touzi [9]

and [10] for Brownian controlled SDEs. In the above mentioned papers, the authors restricted

to the setting of controls with values in a compact subset of Rd. Their proofs are heavily relying

on this assumption.

Only recently, Bouchard, Elie and Touzi [3] considered the case of controls taking values in a

possibly unbounded subset of Rd. Their main motivation was to study problems of the form

(1.1) for Ψ(x, y) = 1{V (x,y)≥0}, as above, but with 0 < p < 1, i.e.

∗The author expresses his gratitude to Bruno Bouchard for leading advices, careful reading and presentation

suggestions.
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v̂(t, x, p) = inf
{
y ≥ −κ : P

[
V
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0
]
≥ p for some control ν

}
. (1.3)

Such problems have already been discussed by Föllmer and Leukert [6] in the context of financial

mathematics. In this paper, the process X represents the prices of some given securities. The

process Y models the wealth of an investor, based on some portfolio strategy ν. Importantly,

the coefficients of the diffusion Y are linear in the control variable and the process X is not

affected by the control ν. In this context, Föllmer and Leukert [6] used a duality argument

to convert this problem into a classical test problem in mathematical statistics. They then

obtained a solution by an application of the Neyman Pearson lemma. But the use of the duality

argument heavily relies on the linearity of the coefficients of Y in the control variable and on

the fact that X is not affected by it. In particular, the duality approach of [6] does not extend

to general non linear controlled diffusion cases. This was the initial motivation of Bouchard,

Elie and Touzi [3] for proposing a more general treatment of the above problem, at least for

Markovian settings.

In order to deal with the problem (1.3), Bouchard, Elie and Touzi [3] introduced an additional

controlled diffusion process Pαt,p, which appears to (essentially) correspond to the conditional

probability of reaching the target V
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0. This allowed them to rewrite the

problem (1.3) in the form

v̂(t, x, p) = inf
{
y ≥ −κ : 1{V (Xνt,x(T ),Y νt,x,y(T ))≥0} ≥ P

α
t,p(T ) for some (ν, α)

}
,

where α is a predictable square integrable process coming from the martingale representation

P
[
V
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0 | F·

]
= Pαt,p0 := p0 +

∫ ·
t
αs · dWs, for some p0 ≥ p. The key point

is that this reformulation reduces the original problem (1.3) into a classical stochastic target

problem of the form (1.2), as studied in [9] and [10], for an augmented system (X,Y, P ) and

an augmented control (ν, α). The major difference being that the new control α can no longer

be assumed to take values in a compact set, as it is given by the martingale representation

theorem.

By introducing new arguments, Bouchard, Elie and Touzi [3] were able to provide a PDE

characterization for the value function v̂ in the sense of discontinuous viscosity solutions, for

a discontinuous operator which corresponds to the one used in [9] and [10] up to a non-trivial

relaxation.

The first aim of the present paper is to extend the work of Bouchard, Elie and Touzi [3] to the

setting of jump diffusions, as [2] extended [9] and [10] to processes with jumps. We also want

to discuss more general problems of the form (1.1).

We follow the key idea of [3] so as to convert the problem v̂ into a singular stochastic target

problem by diffusing the conditional expectation E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)∣∣Fs] for s ∈ [t, T ],

and considering it as an additional controlled state variable Pα,χt,p , where the additional control

χ comes from the jump part of the martingale representation.

The main new technical difficulty is due to the presence of jumps and of the new control χ.

First, it leads to an additional (non-local) term in the PDE characterization, as in [2]. However,

part of the control now takes values in an unbounded set of measurable maps, as opposed to a

compact subset of Rd in [2]. This leads to a new (non-trivial) relaxation of the non-local part

of the associated operator, in comparison to [2] and [3]. Second, because of the presence of this

non-local operator, due to the presence of jumps, the discussion of the boundary conditions at

p = 0 and p = 1 in the context of (1.2) is significantly more difficult than in [3]. Moreover, [3]

discussed only problems of the from (1.2), while we shall consider more general problems of the

form (1.1), which are only mentioned in [3]. In particular, we shall see that the convex face-

lifting phenomenon in the p-variable observed in [3] for (1.2) extends to a much more general

context.

The rest of the paper is organized as follows. Section 2 presents the general formulation of

stochastic target problem with unbounded measurable map controls. It contains the statement

of the corresponding dynamic programming equation. Section 3 contains the arguments allowing
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us to translate the problem of expected controlled loss into the case of singular stochastic target

problem of the previous section. The boundary conditions for the stochastic target problem

with controlled expected loss, and the special case of controlled success ratio, are discussed in

this section.

In all this paper, elements of Rn, n ≥ 1, are identified to column vectors, the superscript T stands

for transposition, · denotes the scalar product on Rn, | · | the Euclidean norm, and Mn denotes

the set of n-dimensional square matrices. We denote by Sn the subset of elements of Mn which

are symmetric. For a subset O of Rn, n ≥ 1, we denote by O its closure, by Int(O) its interior

and by dist(x,O) the Euclidean distance from x to O with the convention dist(x, ∅) = ∞.

Finally, we denote by Br(x) the open ball of radius r > 0 centered at x ∈ Rn. Given a locally

bounded map v on a subset B of Rn, we define the lower and upper semicontinuous envelopes

v∗(b) := lim inf
B3b′→b

v(b′) v∗(b) := lim sup
B3b′→b

v(b′), b ∈ B.

The convex hull of a function f will be denoted }(f), and we recall that it is the greatest convex

function lower or equal to f . We will use the same notation for the convex hull of a subset,

i.e. }(A) is the convex hull of the subset A, and we recall that it is the smallest convex subset

containing A, in the sense of inclusion.

In this paper, inequalities between random variable have to be understood in the a.s. sense.

2 Singular stochastic target problems

2.1 Problem formulation

Let T > 0 be a fixed time, E a borel subset of R+, equipped with its Borel field E , J(de, dt) =∑d
i=1 J

i(de, dt) be a E-marked right-continuous point process defined on a complete probability

space (Ω,F ,P). Let W be a Rd-Brownian motion defined on (Ω,F ,P), such that W and J

are independent. We denote by F := {Ft, 0 ≤ t ≤ T} the P-completed filtration generated

by (W·, J(de, ·)). We assume that F0 is trivial. The random measure J(de, dt) is assumed

to have a predictable (P,F)−intensity kernel λ(de)dt such that λ(E) < ∞, and we denote by

J̃(de, dt) := J(de, dt)−λ(de)dt the associated compensated random measure. By H2
λ, we denote

the set of maps χ : Ω× [0, T ]× E → R which are P
⊗
E measurable1 and such that

‖χ‖H2
λ

:=

(
E

[∫ T

0

∫
E

χt(e)
2λ(de)dt

]) 1
2

<∞.

As will be clear below, we can always assume that P [J (E \ supp(λ), [0, T ]) > 0] = 0, and

therefore that E = supp(λ).

Let U0 = U1
0 ×U2

0 be the collection of predictable processes ν =
(
ν1, ν2

)
with ν1 ∈ L2 ([0, T ]) P-

a.s., ν2 ∈ H2
λ, and with values in a given closed subset U = U1×L2

λ of Rd×L2
λ, where L2

λ denotes

the set of measurable functions π : E → R such that ‖π‖2λ <∞, with ‖π‖2λ :=
∫
E
|π(e)|2 λ(de).

For t ∈ [0, T ], z = (x, y) ∈ Rd ×R and ν :=
(
ν1, ν2

)
∈ U0, we define Zνt,z :=

(
Xν
t,x, Y

ν
t,x,y

)
as the

Rd × R-valued solution of the stochastic differential equation

dX(s) = µX (X(s), νs) ds+ σX (X(s), νs) dWs +

∫
E

βX
(
X(s−), ν1

s , ν
2
s (e), e

)
J(de, ds)

dY (s) = µY (Z(s), νs) ds+ σY (Z(s), νs) dWs +

∫
E

βY
(
Z(s−), ν1

s , ν
2
s (e), e

)
J(de, ds)

(2.1)

satisfying the initial condition Z(t) = (x, y). Here,

1P denotes the σ-algebra of F-predictable subsets of Ω× [0, T ].

3



(µX , σX) : Rd × U → Rd ×Md

(µY , σY ) : Rd × R× U → R× Rd

are locally Lipschitz, and are assumed to satisfy, for u := (u1, u2) ∈ U = U1 × L2
λ,

|µY (x, y, u)|+ |µX(x, u)|+ |σY (x, y, u)|+ |σX(x, u)| ≤ K(x, y)
(
1 + |u1|+

∥∥u2
∥∥
λ

)
where K is a locally bounded map. Moreover

βX : Rd × U × E → Rd

βY : Rd × R× U × E → R
are continuous and are assumed to satisfy, for some M ≥ 0,∫

E

(
|βX(x, u(e), e)|2 + |βY (z, u(e), e)|2

)
λ(de) ≤M

(
1 + |z|2 +

∣∣u1
∣∣2 +

∥∥u2
∥∥2

λ

)
∫
E

|βX(x, u(e), e) − βX(x′, u(e), e)|2 λ(de) ≤M |x− x′|2∫
E

|βY (z, u(e), e) − βY (z′, u(e), e)|2 λ(de) ≤M |z − z′|2 ,

where we use the notation u(e) = (u1, u2(e)). We denote by U = U1 × U2 a subset of elements

of U0 for which (2.1) admits an unique strong solution for all given initial data. We assume

furthermore that any constant controls with values in U belongs to U . We also allow for state

constraints and we denote by X the interior of the support of the controlled process X.

Let V be a measurable map from Rd+1 to R such that, for every fixed x, the function

y 7−→ V (x, y) is non-decreasing and right continuous.

We then define the stochastic target problem as follows

v(t, x) := inf
{
y ≥ −κ : V

(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0 for some ν ∈ U

}
, (2.2)

with κ ∈ R+ ∪ {+∞}. At this point, the set U may not be bounded, and we will see later that

dealing with unbounded controls will be required in the analysis of Section 3.

In order to be consistent and avoid the process Y to cross the level −κ, we shall assume all over

this paper that

µY (x,−κ, u) ≥ 0, σY (x,−κ, u) = 0 and βY (x, y, u, e) ≥ −(y + κ)

for all (x, y, u, e) ∈ X× R× U × E.
(2.3)

As in [2], our analysis requires that

y′ ≥ y and y ∈ Γ(t, x)⇒ y′ ∈ Γ(t, x) for all (t, x, y, y′) ∈ [0, T ]× Rd × R× R

where

Γ(t, x) :=
{
y ≥ −κ : V

(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0 for some ν ∈ U

}
.

This allows to characterize the closure of Γ(t, x) as [v(t, x),+∞), which will be of important use

in the following.

Remark 2.1. Let us observe that this problem can be formulated equivalently as

v(t, x) := inf
{
y ≥ −κ : Y νt,x,y(T ) ≥ g

(
Xν
t,x(T )

)
for some ν ∈ U

}
,

where g is the generalized inverse of V at 0:

g(x) := inf {y ≥ −κ : V (x, y) ≥ 0} , (2.4)

recall (2.3).
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Example 2.1. Consider the case where X = (0,∞)d and X is defined by the stochastic differ-

ential equation

dXt,x(s) = µ (Xt,x(s)) ds+ σ (Xt,x(s)) dWs +

∫
E

β (Xt,x(s−), e) J(de, ds)

Xt,x(t) = x ∈ (0,∞)d,

with Y νt,x,y given by

Y νt,x,y(s) = y +

∫ s

t

ν1
r · dXt,x(r), for s ≥ t and ν =

(
ν1, ν2

)
∈ U .

This corresponds to the situation where the process X is not affected by the control:

µX(x, u) = µ(x), σX(x, u) = σ(x) and βX(x, u(e), e) = β(x, e) are independent of u

and

µY (x, y, u) := u1 · µ(x), σY (x, y, u) := σT (x)u1, βY (x, y, u(e), e) := u1 · β(x, e).

In financial mathematics, the process X should be interpreted as the price of d risky securities.

Because of the jump diffusions, we are in an incomplete market, so that the uniqueness of a

P-equivalent martingale measure is not satisfied. The process Y should be interpreted as the

wealth process induced by the trading strategy ν, where ν1
s indicates the number of units of the

assets in the portfolio at time s.

Finally, for

V (x, y) := y − g(x) for some Lipschitz continuous function g : R→ R+,

v(t, x) coincides with the usual superhedging price of the contingent claim g (Xt,x(T )).

2.2 Main results

The main result of this section is the derivation of the dynamic programming equation corre-

sponding to the stochastic target problem (2.2), in the present context of possibly unbounded

controls and jumps.

Before to state our main results, we need to introduce additional notations. Given a smooth

function ϕ, u ∈ U and e ∈ E, we now define the operators

Luϕ(t, x) := ∂tϕ(t, x) + µX(x, u) ·Dϕ(t, x) +
1

2
Trace

(
σXσ

T
X(x, u)D2ϕ(t, x)

)
Gu,eϕ(t, x) := βY (x, ϕ(t, x), u(e), e)− ϕ (t, x+ βX(x, u(e), e)) + ϕ(t, x),

where ∂tϕ stands for the partial derivative with respect to t, Dϕ and D2ϕ denote the gradient

vector and the Hessian matrix with respect to the x variable.

