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Abstract Component and facility layout plays an im-
portant role in the design and usability of many en-
gineering products and systems as mechanical design,
process plan, management and architecture including
ship compartment layout,... Because of the great com-
plexity of most industrial layout problems, the decision
of the acceptable layout is a hard and critical task since
the special layout can have a significant consequence
on the user satisfaction, the economic cost and broadly
speaking the global performances. Thus, in order to pro-
pose to the designer an optimal spatial arrangement in a
reasonable time, this paper develops an interactive opti-
mization strategy based on a genetic algorithm coupled
with a separation algorithm. The proposed method is
tested on the layout problem of a shelter. The resolution
of this problem is innovative because it introduces the
concept of space of accessibility in the layout problem
formulation.
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1 Introduction

Layout problem is inherently a multidisciplinary task
(Giassi et al, 2004). It covers all the aspects of the prod-
uct design life cycle from the conceptual to the detailed
stage and makes necessary the collaboration between
experts of technical and economical disciplines. In fact,
layout design is usually formulated as an optimization
problem: find the best arrangement (location and ori-
entation) of components in a given available space sat-
isfying geometrical and functional constraints. A non-
overlapping constraint is basically a common geometri-
cal constraint for all three-dimensional layout problems,
while alignment, orientation or gathering components
refer to functional constraints. Because of the geomet-
rical complexity, the three-dimensional layout optimiza-
tion problems are generally considered as non-linear
and NP-hard problems. It means that the problem is
intrinsically harder than those which can be solved by a
non-deterministic Turing machine in polynomial time.
The objective and constraints evaluation is generally
time consuming.

It is essential to distinguish between Cutting and
Packing (C&P) problems and layout problems. In C&P
problems, components are only geometrically related to
each other, whereas in layout problems, components are
geometrically and functionally connected. This differ-
ence leads different tools and methods to solve each
class of problem being aware of the common non-
overlap constraints in the two problems.

Typologies of C&P problems have been proposed
(Dyckhoff, 1990), but as far as we know, there is no



2

LAYOUT PROBLEMS

PROB
N◦1

PROB
N◦2

PROB
N◦3

PROB
N◦n

C&PC&PC&PC&P

Fig. 1 Typology of layout problems

general typology of layout problems. Drira et al. have
described a tree representation of facility layout prob-
lems (Drira et al, 2007), that depends on design con-
straints and objective functions of the location of facil-
ities inside a plant.

Actually, as shown in figure 1, layout problems can
be divided into several kinds of specific problems, which
have their own solving method. C&P problems can be
assimilated as a particular application of each specific
problem.

Layout problems can also be classified according
to three criteria: the compactness of the problem, the
number and type of design constraints and objectives
and the geometrical complexity of the design compo-
nents. Let us consider four examples of layout problems:
the container loading problem (1), the engine layout de-
sign (2), the room layout design (3) and the manufac-
turing facility layout design (4). Figure 2 illustrates the
classification of these four problems according to the
three criteria. For example, the engine layout design is
a problem with an important compactness. Constraints
and objectives are multiple (non-overlap and functional
constraints, accessibility objective,...) and the different
parts of the engine have complex lines.

The formulation of layout problems uses single or
multi-objective optimization. The designer can make
an early decision by using an aggregation function in
order to transform a multi-objective optimization prob-
lem into a single-objective one. This approach is only
effective when all data and information on the aggrega-
tion are available or if the designer is familiar with the
specific layout problem. In this paper, multi-objective
optimization is used. The decision on the preferences
between objective functions is delayed so that the de-
signer can use the Pareto-front in order to select the
most appropriate solution. In this approach, the de-
signer has to simultaneously optimize two or more con-
flicting objectives subject to constraints.

The general formulation of a multi-objective opti-
mization problem can be formulated by:⎧⎪⎨
⎪⎩

find the design variablex∗ = (x1, x2, ..., xn)
x∗ = argminF (x) = (f1(x), f2(x), ..., fm(x))
s.t: g(x) ≤ 0 andh(x) = 0

(1)

f2

f1

U

V

f1U

f2U

f1V

f2V

Fig. 3 Pareto front of a multi-objective problem

where m is the number of objective functions and n

the number of design variables.
The designer has to compare two solutions

represented by two vectors of objectives FU =
(f1U , f2U , ..., fmU ) and FV = (f1V , f2V , ..., fmV ) where
fiU is the ith component of the vector of objectives F for
the design variable U . In fact, U dominates V (Pareto
dominance) if U is as good as V for all the objectives
and U is better than V for at least one objective. Math-
ematically, this can be formulated by:

{
∀i ∈ [1, ..., n] fiU ≤ fiV

∃j ∈ [1, ..., n] fjU < fjV

(2)

Multi-objective optimization searches for the set of
non-dominated points (assimilated to Pareto-optimal
points in the next sections of this paper) in the objective
space given by efficient solutions. Figure 3 represents
the Pareto-front for an optimization problem defined
by two objectives (min f1, min f2), where U dominates
V .

One finds multiple single or multi-objective solv-
ing approaches to solve layout optimization problems
in two or three dimensions. Traditional optimization
approaches for three dimensional layout problems are
described by Cagan et al. (Cagan et al, 2002). Some
approaches use genetic algorithms (Yi et al, 2008),
simulated-annealing algorithms (Szykman and Cagan,
1995, 1997) or extended pattern search algorithms (Su
and Cagan, 2000). Most search algorithms are devel-
oped for a specific problem and they provide an effec-
tive optimization strategy for it. Therefore, they are not
generic and can not be adapted to other layout prob-
lems. In this paper, the proposed method is a based
on a generic technique for solving layout problems. The
design strategy uses a genetic algorithm coupled with
a separation algorithm. This approach insures a good
diversity of solutions computed by the algorithm and
allows the designer to interact with the Pareto-optimal
solutions, in order to make a final decision.
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This paper is organized as follows: in section 2, the
synopsis of the proposed optimization method is pre-
sented. In section 3, the proposed method is tested on
the layout problem of a shelter. The problem formu-
lation and the results obtained by the method are de-
scribed and analyzed. Sections 4 and 5 are dedicated to
an outlook on future work and the conclusion.

One finds multiple single or multi-objective solv-
ing approaches to solve layout optimization problems
in two or three dimensions. Traditional optimization
approaches for three dimensional layout problems are
described by Cagan et al. (Cagan et al, 2002). Some
approaches use genetic algorithms (Yi et al, 2008),
simulated-annealing algorithms (Szykman and Cagan,
1997) or extended pattern search algorithms (Su and
Cagan, 2000). Most search algorithms are developed for
a specific problem and they provide an effective opti-
mization strategy for it. Therefore, they are not generic
and can not be adapted to other layout problems. In
this paper, the proposed method is based on a generic
technique for solving layout problems. The design strat-
egy uses a genetic algorithm coupled with a separation
algorithm. This approach insures a good diversity of
solutions computed by the algorithm and allows the
designer to interact with the Pareto-optimal solutions,
in order to make a final decision.

This paper is organized as follows: in section 2, the
synopsis of the proposed optimization method is pre-
sented. In section 3, the proposed method is tested on
the layout problem of a shelter. The problem formu-
lation and the results obtained by the method are de-
scribed and analyzed. Sections 4 and 5 are dedicated to
an outlook on future work and the conclusion.

2 Optimization strategy

Layout problems are generally defined as complex op-
timization problems. The search of a “feasible” design,

it means a design which respects all the design con-
straints, is a hard task. This complexity is linked to the
parceling of the design space, because of the geomet-
ric complexity of layout components, the non-overlap
constraints and the relative location between compo-
nents. This property leads us to recognize that there is
no choice but using stochastic or heuristic techniques
for solving two or three-dimensional layout problems.
These algorithms make it possible to explore efficiently
the design space and avoid local optimum. A multi-
objective genetic algorithm is used in the optimization
strategy proposed in this paper

Since the genetic algorithm is based on stochastic
operators and parameters, the progression of the op-
timization process is time consuming. It depends also
on the number of design variables, the number of com-
ponents and the types of design constraints. Moreover,
since the genetic algorithm is randomly initialized with
a population of designs with high number of overlapped
components, the algorithm fails to find feasible solu-
tions. Then, in order to improve the performances of the
algorithm, two new steps are introduced into the global
process of the genetic algorithm: separation techniques
and interaction with the designer.

The objective of this approach is to generate an uni-
formly distributed global Pareto-front for layout opti-
mization problems. Our strategy consists of initializing
the multi-objective optimizer with a population of in-
dividuals which have been locally modified by a sep-
aration algorithm and by interaction with designer in
order to reduce the violation of placement constraints.
In fact, this strategy is based on three complementary
approaches, which are clearly separated:

1. firstly, the generation of a database of mixed designs
that respect non-overlap constraints,

2. secondly, the multi-objective optimization of this
database by considering all the design objectives,
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3. thirdly, the interactive choice of the appropriate so-
lution made by the designer, by using the Pareto-
front of designs generated by the genetic algorithm.

1. Separation algorithm
Several separation algorithms have been proposed
(Imamichi and Nagamochi, 2007, 2008). However, the
key idea is always the same: given a configuration that
does not satisfy location constraints, the objective of
the separation algorithm is to minimize the non-respect
of overlap between components and protrusion (overlap
between components and the non allowed space).