We then define the following relaxed semi-limits

H∗ (Θ, ϕ) := lim sup
ε↘0,Θ′→Θ
η→0,ψ−→

u.c.
ϕ

Hε,η (Θ′, ψ) and H∗ (Θ, ϕ) := lim inf
ε↘0,Θ′→Θ
η→0,ψ−→

u.c.
ϕ

Hε,η (Θ′, ψ) , (2.5)

where, for Θ = (t, x, y, k, q, A) ∈ R+ × Rd × R× R× Rd × Sd, ψ ∈ C1,2
(
[0, T ]× Rd

)
, ε ≥ 0 and

η ∈ [−1, 1],

Hε,η (Θ, ψ) := sup
u∈Nε,η(t,x,y,q,ψ)

Au(Θ),

with
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Au(Θ) := µY (x, y, u)− k − µX(x, u) · q − 1

2
Trace

[
σXσ

T
X(x, u)A

]
,

Nε,η(t, x, y, q, ψ) := {u ∈ U : |Nu(x, y, q)| ≤ ε and ∆u,e(t, x, y, ψ) ≥ η for λ-a.e. e ∈ E} ,

Nu(x, y, q) := σY (x, y, u)− σX(x, u)T q,

∆u,e(t, x, y, ψ) := βY (x, y, u(e), e)− ψ (t, x+ βX(x, u(e), e)) + y

and the convergence ψ −→
u.c.

ϕ in (2.5) has to be understood in the sense that ψ converges uni-

formly on compact subsets towards ϕ.

Remark 2.2. Note that the operator H∗ would not be upper-semicontinuous in ϕ, for the

u.c. convergence, without the relaxation in the test function on the non-local part. This is the

counterpart of the local relaxation introduced in [3] on the derivatives of the test function.

Also notice that, given η ∈ [−1, 1], (Nε,η)ε≥0 is non-decreasing in ε so that

H∗ (Θ, ϕ) := lim inf
η→0,Θ′→Θ
ψ−→
u.c.

ϕ

H0,η (Θ′, ψ) .

For ease of notations, we shall often simply write Hv(t, x) in place of H(t, x, v(t, x), ∂tv(t, x),

Dv(t, x), D2v(t, x), v). We shall similarly use the notations H∗v and H∗v.

As in [3], [9] and [10], the proof of the subsolution property requires an additional regularity

assumption on the set valued map N0,η(·, f).

Assumption 2.1. (Continuity of N0,η(t, x, y, q, f)) For f ∈ C0
(
[0, T ]× Rd

)
, η > 0, let B

be a subset of [0, T ) × X × R × Rd such that N0,η(·, f) 6= ∅ on B. Then, for every ε >

0, (t0, x0, y0, q0) ∈ Int(B), and u0 ∈ N0,η (t0, x0, y0, q0, f), there exists an open neighborhood B′

of (t0, x0, y0, q0) and a locally Lipschitz map ν defined on B′ such that |ν (t0, x0, y0, q0)− u0| ≤ ε
and ν (t, x, y, q) ∈ N0,η (t, x, y, q, f) on B′.

We also assume that v is locally bounded, so that v∗ and v∗ are finite. Our first result character-

izes v as a discontinuous viscosity solution of the variational inequation (2.13) in the following

sense.

Theorem 2.1. The function v∗ is a viscosity supersolution on [0, T )×X of

H∗v∗ ≥ 0. (2.6)

If in addition Assumption 2.1 holds, then the function v∗ is a viscosity subsolution on [0, T )×X

of

min {H∗v∗, v∗ + κ} ≤ 0 (2.7)

The proof of this result is reported in Section 2.3.

Example 2.2. In the context of Example 2.1, direct computations show that v∗ is a viscosity

supersolution on [0, T )× (0,∞)d of

0 ≤ min

{
−∂tϕ−

1

2
σ2D2ϕ,Dϕ · β(·, e)− ϕ (·+ β(·, e)) + ϕ

}
, for λ-a.e. e ∈ E

and that v∗ is a viscosity subsolution of

0 ≥ min

{
−∂tϕ−

1

2
σ2D2ϕ,Dϕ · β(·, e)− ϕ (·+ β(·, e)) + ϕ

}
for e ∈ E′ ∈ E s.t. λ(E′) > 0.
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We next discuss the boundary conditions on {T}×X. By the definition of the stochastic target

problem, we have

v(T, x) = g(x) for every x ∈ Rd,

where g is defined in (2.4). However, the possible discontinuities of v might imply that the

limits v∗(T, ·) and v∗(T, ·) do not agree with this boundary condition. In order to discuss this

boundary condition, we need to introduce, as in [3], the set-valued map

N(t, x, y, q, ψ) := {(r, s) ∈ Rd × R : ∃ u ∈ U s.t. r = Nu(x, y, q)

and s ≤ ∆u,e(t, x, y, ψ) for λ-a.e. e ∈ E},

together with the signed distance function from its complement Nc to the origin:

δ := dist(0,Nc)− dist(0,N),

where we recall that dist stands for the (unsigned) Euclidean distance. Then,

0 ∈ int (N(t, x, y, q, ψ)) iff δ(t, x, y, q, ψ) > 0. (2.8)

The upper and lower-semicontinuous envelopes of δ are respectively denoted by δ∗ and δ∗,

and we will abuse notation by writing δ∗v(t, x) = δ∗ (t, x, v(t, x), Dv(t, x), v) and δ∗v(t, x) =

δ∗ (t, x, v(t, x), Dv(t, x), v).

For ϕ ∈ C2
(
Rd
)
, we similarly define δ∗ϕ(x) = δ∗ (T, x, ϕ(x), Dϕ(x), ϕ) and the same definition

holds for δ∗ϕ(x).

Remark 2.3. From the convention sup∅ = −∞ and the supersolution property (2.6) in Theo-

rem 2.1, it follows that

δ∗v∗ ≥ 0 on [0, T )× Rd

in the viscosity sense. Then, if Nc 6= ∅, this means that v is subject to a gradient constraint.

Remark 2.4. 1. Assume that for every (x, y, q) and r ∈ Rd, there is an unique solution

ū(x, y, q, r) to the equation Nu(x, y, q) = r, i.e.

Nu(x, y, q) = r iff u = ū(x, y, q, r).

Assume further that ū is locally Lipschitz continuous, so that Assumption 2.1 trivially holds.

For ease of notations, we set ū0(x, y, q) := ū(x, y, q, 0). For a bounded set of controls U , it

follows that, for any smooth function ϕ,H∗ϕ(t, x) ≥ 0 implies that

ū0 (x, ϕ(t, x), Dϕ(t, x)) ∈ U, Aū0(·, ϕ, ∂tϕ,Dϕ,D2ϕ)(t, x) ≥ 0

and ∆ū0,e(t, x, ϕ(t, x), ϕ) ≥ 0 for λ-a.e. e ∈ E.
Similarly, H∗ϕ(t, x) ≤ 0 implies that

either ū0 (x, ϕ(t, x), Dϕ(t, x)) /∈ intU, or Aū0(·, ϕ, ∂tϕ,Dϕ,D2ϕ)(t, x) ≤ 0

or ∆ū0,e(t, x, ϕ(t, x), ϕ) < 0 for e ∈ E′ ∈ E s.t. λ(E′) > 0.

The following result states that the constraint discussed in Remark 2.3 propagates up to the

boundary. Here, the main difficulty is due to the unboundedness of the set U and the presence

of jumps in the diffusions.

Theorem 2.2. The function x 7→ v∗(T, x) is a viscosity supersolution of

min
{

(v∗(T, ·)− g∗)1{H∗v∗(T,·)<∞}, δ
∗v∗(T, ·)

}
≥ 0 on X, (2.9)

and, under Assumption 2.1, x ∈ X 7→ v∗(T, x) is a viscosity subsolution of

min {v∗(T, ·)− g∗, δ∗v∗(T, ·)} ≤ 0 on X. (2.10)

7



We conclude this section by a remark that will be of important use in the proofs of Section 3.5

below.

Remark 2.5. Assume that

ess sup
u∈N·,e∈E

{|βX (·, u(e), e)|+ |βY (·, u(e), e)|} is locally bounded, and E is compact. (2.11)

Then, the operator H is continuous for the uniform convergence on compact sets in its ψ ∈ C1,2

parameter.

In this case, the test function ψ appearing in the form ψ(t, x+ βX(x, u(e), e)) in the definition

of H∗ can be replaced by v∗ itself.

To see this, note that for any ε > 0, (t0, x0) and ϕ ∈ C1,2 such that (v∗ − ϕ) achieves a strict

minimum at (t0, x0), one can find a sequence of smooth function ϕεn such that ϕεn = ϕ on

Bε(t0, x0), ϕεn ≤ v∗, and ϕεn ↑ v∗ uniformly on compact sets of (B2ε(t0, x0))
c
.

This allows to replace the original test function ϕ by v∗ on (B2ε(t0, x0))
c
. It then suffices to

send ε→ 0 and use the continuity induced by (2.11).

The same remark holds for the subsolution property.

Remark 2.6. When the set U is bounded, and βX ≡ βY ≡ 0, i.e. there is no jumps, it was

proved in Soner and Touzi [10] that the value function v is a discontinuous viscosity solution of

sup {µY (x, v(t, x), u)− Luv(t, x) : u ∈ N0 (x, v(t, x), Dv(t, x))} = 0, (2.12)

where

N0 (x, y, q) := {u ∈ U : Nu(x, y, q) = 0} and Nu(x, y, q) := σY (x, y, u)− σX(x, u)T q,

with the standard convention sup∅ = −∞. In the case of a convex compact set U , with jumps

and Rd-valued controls, i.e. U2 = {0}, Bouchard [2] showed that v is a viscosity solution of an

equation of the form

sup

{
min

{
Luϕ(t, x), inf

e∈E
Gu,eϕ(t, x)

}
: u ∈ N0 (x, v(t, x), Dv(t, x))

}
= 0. (2.13)

Finally the case of unbounded set U with no jumps was considered by Bouchard, Elie and Touzi

[3]. In this paper, the authors introduced a relaxation on the operator (2.12), in order to deal

with this unboundedness. This relaxation applies to the space variable x, the function ϕ, its

gradient and its Hessian matrix, at the local point (t, x). Such a relaxation is required in order

to ensure that the sub-solution (resp. super-solution) property is stated in terms of a lower

semi-continuous (resp. upper semi-continuous) operator. In our jump-diffusion framework, a

similar relaxation is required, but it should involve the additional non-local term Gu,e in (2.13).

2.3 Derivation of the PDE for singular stochastic target problems

This section is dedicated to the proof of Theorems 2.1 and 2.2. We first recall the geometric

dynamic programming principle of Soner and Touzi [9], see also Bouchard and Vu [4]. We next

report the proof of the supersolution properties in Sections 2.3.1 and 2.3.2, and the proof of the

subsolution properties in Sections 2.3.3 and 2.3.4.

Theorem 2.3. (Geometric Dynamic Programming Principle) Fix (t, x) ∈ [0, T ) × X

and let {θν , ν ∈ U} be a family of [t, T ]−valued stopping times. Then,

(GDP1) If y > v(t, x), then there exists ν ∈ U

Y νt,x,y (θν) ≥ v
(
θν , Xν

t,x (θν)
)
.

(GDP2) For every −κ ≤ y < v(t, x), ν ∈ U ,

P
[
Y νt,x,y (θν) > v

(
θν , Xν

t,x (θν)
)]
< 1.
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2.3.1 The supersolution property on [0, T )×X

We follow the arguments of [3] up to non trivial modifications due to the presence of the jumps.

1st Step: Let (t0, x0) ∈ [0, T )×X and ϕ be a smooth function such that

min
[0,T )×X

(strict) (v∗ − ϕ) = (v∗ − ϕ) (t0, x0) = 0.

Assume that H∗ϕ(t0, x0) =: −2η < 0 for some η > 0, and let us work towards a contradiction.

Set ϕ̃(t, x) := ϕ(t, x)− ι |x− x0|4 for ι > 0. By definition of the upper-semicontinuous operator

H∗ and the fact that ϕ̃ −→
u.c.

ϕ as ι → 0, we may find ε > 0 and ι > 0 small enough such that,

after possibly changing η > 0

µY (x, y, u)− Luϕ̃(t, x) ≤ −η
for all u ∈ Nε,−η (t, x, y,Dϕ̃(t, x), ϕ̃) and (t, x, y) ∈ [0, T )×X× R s.t.

(t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε,
(2.14)

where we recall that Bε(t0, x0) denotes the ball of radius ε around (t0, x0). Notice that we still

have

0 = v∗(t0, x0)− ϕ̃(t0, x0) = min
[0,T )×X

(strict) (v∗ − ϕ̃) .

Let ∂pBε(t0, x0) := {t0 + ε}×Bε(t0, x0)∪ [t0, t0 + ε)× ∂Bε(x0) denote the parabolic boundary

of Bε(t0, x0). Set ζ := min
∂pBε(t0,x0)

(v∗ − ϕ̃), and observe that ζ > 0 since the above minimum is

strict. We now define Vε(t0, x0) := ∂pBε(t0, x0) ∪ [t0, t0 + ε)×Bcε(x0), and observe that

(v∗ − ϕ̃) (t, x) ≥ ζ ∧ ιε4 =: ξ > 0 for (t, x) ∈ Vε(t0, x0)

since (t0, x0) is a strict minimizer, and ι |x− x0|4 ≥ ι× ε4 on Bcε(x0).