For solving simple layout problems in two dimen-
sions, the separation problem is formulated as an un-
constrained minimization problem defined by:

(Sep Algo)

{
min F (X) =

∑
Aij

i, j ∈ [1, ..., n] , i �= j
(3)

where Aij represents the intersection area between
the components i and j. Consequently, it is possible to
define the violation of placement constraints F as the
total sum of intersection areas between the different
elements which make up the layout design. For exam-
ple, let us consider that all the components of a two-
dimensional layout design are rectangles. The intersec-
tion area between the components i and j is equal to:

Aij = max[ 0 , min(xi +
li
2

, xj +
lj
2

)

−max(xi − li
2

, xj − lj
2

)]

×max[ 0 , min( yi +
Li

2
, yj +

Lj

2
)

−max( yi − Li

2
, yj − Lj

2
)] (4)

where (xi, yi) are the coordinates of the geometric
center of the rectangle i. Li and li represent respectively
the length and the width of the rectangle i.

The algorithm used to minimize F is based on the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
This algorithm computes a finite-difference approxima-
tion of the gradient and the hessian of the function F

in order to locally modify the optimization variables
and to minimize F . The algorithm stops after a certain
number of iterations.

In order to understand the principle of the separa-
tion algorithm, let us consider a layout problem test.
The dimensions of the square container are 10 × 10 =
100 m2. The objective of this two-dimensional layout
problem is to place, in the container, N square items
whose dimensions are 1 × 1 = 1 m2. It means that the

Initial layout

Initial layout

Initial layout

Optimal layout

Optimal layout

Optimal layout

density = 50%, 17 iterations
violation of placement = 0 cm2

density = 75%, 142 iterations,
violation of placement = 0,65 cm2

density = 100%, 389 iterations
violation of placement = 1 m2

Fig. 4 Separation algorithm BFGS test

algorithm searches the optimal configuration that re-
duces the violation of placement constraints F , which
has been previously defined as the total sum of intersec-
tion areas between the square items and the container.
Figure 4 shows simulations results, considering different
values of the problem density.

2. Multi-objective optimization
The multi-objective genetic algorithm used in the ap-
proach, proposed in this paper, is the MOGA-II (Poles,
2003). The MOGA-II is an efficient Multi-Objective
Genetic Algorithm (MOGA) (Deb, 1998) that uses a
smart multi-search elitism. This new elitism operator is
able to preserve some excellent solutions without bring-
ing premature convergence to local-optimal frontiers.
For simplicity, MOGA-II requires only very few user-
provided parameters. Several other parameters are in-
ternally settled in order to provide robustness and effi-
ciency to the optimizer. The three main genetic opera-
tors of this algorithm are the directional cross-over, the
selection and the mutation.
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Number of individuals in the
initial generation

240

Probability od Directional
Cross-Over

0.1

Probability of Selection 0.05
Probability of Mutation 0.45
Probability of Classical
Cross-Over

0.4

Elitism enabled
DNA String Mutation Ratio 0.5
Number max of generations 100

Table 1 Multi-Objective Genetic Algorithm parameters

For the application studied in section 3, these ge-
netic operators have been set as shown in the ta-
ble 1. The number of individuals in the initial gen-
eration is equal to 240 because a rule of thumb sug-
gests possibly to accumulate an initial population of
at least 16 design configurations and possibly more
than 2×Number of variable×Number of objectives =
2 × 24 × 5 = 240.

3. Interactive process
In general, the development of an engineering ob-
ject is considered as a single process involving multi-
criteria identification of the mathematical model fol-
lowed by multi-criteria optimization of the object de-
sign on the basis of this mathematical model. The pro-
cess of statement-solution of engineering design prob-
lems without the interference of the design is impossi-
ble. For solving the design problem, the designer almost
always has to correct either the mathematical model,
the dimension of the vectors of design variables and
criteria, the design variable ranges, and so on. This cre-
ative process of correcting an initial statement is natu-
ral when solving engineering problems. The direct par-
ticipation of the designer in the construction of the fea-
sible design and non-formal analysis are the essential
stage of the search for the optimal design (Serna et al,
2005; Rabeau et al, 2007). The simulation tools pro-
vide powerful solutions for planning and designing of
complex mechanical system. The problem of these is
the representation and the interpretation of the results
by the engineer. The important for the engineer is not
only the value on the point but its variation and the
information about the most favorable directions. The
exploitation of the results is not obvious and the link
with the performance value of the real phenomenon is
not trivial. When one analyzes the communication be-
tween the operator and the computer, he can perceive
that the operator immersion in the digital model is very
weak.