2nd step: Let (tn, xn)n≥1 be a sequence in [0, T )×X which converges to (t0, x0) and such that

v(tn, xn)→ v∗(t0, x0). Set yn := v(tn, xn) + n−1 and observe that

γn := yn − ϕ̃(tn, xn)→ 0. (2.15)

For each n ≥ 1, we have yn > v(tn, xn). Thus, it follows from (GDP1) that there exists some

νn ∈ U such that

Y n(t ∧ θn) ≥ v (t ∧ θn, Xn(t ∧ θn)) , t ≥ tn,

where

θon := {s ≥ tn : (s,Xn(s)) /∈ Bε(t0, x0)}
θn := {s ≥ tn : |Y n(s)− ϕ̃ (s,Xn(s))| ≥ ε} ∧ θon,

and

Zn := (Xn, Y n) :=
(
Xνn

tn,xn , Y
νn

tn,xn,yn

)
.

By the inequalities v ≥ v∗ ≥ ϕ̃, this implies that

Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn))

≥ [Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn))]1{t≥θn}

≥
[
(Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn)))1{θn<θon}

+ (v∗ (t ∧ θn, Xn(t ∧ θn))− ϕ̃ (t ∧ θn, Xn(t ∧ θn)))1{θn=θon}
]
1{t≥θn}

≥
[
ε1{θn<θon} + ξ1{θn=θon}

]
1{t≥θn}

and therefore
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Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn)) ≥ (ε ∧ ξ)1{t≥θn} ≥ 0. (2.16)

3rd step: Since ϕ̃ is smooth, it follows from Itô’s lemma, (2.15), the definition of Y n and (2.16),

that

Snt := an +

∫ t∧θn

tn

(bns + dns ) ds+

∫ t∧θn

tn

ψns dWs +

∫ t∧θn

tn

∫
E

cn,es J̃(de, ds) ≥ − (ε ∧ ξ)1{t<θn}
(2.17)

where we recall that J̃ is the compensated jump measure and

an := − (ε ∧ ξ) + γn, bns := µY (Zns , ν
n
s )− Lν

n
s ϕ̃(s,Xn

s )

cn,es := βY
(
Xn
s−, Y

n
s−, ν

n
s (e), e

)
− ϕ̃

(
s,Xn

s− + βX(Xn
s−, ν

n
s (e), e)

)
+ ϕ̃(s,Xn

s−)

ψns := Nνn (Zns , Dϕ̃(s,Xn
s )) , dns :=

∫
E

cn,es λ(de).

(2.18)

In view of (2.15), we have

an → − (ε ∧ ξ) < 0 for n→∞. (2.19)

4th step: Let us define:

An1 := {s ∈ [tn, θn] : min {bns , cn,es } > −η for λ-a.e. e ∈ E}
An2 := {s ∈ (An1 )c : cn,es ≤ −η for e ∈ E′ ∈ E s.t. λ(E′) > 0}
An3 := (An1 ∪An2 )

c
= {s ∈ (An1 )c : bns ≤ −η and cn,es > −η for λ-a.e. e ∈ E}

An4 := {(s, e) ∈ (An1 )c × E : cn,es ≤ −η/2} .

Observe that (2.14) implies that the process ψn satisfies:

|ψns | > ε for s ∈ An1 . (2.20)

We then define, for all tn ≤ t ≤ T ,

Ln· := E
(∫ ·

tn

αns dWs +

∫ ·
tn

∫
E

δn,es J̃(de, ds)

)
·∧θn

where E denotes the Doleans-Dade exponential, and

αns := − (bns + dns )

|ψns |
2 ψns 1An1 (s)

δn,es := −1(An1 )c(s)

(
1− η

2 (|dns |+ 1)

)
+ 1An2 (s)1An4 (s, e)× 2 (bns )

+
+ η

ηMn
s

where (x)+ = max(x, 0) and

Mn
s :=

∫
E

1An4 (s, e)λ(de).

It follows from the very definition of An2 that Mn
s > 0 for all s ∈ An2 and for all n ≥ 1. We

deduce then from our assumptions on the coefficients, (2.20), and the definition of the set of

admissible controls U , that Ln is well defined as an exponential non-negative local martingale,

and is therefore a supermartingale.

We now apply Itô’s lemma and use (2.17), to obtain
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Lnt∧θnS
n
t∧θn = an +

∫ t∧θn

tn

Lns

{
bns + dns + ψns α

n
s +

∫
E

cn,es δn,es λ(de)

}
ds

+

∫ t∧θn

tn

Lns {ψns + Sns α
n
s } dWs

+

∫ t∧θn

tn

∫
E

Lns {cn,es + Sns δ
n,e
s + cn,es δn,es } J̃(de, ds)

≥ − (ε ∧ ξ)1{t<θn}L
n
t∧θn

(2.21)

where, by definitions of αn and δn,

Lnt∧θnS
n
t∧θn = an +

∫ t∧θn

tn

Lns
{
bns + dns − (bns + dns )1An1 (s)

}
ds

+

∫
E

cn,es Lns

[
−1(An1 )c(s)

(
1− η

2 (|dns |+ 1)

)
+1An2 (s)1An4 (s, e)× 2 (bns )

+
+ η

ηMn
s

]
λ(de)ds

+

∫ t∧θn

tn

Lns {ψns + Sns α
n
s } dWs

+

∫ t∧θn

tn

∫
E

Lns {cn,es + Sns δ
n,e
s + cn,es δn,es } J̃(de, ds).

Recalling the definition of dn in (2.18), this implies

Lnt∧θnS
n
t∧θn = an +

∫ t∧θn

tn

Lns
{

(bns + dns )1(An1 )c(s)− 1(An1 )c(s)d
n
s

+ 1(An1 )c(s)
ηdns

2 (|dns |+ 1)

}
ds

+

∫
E

cn,es Lns

[
1An2 (s)1An4 (s, e)× 2 (bns )

+
+ η

ηMn
s

]
λ(de)ds

+

∫ t∧θn

tn

Lns {ψns + Sns α
n
s } dWs

+

∫ t∧θn

tn

∫
E

Lns {cn,es + Sns δ
n,e
s + cn,es δn,es } J̃(de, ds).

Observing that (An1 )c = An2 ∪An3 and An2 ∩An3 = ∅, this leads to

Lnt∧θnS
n
t∧θn = an +

∫ t∧θn

tn

Lns

{(
bns +

ηdns
2 (|dns |+ 1)

)
1An3 (s)

+

(
bns +

ηdns
2 (|dns |+ 1)

)
1An2 (s)

+

∫
E

cn,es

[
1An2 (s)1An4 (s, e)× 2 (bns )

+
+ η

ηMn
s

]
λ(de)

}
ds

+

∫ t∧θn

tn

Lns {ψns + Sns α
n
s } dWs

+

∫ t∧θn

tn

∫
E

Lns {cn,es + Sns δ
n,e
s + cn,es δn,es } J̃(de, ds).

(2.22)

By using the inequalities cn,es ≤ −η2 on An,e4 , bns ≤ −η on An3 ,
ηdns

2(|dns |+1) ≤
η
2 , and the definition

of Mn
s > 0, we then obtain(

bns +
ηdns

2 (|dns |+ 1)

)
1An3 (s) ≤

(
−η +

η

2

)
1An3 (s) = −η

2
1An3 (s) ≤ 0
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and

1An2 (s)

(
bns +

ηdns
2 (|dns |+ 1)

+
2 (bns )

+
+ η

ηMn
s

∫
E

cn,es 1An4 (s,e)λ(de)

)

≤ 1An2 (s)

(
bns +

η

2
− 2 (bns )

+
+ η

ηMn
s

η

2
Mn
s

)
≤ 1An2 (s)

(
bns +

η

2
− (bns )

+ − η

2

)
= −1An2 (s) (bns )

− ≤ 0

where x− = max(−x, 0). Thus, (2.22) implies that LnSn is a local supermartingale, which, by

(2.21), is bounded from below by the submartingale − (ε ∧ ξ)Ln on [tn, θn]. Hence, LnSn is a

supermartingale, and it follows from (2.21) again that

0 = − (ε ∧ ξ)E
[
1{θn<θn}L

n
θn

]
≤ E

[
LnθnS

n
θn

]
≤ LntnS

n
tn = Sntn = an

which contradicts (2.19) for n large enough.

Remark 2.7. Note that, in the above proof, the relaxation of the non-local part of the operator

in term of u.c. convergence is required in order to pass from the initial test function ϕ to the

penalized one ϕ̃. It allows to obtain the inequality v∗ ≥ ϕ̃+ ξ outside of the ball Bε(x0), which

is crucial in our proof. This is not required in [3] where processes are continuous. It is neither

required in [2], where the non-local operator is already continuous and the size of the jump is

locally bounded.

2.3.2 The supersolution property on {T} ×X

We split the proof in different lemmas.

Lemma 2.1. Let x0 ∈ X and ϕ ∈ C2(X) be such that

0 = (v∗(T, ·)− ϕ) (x0) = min
X

(strict) (v∗(T, ·)− ϕ)

then

δ∗ϕ(x0) ≥ 0.

Since δ∗ is upper semi-continuous, the result follows from exactly the same arguments as in

lemma 5.2 in [10]. We therefore omit it.

Lemma 2.2. v∗ is a viscosity supersolution of

(v∗(T, ·)− g∗)1{H∗v∗(T,·)<∞} ≥ 0 on X. (2.23)

Proof. Let x0 ∈ X and ϕ be a smooth function such that

min
X

(strict) (v∗(T, ·)− ϕ) = (v∗(T, ·)− ϕ) (x0).

1st step: Assume that H∗v∗(T, x0) < ∞, ϕ(x0) = v∗(T, x0) < g∗(x0), and let us work towards

a contradiction. Since v(T, ·) = g by the definition of the problem and g ≥ g∗, there is a

constant η > 0 such that ϕ − v(T, ·) ≤ ϕ − g∗ ≤ −η on Bε(x0) for some ε > 0. Since x0 is

a strict minimizer, we have 2ζ := min
x∈∂Bε(x0)

v∗(T, x) − ϕ(x) > 0, and it follows from the lower

semi-continuity of v∗ that there exists r > 0 such that

v(t,x)− ϕ(x) ≥ v∗(t, x)− ϕ(x) ≥ ζ > 0 for all (t, x) ∈ [T − r, T ]× ∂Bε(x0),

v(t, x)− ϕ(x) ≥ ζ ∧ η > 0 for (t, x) ∈ ([T − r, T )× ∂Bε(x0)) ∪ ({T} ×Bε(x0)) =: Vε,r(T, x0).

Define ϕι(x) := ϕ(x)− ι |x− x0|4, for ι > 0. As in the proof of Section 2.3.1, we have
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v(t, x)− ϕι(x) ≥ ζ ∧ η ∧ ιε4 =: 2ξ > 0 for (t, x) ∈
(
[T − r, T ]× B̄cε(x0)

)
∪ ({T} ×Bε(x0)) .

We now use the fact that H∗ϕ(x0) =: C2 <∞. Set

ϕ̃(t, x) := ϕι(x) + (C + η)(t− T ) ≤ ϕι(x).

Then, after possibly changing ε, η > 0, and for r, ι > 0 sufficiently small,

v(t, x)− ϕ̃(t, x) ≥ ξ > 0 for (t, x) ∈ Vε,r(T, x0) ∪ [T − r, T ]× B̄cε(x0),

µY (x, y, u)− Luϕ̃(t, x) ≤ −η for all u ∈ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃)

and (t, x, y) ∈ [T − r, T ]×X× R s.t. x ∈ Bε(x0) and |y − ϕ̃(t, x)| ≤ ε.

Indeed, µY (x, y, u)− Luϕ̃(t, x) = µY (x, y, u)− Luϕι(x)− C − η ≤ −η as soon as µY (x, y, u)−
Luϕι(x) ≤ C, and we have Nε,−η(t, x, y,Dϕ̃(t, x), ϕι) ⊆ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃).

2nd step: Let (tn, xn)n≥1 be a sequence in [T − r, T ] ×X which converges to (T, x0) and such

that v(tn, xn)→ v∗(T, x0). Set yn := v(tn, xn) + n−1, and observe that

γn := yn − ϕ̃(tn, xn)→ 0.

For each n ≥ 1, we have yn > v(tn, xn). Then, by (GDP1), there exists some νn ∈ U such that

Y n(t ∧ θn) ≥ V (t ∧ θn, Xn(t ∧ θn)) , t ≥ tn,

where

θon := {s ≥ tn : (s,Xn(s)) /∈ Vε,r(T, x0)}
θn := {s ≥ tn : |Y n(s)− ϕ̃ (s,Xn(s))| ≥ ε} ∧ θon,

and

Zn := (Xn, Y n) :=
(
Xνn

tn,xn , Y
νn

tn,xn,yn

)
.

Using the inequalities v ≥ v∗ ≥ ϕ̃, this implies that

Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn))

≥ [Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn))]1{t≥θn}

≥ 1{t≥θn}
[
(Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn)))1{θn<θon}

+ (v (t ∧ θn, Xn(t ∧ θn))− ϕ̃ (t ∧ θn, Xn(t ∧ θn))) 1{θn=θon}
]

≥
[
ε1{θn<θon} + ξ1{θn=θon}

]
1{t≥θn}

and then

Y n(t ∧ θn)− ϕ̃ (t ∧ θn, Xn(t ∧ θn)) ≥ (ε ∧ ξ)1{t≥θn} ≥ 0.

By repeating the arguments of steps 3 and 4 of Section 2.3.1, we end up to a contradiction.

2.3.3 The subsolution property on [0, T )×X

The proof of the subsolution property is a straightforward combination of the arguments of [2]

and [3]. We provide it for completeness.

1st step: Let (t0, x0) ∈ [0, T )×X and ϕ be a smooth function such that

0 = (v∗ − ϕ) (t0, x0) > (v∗ − ϕ) (t, x) for (t0, x0) 6= (t, x) ∈ [0, T )×X.

We assume that v∗(t0, x0) > −κ and we show that
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H∗ϕ(t0, x0) ≤ 0.

Assume to the contrary that

4η := H∗ϕ(t0, x0) > 0.

By (2.5), and after possibly changing η > 0, we may find ε > 0 and ι > 0 sufficiently small such

that

µY (x, y, u)− Luϕ̃(t, x) ≥ 2η

for some u ∈ N0,η (t, x, y,Dϕ̃(t, x), ϕ̃), for all (t, x, y) ∈ [0, T )×X×R such that (t, x) ∈ Bε(t0, x0)

and |y − ϕ̃(t, x)| ≤ ε, where ϕ̃(t, x) := ϕ(t, x) + ι |x− x0|4. Observe that we still have

0 = (v∗ − ϕ̃) (t0, x0) = max
[0,T )×X

(strict) (v∗ − ϕ̃) . (2.24)

For ε sufficiently small, Assumption 2.1 then implies that

min {µY (x, y, ν̂ (t, x, y,Dϕ̃(t, x)))−Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x),

Gν̂(t,x,y,Dϕ̃(t,x)),eϕ̃(t, x)
}
≥ η for λ-a.e. e ∈ E

(2.25)

for all (t, x, y) ∈ [0, T )×X×R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε, where ν̂ is a locally

Lipschitz map satisfying

ν̂ (t, x, y,Dϕ̃(t, x)) ∈ N0,η (t, x, y,Dϕ̃(t, x), ϕ̃) on Bε(t0, x0). (2.26)

Observe that, since (t0, x0) is a strict maximizer in (2.24), we have

−ζ := max
∂pBε(t0,x0)

(v∗ − ϕ̃) < 0

where ∂pBε(t0, x0) denotes the parabolic boundary of Bε(t0, x0). Since |x− x0|4 ≥ ε4 for

x /∈ Bε(x0)

(v∗ − ϕ̃) (t, x) = (v∗ − ϕ) (t, x)− ι |x− x0|4 ≤ −ιε4 < 0

for (t, x) ∈ [0, T )×Bcε(x0). Thus, for (t, x) ∈ ([t0, t0 + ε)×Bcε (x0)) ∪
(
{t0 + ε} ×Bε(x0)

)
,

(v∗ − ϕ̃) (t, x) ≤ −
(
ιε4 ∧ ζ

)
=: −ξ < 0. (2.27)

2nd step: We now show that (2.25), (2.26) and (2.27) lead to a contradiction to (GDP2).

Let (tn, xn)n≥1 be a sequence in [0, T )×X which converges to (t0, x0) and such that v(tn, xn)→
v∗(t0, x0). Set yn := v(tn, xn)− n−1, and observe that

γn := yn − ϕ̃(tn, xn)→ 0. (2.28)

Also notice that yn ≥ −κ for n large enough.

Let Zn := (Xn, Y n) denote the solution of (2.1) associated to the Markovian control ν̂n :=

ν̂ (·, Xn, Y n, Dϕ̃(·, Xn)) and the initial condition Zn(tn) = (xn, yn). Since ν̂ is locally Lipschitz,

this solution is well defined up to the stopping time

θn := inf {s ≥ tn : |Y n(s)− ϕ̃ (s,Xn(s))| ≥ ε} ∧ θon, (2.29)

with

θon := inf {s ≥ tn : (s,Xn(s)) /∈ Bε(t0, x0)} . (2.30)

Note that (2.25), (2.28), and a standard comparison theorem implies that

14



Y n (θn)− ϕ̃ (θn, X
n (θn)) ≥ ε on {|Y n (θn)− ϕ̃ (θn, X

n (θn))| ≥ ε}

for n large enough. Indeed, Y n (θn)− ϕ̃ (θn, X
n (θn)) ≥ γn > −ε for n large enough.

Since −v ≥ −v∗ ≥ −ϕ̃, we then deduce from (2.27), (2.29) and (2.30) that

Y n(θn)− v (θn, X
n(θn))

≥ 1{θn<θon} (Y n(θn)− ϕ̃ (θn, X
n(θn))) + 1{θn=θon} (Y n(θon)− v∗ (θon, X

n(θon)))

≥ ε1{θn<θon} + 1{θn=θon} (Y n(θon)− v∗ (θon, X
n(θon)))

≥ ε1{θn<θon} + 1{θn=θon} (Y n(θon) + ξ − ϕ̃ (θon, X
n(θon)))

≥ ε ∧ ξ + 1{θn=θon} (Y n(θon)− ϕ̃ (θon, X
n(θon))) .

(2.31)

We may continue by using Itô’s formula:

Y n(θn)− v (θn, X
n(θn)) ≥ ε ∧ ξ + 1{θn=θon}

(
γn +

∫ θn

tn

α (s,Xn
s , Y

n
s ) ds

+

∫ θn

tn

∫
E

δ (s,Xn
s , Y

n
s , e) J(de, ds)

)
where

α(t, x, y) := µY (x, y, ν̂ (t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x)

δ(t, x, y, e) :=βY (x, y, ν̂ (t, x, y,Dϕ̃(t, x)) (e), e)

− ϕ̃ (t, x+ βX (x, ν̂ (t, x, y,Dϕ̃(t, x)) (e), e)) + ϕ̃(t, x)

and the diffusion coefficient vanishes by (2.26). Recalling (2.25), the fact that γn → 0, and that

ε, ζ > 0, this implies that

Y n (θn) > v (θn, X
n (θn)) for sufficiently large n.

Since the initial position of the process Y n is yn = v (tn, xn) − n−1 < v (tn, xn), this is clearly

in contradiction with (GDP2).

2.3.4 The subsolution property on {T} ×X

The proof combines arguments used in the two previous sections 2.3.2 and 2.3.3. The only

difference between this proof and the one in [3] relies on the presence of the jumps. However, it

can be handled by following [2]. We then only explain the main steps. Let x0 ∈ X and ϕ be a

smooth function such that

max
X

(strict) (v∗(T, ·)− ϕ) = (v∗(T, ·)− ϕ) (x0) = 0.

Assume that, for some η > 0,

0 < δ∗ϕ(x0)

0 < 4η < ϕ(x0)− g∗(x0) = v∗(T, x0)− g∗(x0)

Set ϕ̃(t, x) = ϕ(x)+ι
(
|x− x0|4 +

√
T − t

)
. Since the partial derivatives in x of ϕ and ϕ̃ are the

same for x = x0, by (2.8) and Assumption 2.1, using the fact that ϕ̃ ≥ ϕ, for ι > 0 small enough,

after possibly changing η > 0, we can find r, ε > 0 and a locally Lipschitz map ν̂ satisfying,

ν̂ (t, x, y,Dϕ̃(t, x)) ∈ N0,η (t, x, y,Dϕ̃(x), ϕ̃) (2.32)

such that

0 < δ∗ϕ̃(t, x)

0 < 4η < ϕ̃(T, x0)− g∗(x0) = v∗(T, x0)− g∗(x0)
(2.33)
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for all (t, x, y) ∈ [T − r, T )×X× R s.t. x ∈ Br(x0) and |y − ϕ̃(t, x)| ≤ ε. Since ∂tϕ̃→ −∞ as

t→ T , we deduce that, for r > 0 small enough,

µY (x, y, ν̂ (t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η (2.34)

for all (t, x, y) ∈ [T − r, T ) ×X × R s.t. x ∈ Br(x0) and |y − ϕ̃(t, x)| ≤ ε. Also observe that,

since v∗ − ϕ̃ is upper-semicontinuous and (v∗ − ϕ̃) (T, x0) = 0, we can choose r > 0 such that

v(t, x) ≤ ϕ̃(t, x) +
ε

2
for all (t, x) ∈ [T − r, T )×Br(x0). (2.35)

Moreover, combining the identity v(T, x0) = g(x0), (2.33), (2.34), (2.35), the fact that x0

achieves a strict maximum, and using similar arguments as those of Section 2.3.2 above, we see

that

v(t, x)− ϕ̃ ≤ −
(
ζ ∧ ιε4

)
=: −ξ (2.36)

for all (t, x) ∈
(
[T − r, T ]×Bcr(x0)

)
∪ ({T} ×Br(x0)) and for some r, ε > 0 small enough, but

so that the above inequalities still hold.

By following the arguments in step 2 of Section 2.3.3, we see that (2.33), (2.32), (2.35) and

(2.36) lead to a contradiction of (GDP2).

3 Target reachability with controlled expected loss

3.1 Problem reduction

We now turn to the main motivation for the above analysis: the stochastic target problem with

controlled expected loss.

Let Ψ be a measurable map from Rd+1 to R such that, for every fixed x, the function

y 7−→ Ψ(x, y) is non-decreasing and right continuous.

We define L as the closed convex hull of the image of Ψ

L := } (Ψ (X× [−κ,∞))) = [m,M ],

with m < M , m,M ∈ [−∞,+∞].

For p ∈ L, we define the stochastic target problem with controlled expected loss as follows:

v̂(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
≥ p for some ν ∈ U

}
, (3.1)

with κ ∈ R+ ∪ {+∞}.

The aim of this section is to convert the problem (3.1) into the class of standard stochas-

tic target problems as defined in Section 2. The dynamic programming equation for the target

reachability with controlled expected loss will then be deduced directly from Theorem 2.1 above.

Following [3], we introduce an additional controlled state variable

Pα,χt,p (s) := p+

∫ s

t

αr · dWr +

∫ s

t

∫
E

χs,eJ̃(de, ds), s ∈ [t, T ],

where the additional controls α, χ are F-predictable measurable processes, with χ ∈ H2
λ and α is

Rd-valued and such that E
[∫ T

0
|αs|2 ds

]
<∞. We denote by A the collection of such processes

(α, χ). For ν̂ := (ν, α, χ), we then set X̂ ν̂ := (Xν , Pα,χ). We also define X̂ := X × L, Û :=

U × Rd × L2
λ, and denote by Û = U ×A the corresponding set of admissible controls. Abusing

notations, we also set Y ν̂ = Y ν . Finally, we introduce the function

V̂ (x̂, y) := Ψ(x, y)− p, for y ≥ −κ and x̂ = (x, p) ∈ (X× L).
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We make the following assumption, which allows us to use the stochastic integral representation

theorem.

Assumption 3.1. Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
is square integrable for all initial conditions (t, x, y) ∈

[0, T ]×X× [−κ,+∞) and controls ν ∈ U .

Following the arguments of [3], we can now relate v̂ to a stochastic target problem with un-

bounded controls, and controls taking the form of measurable functions on E.

Proposition 3.1. For all t ∈ [0, T ] and x̂ = (x, p) ∈ X̂, we have

v̂(t, x̂) = inf
{
y ≥ −κ : V̂

(
X̂ ν̂
t,x̂(T ), Y ν̂t,x,y(T )

)
≥ 0 for some ν̂ = (ν, α, χ) ∈ Û

}
(3.2)

= inf
{
y ≥ −κ : V̂

(
X̂ ν̂
t,x̂(T ), Y ν̂t,x,y(T )

)
≥ 0 and Pα,χt,p ∈ L for some ν̂ = (ν, α, χ) ∈ Û

}
. (3.3)

Proof. We denote by u(t, x, p) and w(t, x, p) the value functions appearing on the right-hand

side of (3.2) and (3.3) respectively.

1st step: We first show that v̂ ≥ u. For y > v̂(t, x, p), we may find ν ∈ U such that p0 :=

E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
≥ p. By the stochastic integral representation theorem, recall As-

sumption 3.1, there exists (α, χ) ∈ A such that

Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
= p0 +

∫ T

t

αs · dWs +

∫ T

t

∫
E

χs,eJ̃(de, ds) = Pα,χt,p0 (T ).

Since p0 ≥ p, it follows that Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ Pα,χt,p (T ), and therefore y ≥ u(t, x, p) from

the definition of the problem u.

2nd step: We next show that u ≥ v̂. For y > u(t, x, p), we have V̂
(
X̂ ν̂
t,x̂(T ), Y νt,x,y(T )

)
≥ 0 for

some ν̂ = (ν, α, χ) ∈ Û . It follows that

E
[
V̂
(
X̂ ν̂
t,x̂(T ), Y ν̂t,x,y(T )

)]
= E

[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
− Pα,χt,p (T )

]
≥ 0,

and since Pα,χt,p is a martingale

E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
≥ p = E

[
Pα,χt,p (T )

]
,

so that y ≥ v̂(t, x, p) by the definition of v̂.

3rd step: The inequality u ≤ w is obvious. To see that the converse inequality holds, consider

some y > u(t, x, p). Then there exists some ν̂ = (ν, α, χ) ∈ Û such that

Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ Pα,χt,p (T ). (3.4)

Define

τ := T ∧ inf
{
s > t : Pα,χt,p (s) ≤ m

}
and

α̃s := αs1{s≤τ}, χ̃s,e :=
[
−
(
χs,e ∨

(
m− Pα,χt,p (s−)

))−
+ (χs,e)

+
]
1{s≤τ} for s ∈ [t, T ] .

Clearly, Pα,χt,p (T ) = P α̃,χ̃t,p (T ) on the event {τ = T}. Since P α̃,χ̃t,p (T ) = m on the event {τ < T},
it follows from (3.4) that

Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ P α̃,χ̃t,p (T ).

We finally observe that P α̃,χ̃t,p (T ) ≥ m by the definition of α̃ and χ̃, and that the last inequality

implies that P α̃,χ̃t,p (T ) ≤ M . By the martingale property of the process P α̃,χ̃t,p , we conclude that

it is valued in the interval [m,M ] = L. Hence, y ≥ w(t, x, p).
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Let us observe that the problem (3.2) can be alternatively formulated as

v̂(t, x, p) = inf
{
y ≥ −κ : Y ν̂t,x,y(T ) ≥ ĝ

(
X̂ ν̂
t,x̂(T )

)
for some ν̂ = (ν, α, χ) ∈ Û

}
where ĝ is the generalized inverse of V̂ at 0

ĝ (x̂) := inf
{
y : V̂ (x̂, y) ≥ 0

}
.

Remark 3.1. 1. In the case where the infimum in the definition of v̂(t, x, p) is achieved and there

exists a control ν ∈ U satisfying E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)]
= p with y = v̂(t, x, p), the above

argument shows that the corresponding process Pα,χt,p coincides with the conditional expectation

of Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)
, i.e.

Pα,χt,p (s) = E
[
Ψ
(
Xν
t,x(T ), Y νt,x,y(T )

)∣∣Fs] for s ∈ [t, T ].

2. Equation (3.3) shows that one can restrict to controls α and χ such that Pα,χt,p takes values

in L. This is rather natural since the latter should be interpreted as a conditional expectation

of Ψ, which convex hull is L, and this corresponds to the natural domain [m,M ] of the variable

p. Notice also that the value function v̂(·, p) is constant for p < m, and equal ∞ for p > M . In

both cases, the natural domain of v̂ is therefore [0, T ]×X× [m,M ].

3. Moreover, in the special case where m and/or M are finite, the fact that Pα,χt,p takes values

in L allows us to consider that the jump coefficient χ is bounded. This will be usefull in the

proofs of Section 3.5. Indeed we may write in that particular case

m− Pα,χt,p (s−) ≤ χs ≤M − Pα,χt,p (s−),

with Pα,χt,p (s−) ∈ [m,M ].

Example 3.1. Given a non-negative function h, let us consider the case where Ψ̌(x, y) = y
h(x)∧1,

with the convention y
0 = +∞ for y ∈ R+. For κ = 0, we then obtain

v̌(t, x, p) = inf

{
y ∈ R+ : E

[
Y νt,x,y(T )

g
(
Xν
t,x(T )

) ∧ 1

]
≥ p for some ν ∈ U

}
,

which is the problem of the expected success ratio studied in [6]. Using (3.2), we see that the

above problem reduces to

v̌(t, x, p) = inf
{
y ∈ R+ : V̌

(
X̂ ν̂
t,x,p(T ), Y ν̂t,x,y(T )

)
≥ 0 for some ν̂ = (ν, α, χ) ∈ Û

}
,

where V̌ (x, p, y) = Ψ̌(x, y)− p.

Example 3.2. One can similarly recover the problem of stochastic target under controlled

probability of success studied in [3] and [6]:

ṽ(t, x, p) := inf
{
y ∈ R+ : P

[
Ψ̃
(
Xν
t,x(T ), Y νt,x,y

)
≥ 0
]
≥ p for some ν ∈ U

}
,

for some measurable map Ψ̃ from Rd+1 into R such that, for every fixed x ∈ Rd, the function

y 7→ Ψ̃(x, y) is non-decreasing and right-continuous. The reduction of the problem (3.2) leads

to

ṽ(t, x, p) := inf
{
y ∈ R+ : Ṽ

(
X̂ ν̂
t,x,p(T ), Y ν̂t,x,y

)
≥ 0 for some ν̂ ∈ Û

}
,

where Ṽ (x, p, y) = 1{Ψ̃(x,y)≥0} − p.
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3.2 PDE characterization in the domain

In view of Proposition 3.1, the PDE characterization of Theorem 2.1 can be extended to the

problem (3.1). Let us first introduce notations associated to the augmented system.

For û = (u, α, π) ∈ Û and x̂ = (x, p) ∈ X̂, set

µ̂(x̂, û) :=

(
µX(x, u)

−
∫
E
π(e)λ(de)

)
, σ̂(x̂, û) :=

(
σX(x, u)

αT

)
, β̂(x̂, û(e), e) :=

(
βX(x, u(e), e)

π(e)

)
.

Recalling 3. of Remark 3.1, we also introduce, for (x, k, q, A) ∈ R × R × Rd+1 × Sd+1, û =

(u, α, π) ∈ Û , ε > 0 and η ∈ [−1, 1],

N̂ û(x̂, y, q) := σY (x, y, u)− σ̂(x̂, û)T q = Nu(x, y, qx)− qpα, for q = (qx, qp) ∈ Rd × R,

∆̂û,e (t, x̂, y, ψ) := βY (x, y, u, e)− ψ
(
t, x̂+ β̂ (x̂, û(e), e)

)
+ y

N̂ε,η(t, x̂, y, q, ψ) :=
{
û ∈ Û :

∣∣∣N̂ û(x̂, y, q)
∣∣∣ ≤ ε ,

p+ π(e) ∈ [m,M ] and ∆̂û,e (t, x̂, y, ψ) ≥ η for λ-a.e. e ∈ E
} (3.5)

Ĥε,η(Θ̂, ϕ) := sup
û∈N̂ε,η(t,x̂,y,q,ϕ)

Â
û
(Θ̂) (3.6)

where

Θ̂ := (t, x̂, y, k, q, A)

Â
û
(

Θ̂
)

:= −k + µY (x, y, u)− µ̂ (x̂, û) · q − 1

2
Tr
[
σ̂σ̂T (x̂, û)A

]
and

N̂(t, x̂, y, q, ψ) :=
{

(r, s) ∈ Rd × R : ∃ û ∈ Û s.t. r = N̂ û(x̂, y, q)

and s ≤ ∆̂û,e(t, x̂, y, ψ) for λ-a.e. e ∈ E
}
,

δ̂ := dist
(

0, N̂
c
)
−dist

(
0, N̂

)
.

The operators Ĥ∗, Ĥ∗δ̂
∗ and δ̂∗ are constructed from Ĥε,η and δ̂ exactly as H∗, H∗, δ

∗ and δ∗
are defined from Hε,η and δ. Finally, we define the function

ĝ (x̂) := inf
{
y ≥ −κ : V̂ (x̂, y) ≥ 0

}
, x̂ = (x, p) ∈ X× [m,M ] .

As an almost direct consequence of Theorem 2.1 and (3.2), we obtain the viscosity property of

v̂ under the following assumption, which is the analog of Assumption 2.1 for the augmented

control system X̂:

Assumption 3.2. (Continuity of N̂0,η(t, x, p, y, q, f)) Let B be a subset of [0, T ]×X× [m,M ]×
R × Rd+1, f ∈ C0 ([0, T ]×X× [m,M ]) and η > 0 such that N̂0,η(·, f) 6= ∅ on B. Then, for

every ε > 0, (t0, x0, p0, y0, q0) ∈Int(B) and û0 ∈ N̂0,η (t0, x0, p0, y0, q0, f), there exists an open

neighborhood B′ of (t0, x0, p0, y0, q0) and a locally Lipschitz map ν̂ defined on B′ such that

|ν̂ (t0, x0, p0, y0, q0)− û0| ≤ ε, and ν̂(t, x, p, y, q) ∈ N̂0,η(t, x, y, p, q, f) on B′.

Corollary 3.1. The function v̂∗ is a viscosity supersolution of

Ĥ∗v̂∗ ≥ on [0, T )× X̂. (3.7)

Under the additional Assumption 3.2, v̂∗ is a viscosity subsolution of

min
{
v̂∗ + κ, Ĥ∗v̂

∗
}
≤ 0 on [0, T )× X̂. (3.8)
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The supersolution property is a direct consequence of Theorem 2.1, the representation (3.2) and

3. of Remark 3.1. The subsolution property is obtained similarly.

Example 3.3. In the context of both Example 3.1 and Example 3.2, with the dynamics of

Example 2.1, the conditions of Theorem 3.1 are trivially satisfied. By direct computations, we

then have that both v̌∗ and ṽ∗ are viscosity supersolution on [0, T )×X of

0 ≤ −∂tϕ−
1

2
σ2Dxxϕ

− inf
π∈Π(p)

α∈Rd

{
1

2
|α|2Dppϕ+ Tr [σαDxpϕ]− α (Dpϕ)

T
σ−1µ−Dpϕ

∫
E

π(e)λ(de)

}
,

(3.9)

whenever Dppϕ > 0, and with

Π(p) := {π ∈ L2
λ s.t.

(
Dxϕ+ σ−1Dpϕα

)
β(·, e)− ϕ (·, ·+ β(·, e), ·+ π(e)) + ϕ ≥ 0

and p+ π ∈ [0, 1] for λ-a.e. e ∈ E}.

3.3 Boundary conditions and state constraint

In our general context, the natural domain of P is [m,M ]. In the case where m or M are finite,

we need to specify the boundary conditions at the end points m and M .

By definition of the stochastic target problem with controlled expected loss, we have

v̂(·,M) = v and v̂(·,m) = −κ, (3.10)

where

v(t, x) := inf
{
y ≥ −κ : Φ

(
Xν
t,x(T ), Y νt,x,y(T )

)
≥ 0 for some ν ∈ U

}
,

with

Φ(x, y) := Ψ(x, y)−M. (3.11)

Also, since Ψ is non-decreasing in y, we know that v̂ is non-decreasing in p. Hence,

−κ ≤ v̂∗(·,m) ≤ v̂∗(·, p) ≤ v̂∗(·,M) ≤ v∗ for p ∈ [m,M ],

v̂∗(·, p) = −κ for p < m and v̂∗(·, p) =∞ for p > M,
(3.12)

and one can naturally expect that v̂∗(·,m) = −κ and v̂∗(·,M) = v∗. However, the function v̂

may have discontinuities at p = m or p = M and, in general, the boundary conditions have

to be stated in a weak form, see (3.17) and (3.52) below. This corresponds to the classical

state-space constraint problems, see [1], [5], [7] or [8] and the references therein.

To obtain a characterization of v̂ on these boundaries, we shall appeal to the following additional

assumptions. Assumption 3.5 and Assumption 3.6 already appeared in [3]. Assumption 3.3,

Assumption 3.4 and Assumption 3.7 will be used to handled the non-local operator.

Assumption 3.3. H1: For some integer γ ≥ 1, v̂∗(·,m)+ satisfies the growth condition

sup
[0,T ]×Rd

|w(t, x)|
1 + |x|γ

<∞. (3.13)

H2: There is a function Λ on Rd satisfying

(i) For all x ∈ X and y > Λ(x), there exists ū ∈ U such that

βY (x, y, ū(e), e)− Λ (x+ βX (x, ū(e), e)) + Λ(x) > 0 for λ-a.e. e ∈ E.

(ii) Λ (x) / |x|γ → +∞ as |x| → ∞.
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(iii) Λ ≤ −κ on X.

Assumption 3.4. The set E is finite and λ(e) > 0 for all e ∈ E.

Assumption 3.5. For all (x, y, q) ∈ X×(−κ,∞)×Rd, we have {u ∈ U : Nu(x, y, q) = 0}  U .

We need for the next assumption to introduce the following set, for (x, y, q) ∈ Rd × R× Rd:

Ñε(x, y, q) := {u ∈ U : |Nu(x, y, q)| ≤ ε} . (3.14)

Assumption 3.6. For all compact subset D of Rd ×R×R×Rd × Sd, there exists C > 0 such

that

sup
u∈Ñε(x,y,q)

{
µY (x, y, u)− k − µX(x, u) · q − 1

2
Tr
[
σXσ

T
X(x, u)A

]}
≤ C

(
1 + ε2

)
for all ε > 0 and (x, y, k, q, A) ∈ D.

Assumption 3.7. The maps βX , βY are continuous on X × E and X × R × E uniformly in

u ∈ U . Moreover, βX , βY and σX satisfy the following condition

ess sup
u∈U,e∈E

{|βX(·, u(e), e)|+ |βY (·, u(e), e)|+ |σX(·, u)|} is locally bounded

Since the main concern of this paper is the analysis of the stochastic target problem under

controlled loss with jumps, we do not establish a comparison result of viscosity supersolutions

of (2.6)-(2.9) and subsolutions of (2.7)-(2.10). Nonetheless, as in [3], we need such a comparison

result in order to establish the boundary conditions of this section.

Assumption 3.8. There is a class of functions C containing all [−κ,+∞) valued functions

dominated by v∗ such that, for every

- v1 ∈ C, lower semi-continuous viscosity supersolution of (2.6)-(2.9) on [0, T ]×X

- v2 ∈ C, upper semi-continuous viscosity subsolution of (2.7)-(2.10) on [0, T ]×X

we have v1 ≥ v2.

The main results of this section shows that the natural boundary conditions (3.10) indeed holds

true, whenever the comparison principle of Assumption 3.8 holds and under the above additional

conditions.

Theorem 3.1. Assume that Assumption 3.2, Assumption 3.4 and Assumption 3.7 hold true.

(i) Assume that m > −∞. Under Assumption 3.3, and Assumption 3.5, we have v̂∗(·,m) = −κ
on [0, T )×X and v̂∗(·,m) = −κ on [0, T ]×X.

(ii) Assume that M <∞. Under Assumption 3.6, v̂∗(·,M) is a viscosity supersolution of (2.6)-

(2.9) on [0, T ]×X. In particular, if in addition the comparison principle of Assumption 3.8 is

satisfied, then v̂∗(·,M) = v̂∗(·,M) = v∗ = v∗ on [0, T ]×X.

The proof is reported in Section 3.5.

Remark 3.2. This subsection is similar to the one in [3], where the authors studied the bound-

ary conditions at p = 0 and p = 1 in the case of target reachability under controlled probability,

i.e. Ψ is of the form Ψ(x, y) = 1{y≥g(x)}. In this paper, the natural domain of P is [0, 1], and

the authors studied the behavior of the value function v̂ when p→ 0 and p→ 1.

3.4 On the Terminal Condition

The boundary condition at T for v̂∗ and v̂∗ can be easily derived from the characterization of

Theorem 2.2.

Corollary 3.2. The function x̂ ∈ X̂ 7→ v̂∗(T, x̂) is a viscosity supersolution of

min
{

(v̂∗(T, ·)− ĝ∗)1{Ĥ∗v̂∗(T,·)<∞}, δ̂
∗v̂∗(T, ·)

}
≥ 0 on X̂.

If in addition, Assumption 3.2 holds, then x̂ ∈ X̂ 7→ v̂∗(T, x̂) is a viscosity subsolution of

min
{
v̂∗(T, ·)− ĝ∗, δ̂∗v̂∗(T, ·)

}
≤ 0 on X̂.
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The condition Ĥ∗v̂∗(T, ·) <∞ may not be satisfied because the control (α, χ) appearing in the

definition of Ĥ may not be bounded. It follows that the above boundary condition may be

useless in most examples.

The rest of this section is devoted to the discussion of conditions under which a precise boundary

condition can be specified.

Proposition 3.2. (i) Assume that for all sequence (tn, xn, yn, pn, νn)n≥1 of [0, T )×X×R+ ×
[m,M ] × U such that (tn, xn, yn, pn) → (T, x, y, p) ∈ {T} × X × R+ × [m,M ], there exists a

sequence of P-absolutely continuous probability measure (Qn)n≥1, defined by dQn
dP =: Hn for

some sequence of non-negative random variable (Hn)n≥1, such that

lim sup
n→∞

EQn [Y νntn,xn,yn] ≤ y, lim sup
n→∞

E
[∣∣HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ(xn, pn)
∣∣] = 0

and lim inf
n→∞

E
[
Hn } ĝ

(
Xνn
tn,xn(T ), pn

)]
≥ }ĝ(x, p),

(3.15)

where D+
p stands for the right derivative in p.

Then, v̂∗(T, x, p) ≥ }ĝ(x, p) for all (x, p) ∈ X× [0, 1].

(ii) Let the conditions (ii) of Theorem 3.1 hold true and assume that v̂∗ is convex in its p-variable

and that v∗(T, x) ≤ g(x). Then v̂∗(T, x, p) ≤ }ĝ(x, p) for all (x, p) ∈ X× [m,M ].

Proof. (i) Given a sequence (tn, xn, pn)n≥1 in [0, T ) ×X × (m,M) such that (tn, xn, pn) →
(T, x, p) and v̂ (tn, xn, pn)→ v̂∗(T, x, p), we can find ν̂n = (νn, αn, χn) ∈ Û such that

V̂
(
X̂ ν̂n
tn,xn,pn(T ), Y ν̂ntn,xn,yn(T )

)
≥ 0,

where yn := v̂(tn, xn, pn) + n−1 → v̂∗(T, x, p), recall (3.2). This implies that

Y ν̂ntn,xn,yn(T ) ≥ ĝ
(
X̂ ν̂n
tn,xn,pn(T )

)
,

and, by the definition of the convex hull of ĝ,

HnY ν̂ntn,xn,yn(T ) ≥ Hn } ĝ
(
X̂ ν̂n
tn,xn,pn(T )

)
.

Using the convexity of }ĝ then leads to

HnY ν̂ntn,xn,yn(T ) ≥ Hn } ĝ
(
Xνn
tn,xn(T ), pn

)
+HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

) (
Pαn,χntn,pn (T )− pn

)
= Hn } ĝ

(
Xνn
tn,xn(T ), pn

)
+D+

p } ĝ (xn, pn)Pαn,χntn,pn (T )

−HnpnD
+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
+ Pαn,χntn,pn (T )

[
HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
]

≥ Hn } ĝ
(
Xνn
tn,xn(T ), pn

)
+D+

p } ĝ (xn, pn)Pαn,χntn,pn (T )

−HnpnD
+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−M

∣∣HnD+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
∣∣ ,

where the last inequality follows from the fact that we can always assume that Pαn,χntn,pn takes

values in [m,M ], see (3.3). Taking the expectation under P and using the fact that Pαn,χntn,pn is a

P-martingale, we obtain

EQn
[
Y ν̂ntn,xn,yn(T )

]
≥ E

[
Hn } ĝ

(
Xνn
tn,xn(T ), pn

)
+ pn

(
D+
p } ĝ (xn, pn)−HnD+

p } ĝ
(
Xνn
tn,xn(T ), pn

))
−M

∣∣HnD+
p } ĝ

(
Xνn
tn,xn(T ), pn

)
−D+

p } ĝ (xn, pn)
∣∣] .

Passing to the limit, and using (3.15) leads to v̂∗(T, x, p) ≥ }ĝ(x, p).

(ii) Using (3.12) and the convexity of v̂∗ together with the definition of the convex hull of a

function lead to the required result.
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Example 3.4. In the context of Example 3.1, we may easily notice that the generalized inverse

of V̌ at 0,

ǧ(x, p) := inf
{
y ≥ −κ : V̌ (x, p, y) ≥ 0

}
,

satisfies

ǧ(x, p) = pg(x)

and is convex in p. Moreover, for the dynamics of Example 2.1, the convexity of v̌ in its p-

variable is quite obvious, since Y νt,x,µy(T ) = µY νt,x,y(T ) for any µ ∈ [0, 1], and the expectation

operator is linear.

We have already shown in Section 3.2 that v̌∗ is a supersolution of (3.9). Notice that the

condition of Corollary 3.1 and (i) of Proposition 3.2 are satisfied. In this case, we deduce that

v̌∗ satisfies the boundary conditions

v̌∗(·, 1) = v and v̌∗(·, 0) = 0 on [0, T )×X and v̌∗(T, x, p) ≥ pg(x) on X× [0, 1]. (3.16)

Example 3.5. In the context of Example 3.2, we define the function

g̃(x, p) := inf
{
y ≥ −κ : Ṽ (x, p, y) ≥ 0

}
and let ψ̃ be the generalized inverse of Ψ̃ at 0, i.e. ψ̃(x) := inf

{
y ≥ −κ : Ψ̃(x, y) ≥ 0

}
. Then,

g̃(x, p) = ψ̃(x)1{p>0} for x ∈ X and p ∈ [0, 1]. The convexity of ṽ is far from being obvious.

However, one may notice that the convex hull of g̃ in p is } (ĝ) (x, p) = pg(x), with g = ψ̃−1,

and that the condition of Corollary 3.1 and (i) of Proposition 3.2 are satisfied. It follows that,

as for the expected success ratio problem of Example 3.4 above, ṽ∗ is a viscosity supersolution

on [0, T ]×X× [0, 1] of (3.9) - (3.16).

Remark 3.3. In [3], the authors considered the case ĝ(x, p) = g(x)1{p>0}, so that }ĝ(x, p) =

pg(x), and therefore D+
p } ĝ(x, p) = g(x). Then, Assumption (3.15), in the case of [3], should

take the form:

lim sup
n→∞

E
[∣∣Hng

(
Xνn
tn,xn(T )

)
− g(x)

∣∣] = 0.

The Assumption (3.15) is then almost the counterpart of the one made in their proposition 3.2.

The difference comes from a slight error in their proof2 where they use the fact that Pαn,χntn,pn is

a Q-martingale while it is only a P-martingale, a priori.

3.5 Derivation of the boundary conditions for the stochastic target

with controlled expected loss

We now prove Theorem 3.1. These boundary conditions need only to be specified in the case

where m and/or M are finite.

In all this section, we shall use the following notations

L̂ûϕ (t, x̂) := ∂tϕ (t, x̂) + µ̂ (x̂, û) ·Dϕ (t, x̂) +
1

2
Tr
[
σ̂σ̂T (x̂, û)D2ϕ (t, x̂)

]
Ĝû,eϕ (t, x̂) := βY (x, ϕ (t, x̂) , u(e), e)− ϕ

(
t, x̂+ β̂ (x̂, û(e), e)

)
+ ϕ (t, x̂) ,

for x̂ = (x, p), û = (u, α, χ).

2The author would like to thank Bruno Bouchard, Romuald Elie and Nizar Touzi for pointing out this issue

and for their explanations on how to fix it in their particular context.

23



3.5.1 The endpoint p = M , finite

In order to show that v̂∗(·,M) is a viscosity supersolution of (2.6)-(2.9), it suffices to show that

v̂∗(·,M) is a viscosity supersolution on [0, T )×X of

max {v̂∗(·,M)− v∗, H∗v̂∗(·,M)} ≥ 0, (3.17)

and that v̂∗(T, ·,M) is a viscosity supersolution on X of

max
{
v̂∗(T, ·,M)− v∗,min

{
(v̂∗(T, ·,M)− j∗)1{H∗v̂∗(T,·,M)<∞}, δ

∗v̂∗(T, ·,M)
}}
≥ 0, (3.18)

where j is the generalized inverse of Φ at 0:

j(x) := inf {y ≥ −κ : Φ(x, y) ≥ 0} ,

recall (3.11).

To convince ourself, let us show for instance that (3.17) implies (2.6). Let (t0, x0) be a local

minimizer of v̂∗(·,M)− ϕ for some smooth function ϕ. Then

- either v̂∗(t0, x0,M) < v∗(t0, x0) and then (2.6) holds for ϕ at (t0, x0)

- or v̂∗(t0, x0,M) = v∗(t0, x0) so that (t0, x0) is a local minimizer of v∗ − ϕ, and (2.6) holds for

ϕ at (t0, x0) by the viscosity property of v∗, see Theorem 2.1.

1st step: We first show that for any smooth function ϕ on [0, T ] × X × [m,M ] and (t0, x0) ∈
[0, T )×X such that

(strict) min
[0,T )×X×[m,M ]

(v̂∗ − ϕ) = (v̂∗ − ϕ) (t0, x0,M) = 0, (3.19)

we have

max
{
ϕ(t0, x0,M)− v∗(t0, x0), Ĥ∗ϕ(t0, x0,M)

}
≥ 0.

If not, we can find η, ε, ι > 0 such that

max
{
ϕι − v∗(t, x), µY (x, y, u)− L̂ûϕι(t, x, p),

}
≤ −η

for all û := (u, α, π) ∈ N̂ε,−η (t, x, y,Dϕι(t, x, p), ϕι)

and (t, x, p, y) ∈ [0, T )×X× (m,M ]× R
s.t. (t, x, p) ∈Bε(t0, x0)× [M − ε,M ] and |y − ϕι(t, x, p)| ≤ ε,

(3.20)

with ϕι(t, x, p) := ϕ(t, x, p)− ι
(
|x− x0|4 + |p−M |4

)
.

Let (tn, xn, pn)n be a sequence in [0, T )×X× (m,M) which converges to (t0, x0,M) and such

that v̂(tn, xn, pn)→ v̂∗(t0, x0,M). Set yn := v̂(tn, xn, pn) + n−1 and observe that

γn := yn − ϕι(tn, xn, pn)→ 0.

For each n ≥ 1, we have yn > v̂(tn, xn, pn). Then, by (GDP1), there exists some ν̂n :=

(νn, αn, χn) ∈ Û such that

Y n(θn) ≥ v̂∗ (θn, X
n(θn), Pn(θn)) ≥ ϕι (θn, X

n(θn), Pn(θn))

where

θon := {s ≥ tn : (s,Xn(s), Pn(s)) ∈ D}
θn := {s ≥ tn : |Y n(s)− ϕι (s,Xn(s), Pn(s))| ≥ ε} ∧ θon

together with

Ẑn := (Xn, Pn, Y n) :=
(
Xνn

tn,xn , P
αn,χn

tn,pn , Y ν
n

tn,xn,yn

)
,
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and

Vε(t0, x0) := ({t0 + ε} ×Bε(x0)) ∪ ([t0, t0 + ε)×Bcε(x0))

D := (Vε(t0, x0)× [M − ε,M ])∪ (Bε(t0, x0)× [m,M − ε]) .

It follows from (3.20) and (3.19)

ζ := inf
D

(v̂ − ϕι) > 0.

Using the definition of θn and ζ > 0, this implies that

Y n(θn)− ϕι (θn, X
n(θn), Pn(θn)) ≥ ζ ∧ ε. (3.21)

By arguing as in Section 2.3.1, this leads to a contradiction.

2nd step: We now show (3.17), i.e. for any smooth function ϕ on [0, T ] × X and (t0, x0) ∈
[0, T )×X such that

(strict) min
[0,T )×X

(v̂∗(·,M)− ϕ) = (v̂∗(·,M)− ϕ) (t0, x0) = 0,

we have

max {ϕ(t0, x0)− v∗(t0, x0), H∗ϕ(t0, x0)} ≥ 0. (3.22)

a. The first step is similar as in [3]. For every k, we introduce the smooth function

ϕk(t, x, p) := ϕ(t, x)−
(
|x− x0|4 + (t− t0)

2
+ ψk(p)

)
,

where, for some ρ > 0,

ψk(p) := −ρk
∫ M

p

e2kM

ek(r+M) − e2kM+1
dr, k > 0. (3.23)

Observe that

ψk(p) ≥ 0 for all k > 0, p ∈ [m,M ],

−2ρk ≤ ψ′k(p) = ρk
e2kM

ek(p+M) − e2kM+1
≤ − ρk

2(e− 1)
for k large enough, (3.24)

ψ′′k (p) = −ρk2 ek(p+3M)(
ek(p+M) − e2kM+1

)2 < 0 for all k > 0, (3.25)

lim
k→∞

(ψ′k(pk))
2

|ψ′′k (pk)|
= ρ if (pk)k is a sequence in [m,M ] s.t. lim

k→∞
k(M − pk) = 0. (3.26)

Let (tk, xk, pk) be a minimizer of v̂∗−ϕk on [0, T ]×BX
1 (x0)×[m,M ], whereBX

1 (x0) := B1(x0)∩X

and B1(x0) is the open unit ball centered at x0. Observe that, by definition of (tk, xk, pk) and

(t0, x0),

(v̂∗(·,M)− ϕ) (t0, x0) = (v̂∗ − ϕk) (t0, x0,M)

≥ (v̂∗ − ϕk) (tk, xk, pk)

= (v̂∗(·, pk)− ϕ) (tk, xk) +
(
|xk − x0|4 + (tk − t0)2 + ψk(pk)

)
≥ (v̂∗(·, pk)− ϕ) (tk, xk) +

(
|xk − x0|4 + (tk − t0)2 +

ρk

2(e− 1)
(M − pk)

)
,

where the last inequality follows from (3.24), for k large enough, and the fact that ψk(M) = 0.

Since v̂∗ ≥ −κ by construction and ϕ is bounded, this implies that the sequence (tk, xk, pk)k≥1

25



is bounded, and therefore converges to some (t∗, x∗, p∗) up to a subsequence. Clearly, p∗ = M ,

since otherwise we would have k(M − pk)→∞. By definition of (t0, x0), this implies that

(v̂∗(·,M)− ϕ) (t0, x0)

≥ lim inf
k→∞

(v̂∗ − ϕk) (tk, xk, pk)

≥ (v̂∗(·,M)− ϕ) (t∗, x∗) +

(
|x∗ − x0|4 + (t∗ − t0)2 + lim inf

k→∞

ρk

2(e− 1)
(M − pk)

)
≥ (v̂∗(·,M)− ϕ) (t0, x0) +

(
|x∗ − x0|4 + (t∗ − t0)2 + lim inf

k→∞

ρk

2(e− 1)
(M − pk)

)
.

This shows that, after possibly passing to a subsequence,

(tk, xk, pk)→ (t0, x0,M), k(M − pk)→ 0, and v̂∗(tk, xk, pk)→ v̂∗(t0, x0,M). (3.27)

b. We now go on with the arguments of [3], up to a non trivial adaptation required by the

non-local parts of the operator. In order to prove (3.17), we assume

v̂∗ (t0, x0,M)− v∗ (t0, x0) < 0 (3.28)

and we intend to prove that

H∗ϕ (t0, x0) ≥ 0. (3.29)

By (3.27) and the lower semicontinuity of v̂∗, it follows from (3.28) that the sequence (tk, xk, pk)k≥1

of minimizers of the difference v̂∗ − ϕk satisfies ϕk (tk, xk, pk) − v∗ (tk, xk) < 0, after possibly

passing to a subsequence. By Corollary 3.1 together with the result of step 1, Remark 2.5 and

Assumption 3.7, we then deduce that

Ĥ∗
(
tk, xk, pk, ϕk, ∂tϕk, Dϕk, D

2ϕk, v̂∗
)
≥ 0 for every k > 1.

Now observe that, by (3.27), and the definition of ϕk:(
∂tϕk, Dxϕk, D

2
xxϕk

)
(tk, xk, pk)→

(
∂tϕ,Dxϕ,D

2
xxϕ

)
(t0, x0) as k →∞(

Dpϕk, D
2
xpϕk, D

2
ppϕk

)
(tk, xk, pk) = (−ψ′k (pk) , 0,−ψ′′k (pk)) for every k > 1.

(3.30)

By definition of Ĥ∗, we can find sequences (εk)k≥1 ,
(
x̂0
k

)
k≥1

, (yk)k≥1 , (qk)k≥1 , (Ak)k≥1 such

that εk > 0, x̂0
k =

(
x0
k, p

0
k

)
∈ X × [m,M ], yk ≥ −κ, qk = (qxk , q

p
k) ∈ Rd × R, Ak is a symmetric

matrix of Sd+1, with rows (Axxk , Axpk ) ∈ Sd × Rd and
(
AxpTk , Appk

)
∈ Rd × R,

εk → 0, x̂0
k → (x0,M) and

∣∣(yk, qk, Ak)−
(
ϕk, Dϕk, D

2ϕk
)

(tk, xk, pk)
∣∣ ≤ k−1, (3.31)

where
(
tk, x̂

0
k

)
belongs to a compact neighborhood of (t0, x0,M), and

Ĥεk,−k−1

(
tk, x̂

0
k, yk, ∂tϕ(t0, x0), qk, Ak, v̂∗

)
≥ −k−1. (3.32)

By the definition of Ĥεk,−k−1 , we may find a sequence (uk, αk, πk) ∈ N̂εk,−2k−1

(
tk, x̂

0
k, yk, qk, v̂∗

)
such that

−∂tϕ (t0, x0) + µY
(
x0
k, yk, uk

)
− µX

(
x0
k, uk

)
· qxk −

1

2
Tr
[
σXσ

T
X

(
x0
k, uk

)
Axxk

]
≥ −2k−1 +

1

2
|αk|2Appk + σTX

(
x0
k, uk

)
Axpk · αk −

∫
E

πk(e)λ(de)qpk

(3.33)

and

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
, p0
k + πk(e)

)
+ yk ≥ −2k−1

for λ-a.e. e ∈ E.
(3.34)
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Recalling (3.14), we observe that (uk, αk, πk) ∈ N̂εk,−2k−1 (tk, x̂k, yk, qk, v̂∗) implies that uk ∈
Ñεk+|qpkαk|

(
x0
k, yk, q

x
k

)
.

We deduce then from Assumption 3.6 and (3.33) that, for some constant C > 0, (which may

change from line to line but does not depend on k or ρ),

C
(

1 + |qpkαk|
2
)
≥ 1

2
|αk|2Appk + σTX

(
x0
k, uk

)
Axpk · αk −

∫
E

πk(e)λ(de)qpk

≥ 1

2
|αk|2Appk − C |A

xp
k | |αk| −

∫
E

πk(e)λ(de)qpk

(3.35)

where we used the condition that sup
u∈U
|σX(·, u)| is locally bounded. From (3.24), (3.25), (3.26),

(3.27), (3.30) and (3.31), it follows that

Appk → +∞, Axpk → 0, qpk → +∞ and
(qpk)

2

|Appk |
→ ρ as k →∞. (3.36)

Recall from (3.5) that

πk ≤M − pk λ-a.e., (3.37)

where pk ∈ [m,M ]. We may hence consider that (πk)k≥1 is bounded from above, so that, by

(3.35) and the fact that qpk, A
pp
k > 0

C

(
1

Appk
+
|qpk|

2

Appk
|αk|2

)
≥ 1

2
|αk|2 − C

|Axpk |
2

Appk
|αk| − C

qpk
Appk

.

Hence, (3.36) leads to

0 ≥ lim sup
k→∞

((
1

2
− Cρ

)
|αk|2 − C

|Axpk |
2

Appk
|αk|

)
.

Taking ρ small enough implies that

|αk| →
k→∞

0. (3.38)

Moreover, since k(M − pk) → 0, see (3.27), there exists εk ↓ 0 such that k(M − pk) ≤ εk.

Recalling (3.37), this implies that πk ≤ εk
k , so that, by (3.24),

qpk (πk(e))
+ → 0 as k →∞ for all e ∈ E. (3.39)

Recalling the fact that λ(E) <∞ and that qpk > 0, the above inequalities lead to(∫
E

πk(e)λ(de)qpk

)+

→ 0. (3.40)

Also recall that
|qpk|2
Appk

→ ρ, see (3.36), which combined with (3.35), (3.36), (3.38) and (3.40),

implies that

C
(

1 + ρAppk |αk|
2
)
≥ 1

2
|αk|2Appk +

(∫
E

πk(e)λ(de)qpk

)−
or equivalently

C
(

1 + |qpk|
2 |αk|2

)
≥ 1

2
|αk|2

|qpk|
2

ρ
+

(∫
E

πk(e)λ(de)qpk

)−
for some ρ > 0. Taking ρ small enough leads to

|Appk | |αk|
2 ≤ C, |qpk|

2 |αk|2 ≤ Cρ and C + Cρ ≥
(∫

E

πk(e)λ(de)qpk

)−
. (3.41)
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We then deduce from the right hand side bound of (3.24) and (3.31) that

0 ≥ lim sup
k→+∞

(∫
E

πk(e)λ(de)

)−
.

Combined with (3.39), this shows that∫
E

πk(e)λ(de)→ 0 and πk(e)→ 0 for λ-a.e. e ∈ E. (3.42)

c. We now return to (3.33) and the middle inequality in (3.41) to deduce that

−∂tϕ (t0, x0) + µY
(
x0
k, yk, uk

)
− µX

(
x0
k, uk

)
· qxk −

1

2
Tr
[
σXσ

T
X

(
x0
k, uk

)
Axxk

]
≥ −2k−1 + σTX

(
x0
k, uk

)
Axpk · αk −

(∫
E

πk(e)λ(de)qpk

)+

,

(3.43)

and

uk ∈ Ñεk+
√
Cρ

(
x0
k, yk, q

x
k

)
. (3.44)

since Appk > 0.

Consider now (3.34), i.e.

βY
(
x0
k, yk, uk(e), e

)
−v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
, p0
k + πk(e)

)
+yk ≥ −2k−1 for λ-a.e. e ∈ E,

(3.45)

Using the upper semi-continuity of −v̂∗, the fact that βY is continuous, (3.42), together with

p0
k →M as k →∞, we obtain

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
,M
)

+ yk ≥ −2k−1 − ϑek
for k large enough and for λ-a.e. e ∈ E,

with ϑek ≥ 0 such that ϑek → 0 as k →∞ for all e ∈ E.

We now use Assumption 3.4 to deduce that there exists ϑk > 0 with ϑk → 0 as k → ∞ such

that, for all e ∈ E and k large enough,

βY
(
x0
k, yk, uk(e), e

)
− v̂∗

(
tk, x

0
k + βX

(
x0
k, uk(e), e

)
,M
)

+ yk ≥ −2k−1 − ϑk. (3.46)

By combining (3.43) (3.44) and (3.46), we finally obtain

Hεk+
√
Cρ,−2k−1−ϑk

(
tk, x

0
k, yk, ∂tϕ(t0, x0), qxk , A

xx
k , v̂∗(·,M)

)
≥ −2k−1 −

(
σTX
(
x0
k, uk

)
Axpk · αk

)− − (∫
E

πk(e)λ(de)qpk

)+

,

and we deduce the required result (3.29) by sending k →∞ and then ρ→ 0, and recalling that(
|αk| , Axpk ,

(∫
E
πk(e)λ(de)qpk

)+) → 0, that σX is locally bounded uniformly in the control u,

and that v̂∗ ≥ ϕ.

3rd step: It remains to prove (3.18). The fact that v̂∗ (T, ·,M) is a viscosity supersolution

max {v̂∗ (T, ·,M)− v∗ (T, ·) , δ∗v̂∗ (T, ·,M)} ≥ 0

is deduced from (3.22) of the previous step by using the same arguments as in the proof of

Lemma 2.1 in Section 2.3.2. It remains to show that v̂∗ (T, ·,M) is a viscosity supersolution of

max
{
v̂∗ (T, ·,M)− v∗ (T, ·) , (v̂∗ (T, ·,M)− j∗)1{H∗v̂∗(T,·,M)<∞}

}
≥ 0.

By combining the arguments of step 1 with those of Section 2.3.2, we first show that for any

smooth function ϕ̂ on X× [m,M ] and x0 ∈ X such that
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(strict) min
X×[m,M ]

(v̂∗(T, ·)− ϕ̂) = (v̂∗(T, ·)− ϕ̂) (x0,M) = 0,

we have

max
{
ϕ̂(x0,M)− v∗(T, x0), (ϕ̂(x0,M)− ĝ∗(x0))1{Ĥ∗ϕ̂(x0,M)<∞}

}
≥ 0. (3.47)

We then consider a smooth function ϕ on X and x0 ∈ X such that

(strict) min
X

(v̂∗(T, ·,M)− ϕ) = (v̂∗(T, ·,M)− ϕ) (x0) = 0 (3.48)

and

ϕ(x0) < v̂(T, x0), (3.49)

and we assume that

H∗ϕ(T, x0) <∞.

We next follow the construction of step 2 of the modified test functions

ϕk := ϕ(x)−
(
|x− x0|4 + ψk(p)

)
, (3.50)

where ψk is defined in (3.23). As in the above step 2, one can prove that the difference v̂∗(T, ·)−
ϕk has a local minimizer x̂k = (xk, pk) satisfying all estimates derived in the above step 2

(forgetting about the t variable). In particular, since H∗ϕk(xk) ≤ C for some constant C >

0 independent of k, recall (3.49), we deduce from the same estimates than in step 2 that

Ĥ∗ϕk (x̂k) ≤ 2C for all large k. It then follows from Corollary 3.2, (3.47) and (3.49) that

v̂∗ (T, x̂k) ≥ ĝ∗ (x̂k). Sending k →∞, this provides v̂∗ (T, x0,M) ≥ ĝ∗(x0,M), and the proof is

completed by observing that ĝ∗(x0,M) = j∗(x0), by definition of j.

3.5.2 The endpoint p = m, finite

We organize the proof in four steps. As in the previous section, steps 1, 2 and 3 focus on t < T

while step 4 concentrates on t = T . Steps 1 and 4 are similar to arguments used in [3]. The

main difference comes from steps 2 and 3.

1st step: We first show that for any smooth function ϕ̂ on [0, T ) ×X × [m,M ] and (t1, x1) ∈
[0, T )×X such that

(strict) max
[0,T )×X×[m,M ]

(v̂∗ − ϕ̂) = (v̂∗ − ϕ̂) (t1, x1,m) = 0, (3.51)

we have

min
{
v̂∗ + κ, Ĥ∗ϕ̂

}
(t1, x1,m) ≤ 0. (3.52)

The proof is very similar to that of Sections 2.3.3 up to the modification explained in the proof of

Corollary 3.2, and the fact that we have to handle the state constraint p = m. For completeness,

we report here the entire argument. Assume to the contrary that

4η := min
{
v̂∗ + κ, Ĥ∗ϕ̂

}
(t1, x1,m) > 0

i.e., for some ε > 0, and after possibly changing η > 0,

min
{
ϕ̂ι (t, x̂) + κ, µY (x, y, û)− L̂ûϕ̂ι (t, x̂)

}
≥ 2η

for some û = (u, α, π) ∈ N̂0,η (t, x̂, y,Dϕ̂ι (t, x̂) , ϕ̂ι)

for all (t, x̂, y) ∈ [0, T )× X̂× R
s.t. (t, x̂) ∈ Bε (t1, x1)× [m,m+ ε], |y − ϕ̂ι (t, x̂)| ≤ ε,

(3.53)
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where ϕ̂ι (t, x̂) := ϕ̂ (t, x̂) + ι
(
|x− x1|4 + |p−m|4

)
with ι small enough. Then, Assumption 3.2

and Assumption 3.4 imply that

min
{
ϕ̂ι (t, x̂) + κ, µY (x, y, ν̂ (t, x̂, y,Dϕ̂ι (t, x̂)))− L̂ν̂(t,x̂,y,Dϕ̂ι(t,x̂))ϕ̂ι (t, x̂) ,

min
e∈E
Ĝν̂(t,x̂,y,Dϕ̂ι(t,x̂)),eϕ̂ι (t, x̂)

}
≥ η

for (t, x̂, y) ∈ [0, T ]× X̂× R s.t.

(t, x̂) ∈ Bε (t1, x1)× [m,m+ ε] and |y − ϕ̂ι (t, x̂)| ≤ ε,

(3.54)

where ν̂ is a locally Lipschitz map satisfying

ν̂ (t, x̂, y,Dϕ̂ι (t, x̂)) ∈ N̂0,η (t, x̂, y,Dϕ̂ι (t, x̂) , ϕ̂ι) on Bε (t1, x1)× [m,m+ ε]. (3.55)

Observe that, since (t1, x1,m) is a strict maximizer in (3.51), we have

−ξ := −
(
ζ ∧ ιε4

)
:= max

D
(v̂∗ − ϕ̂ι) < 0, (3.56)

where

D :=
(
{t1 + ε} ×Bε(x1)× [m,m+ ε]

)
∪ ([t1, t1 + ε)× (Bε(x1)× [m,m+ ε))

c
) .

Also, we deduce from (3.53) and the fact that v̂ (·,m) = −κ by definition, that

0 > −η ≥ max
Bε(t1,x1)

(v̂ − ϕ̂) (·,m). (3.57)

By following the arguments in step 2 of Section 2.3.3, we see that (3.54), (3.55), (3.56) and

(3.57) lead to a contradiction of (GDP2).

2nd step: Let ϕ be a smooth function on [0, T ]×X and (t0, x0) ∈ [0, T )×X such that

(strict) max
[0,T )×X

(v̂∗ (·,m)− ϕ) = (v̂∗ (·,m)− ϕ) (t0, x0) = 0.

By definition, we have v̂∗(t0, x0,m) ≥ −κ. Let us assume that

v̂∗(t0, x0,m) + κ =: 4η > 0, (3.58)

and work towards a contradiction. Define the function ψk as in (3.23) with m in place M :

ψk(p) := ρk

∫ p

m

e2km

ek(r+m) − e2km+1
dr, k > 0,

and

ϕk(t, x, p) := ϕ(t, x) +
(
|x− x0|4 + (t− t0)

2
+ ψk(p)

)
.

Arguing as in step 2 of the section, we see that the difference v̂∗ − ϕk has a local maximizer

(tk, xk, pk) on ([0, T ]×X× [m,M ]) satisfying

(tk, xk, pk)→ (t0, x0,m), k(pk −m)→ 0 and v̂∗(tk, xk, pk)→ v̂∗(t0, x0,m),

so that (
∂tϕk, Dxϕk, D

2
xxϕk

)
(tk, xk, pk)→

(
∂tϕ,Dxϕ,D

2
xxϕ

)
(t0, x0) as k →∞(

Dpϕk, D
2
xpϕk, D

2
ppϕk

)
(tk, xk, pk) = (ψ′k (pk) , 0, ψ′′k (pk)) .

Since v̂∗(t0, x0,m) > −κ, we have v̂∗(tk, xk, pk) > −κ for all k, after possibly passing to a

subsequence. Then, it follows from Corollary 3.1, step 1 and the arguments of Remark 2.5

under Assumption 3.7, that
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Ĥ∗(·, ϕk, ∂tϕk, Dϕk, D2ϕk, v̂
∗)(tk, xk, pk) ≤ 0 for k > 1.

By the definition of Ĥ∗, we deduce that there exist sequences (εk)k≥1, (x̂k)k≥1, (yk)k≥1, (qk)k≥1

and (Ak)k≥1 such that εk > 0, x̂0
k =

(
x0
k, p

0
k

)
∈ X × [m,M ], yk ≥ −κ, qk = (qxk , q

p
k) ∈ Rd × R,

and Ak ∈ Sd+1 with rows (Axxk , Axpk ) ∈ Sd × Rd and
(
AxpTk , Appk

)
∈ Rd × R satisfying

εk → 0, x̂0
k → (x0,m), and

∣∣(yk, qk, Ak)−
(
ϕk, Dϕk, D

2ϕk
)

(tk, xk, pk)
∣∣ ≤ k−1 (3.59)

for which

Ĥεk,k−1 (tk, x̂k, yk, ∂tϕ(t0, x0), qk, Ak, v̂
∗) ≤ k−1. (3.60)

Fix u ∈ U , π = 0 and set αk := Nu(x0
k, yk, q

x
k)/qpk. Since π = 0, it follows from (3.60) together

with (3.5), (3.6) and Assumption 3.4 that either (u, αk, π) ∈ N̂εk,k−1 (t, x̂k, yk, qk, v̂
∗) and then

µY
(
x0
k, yk, u

)
− ∂tϕ(t0, x0)− µX

(
x0
k, u
)
· qxk

− 1

2

(
Tr
[
σXσ

T
X(x0

k, u)Axxk
]

+ |α|2Appk + 2σTX(x0
k, u)Axpk · α

)
≤ k−1

(3.61)

or

βY (x0
k, yk, u(ek), ek)− v̂∗

(
tk, x

0
k + βX

(
x0
k, u(ek), ek

)
, p0
k

)
+ yk ≤ k−1, (3.62)

for some sequence (ek)k≥1 ⊆ E. Using the same kind of arguments as in step 2 of the previous

section leads to

Appk < 0, qpk < 0 for large k, lim
k→∞

Axpk = 0 and lim
k→∞

(qpk)
2

|Appk |
= ρ. (3.63)

Consider first the case where (3.61) holds along a subsequence. Using (3.61) and (3.63), we then

deduce that

|Appk | |αk|
2

=
|Appk |
(qpk)

2

∣∣Nu
(
x0
k, yk, q

x
k

)∣∣2 ≤ C,
for some C > 0 independent of k and ρ. Sending k →∞ in the above inequality, we then deduce

from (3.59) and (3.63) that

ρ−1 |Nu (x0, ϕ(t0, x0), Dϕ(t0, x0))|2 ≤ C.

Since ρ > 0 can be chosen arbitrarily close to 0, this shows that Nu (x0, ϕ(t0, x0), Dϕ(t0, x0)) =

0, and the arbitrariness of u ∈ U is in contradiction with Assumption 3.5. This contradicts

(3.58).

Hence, if (3.58) holds, then (3.62) holds along a subsequence, i.e.

βY (x0
k, yk, u(ek), ek)− v̂∗

(
tk, x

0
k + βX

(
x0
k, u(ek), ek

)
, p0
k

)
+ yk ≤ k−1.

Sending k →∞, using the arbitrariness of u ∈ U and Assumption 3.4 then leads to

Ǧv̂∗(t0, x0,m) ≤ 0,

where

Ǧϕ = sup
u∈U

min
e∈E
{βY (·, u(e), e)− ϕ(·+ βX(·, u(e), e)) + ϕ} .

Hence

min
{
v̂∗ + κ, Ǧv̂∗

}
(t0, x0,m) ≤ 0 (3.64)

on [0, T )×X.
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3rd step: Now observe that, by standard arguments, for every (t, x) ∈ [0, T ) ×X, we may find

a sequence of smooth functions (ϕn)n≥1 such that ϕn ↓ v̂∗, (tn, xn, pn)n≥1 converging towards

(t, x,m) and such that (ϕn − v̂∗) achieves a maximum at (tn, xn, pn). We refer to lemma 6.1 in

[2] for the approximation argument by continuous functions. The extension to an approximation

by smooth functions is straightforward.

It thus follows from step 2, that v̂∗(·,m) is a classical subsolution of (3.64) on [0, T ) ×X. In

order to conclude the proof, we now appeal to the following easy lemma.

Lemma 3.1. Assume that H2 holds. Let w be a upper semi-continuous subsolution of

min
{
w + κ, Ǧw

}
≤ 0 on X (3.65)

such that w+ satisfies the growth condition (3.13). Then, w ≤ −κ on X.

Applying Lemma 3.1 to v̂∗(t0, ·,m) for an arbitrary t0 ∈ [0, T ) then leads to v̂∗(·,m) = −κ,

since v̂∗(·,m) ≥ −κ and v̂∗− satisfies (3.13) by assumption.

4rd step: We finally show that v̂∗(T, ·,m) = −κ on X. Since v̂∗(t, x,m) = −κ for t < T and

x ∈ X, we can find a sequence (tn, xn, pn)n≥1 in [0, T ) ×X × (m,M) such that (tn, xn, pn) →
(T, x,m) and −κ ≤ v̂(tn, xn, pn) ≤ −κ + 1

n for all n ≥ 0. Passing to the limit leads to the

required result.

Proof of Lemma 3.1.

We assume that supX(w+κ) > 0 and work towards a contradiction. It follows from the growth

condition (3.13) on w, (ii) and (iii) of H2 that there is some x0 ∈ X such that

max
X

(w − Λ) = (w − Λ)(x0) =: ξ > 0. (3.66)

By (i) of H2 Assumption 3.4 and (3.66), there exists some ū ∈ U such that

min
e∈E

βY (x0, w(x0), ū(e), e)− Λ (x0 + βX (x0, ū(e), e)) + Λ(x0) > 0. (3.67)

Since w is a subsolution on X of (3.65), we have Ǧw(x0) ≤ 0. Recalling Assumption 3.4, we

may then find ê ∈ E such that

βY (x0, w(x0), ū(ê), ê)− w (x0 + βX (x0, ū(ê), ê)) + w(x0) ≤ 0.

Combining the last inequality with (3.67) leads to

w(x0)− Λ(x0) < w (x0 + βX (x0, ū(ê), ê))− Λ (x0 + βX (x0, ū(ê))) ,

which contradicts the definition of x0 in (3.66).
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