In the optimization approach, proposed in this pa-
per, two interactive steps are successively used:

– firstly, the interactivity with the designer is used to
select and locally modified solutions optimized by
the separation algorithm. The objective is to con-
sider these designs as initial individuals of the ge-
netic algorithm. This first interactive step is limited
to the geometrical non-overlap of components,

– secondly, the interactivity with the designer is used
to make a final decision on optimal solutions. Our
optimization strategy uses multi-objective optimiza-
tion. The genetic algorithm is stopped after a
fixed number of iterations. Then, since all the non-
dominated designs, generated by the algorithm, are
potentially good acceptable solutions of the layout
problem, the designer has to explore these solutions
and select the best one. However, it is well recog-
nized by the expert of optimization that it is always
very hard for the designer to make a final decision on
optimal solutions. All the designer’s requirements,
for example the qualitative or subjective criteria,
can not easily be expressed by simple mathematical
expressions. Then, in order to take into account the
personal judgment of the designer, this paper pro-
poses an interactive numerical environment, used to
support the decision of the designer. The designer
can visualize a design and locally modify the posi-
tion and the orientation of some components.

These two interactive steps are different. In the second
one, the designer has the evaluation of both the geo-
metric and functional requirements. The interactivity
is not only limited to the geometric evaluation of the
design, as it is made in the first interactive step. The
numerical values of objective functions and there devi-
ation are used in this second interactive step.

3 Application

In this section, our layout optimization strategy is
tested on a real-world application which deals with the
search of the optimal arrangement of components inside
a shelter.

3.1 Problem description

Eight components, including electrical and energetic
cabinets, desks and electrical boxes, have to be arranged
in a shelter. The CAD model of the shelter is presented
in figure 5.

The layout optimization of this shelter is a three-
dimensional layout problem. However, for this applica-
tion, thanks to the fact that the cabinets are full height
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Fig. 5 Overall view of the shelter

door

cabinet 1

cabinet 2

cabinet 3

cabinet 4
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electrical
box 1

electrical
box 2

Fig. 6 Configuration model of the shelter in 2D

of the shelter and prevent a superposition of elements,
the model is simplified and conceptualized in two di-
mensions. The simplified model of the shelter is shown
in figure 6.

The formulation of this layout problem is innovative
because the components can be classified in two cate-
gories: those which have a mass (material components)
and those which no have mass (virtual components).
Here, the virtual components represent the spaces of
accessibility of the cabinets and the desks. For exam-
ple, the space of accessibility of a cabinet is the required
space to insert some materials into the cabinet. These
spaces are symbolized in figure 6 by dotted rectangles.
With this problem formulation, the design constraints
depend on the category of components. It means that

Component Mass
(kg)

Dim /X
(mm)

Dim /Y
(mm)

shelter 2150 2740
cabinet 1 400 600 600
cabinet 2 300 600 600
cabinet 3 300 600 600
cabinet 4 300 600 600
desk 1 10 465 350
desk 2 30 525 800

electrical box 1 50 580 200
electrical box 2 35 430 250

Table 2 Data of the problem

overlap is allowed between two spaces of accessibility,
considering that operations of materials loading are se-
quentially made, whereas overlap has to be minimized
between two material components.

Moreover, the space, represented by a hatched rect-
angle in figure 6, is the space below the air-conditioner
where no cabinet can be placed. This space is also a
virtual component that is fixed during the optimiza-
tion process. Besides, the free corridor, located in the
middle of the shelter is a space of living that can be
also considered as a fixed virtual component.

The dimensions described in the table 2 match with
the configuration presented in figure 6. The density of
this configuration, without considering the spaces of ac-
cessibility of the different components, is equal to 50%.
If the spaces of accessibility are taken into account, this
density increases up to 90%.

3.2 Problem formulation

The problem formulation is a very important step of the
optimization process. The optimization problem stud-
ied here is an under constrained multi-objective opti-
mization problem. Let us see how the variables, con-
straints and design objectives are defined.

Optimization variables
Each layout component has three optimization vari-
ables (X, Y, α): the coordinates of each element (a con-
tinued variable along X axis and an other one along
Y axis) and the rotation angle (one discreet variable
along Z axis). Consequently, the number of optimiza-
tion variables for this problem is equal to 24 (= 8 items
× 3 coordinates). Because of the rotation of each com-
ponent, the variables X and Y are bounded, according
to the following relation (for the variable Xi for exam-
ple):

min(li, Li) < Xi < lsh − min(li, Li) (5)
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where lsh represents the width of the shelter. Here, li is
the dimension of the component along X axis (it does
not have to be confused as the width of the component
i).

Design constraints
The design constraints of this layout problem are only
non-overlap constraints. They are divided in four cate-
gories, according to the following classification:

– non-overlap constraints between material compo-
nents (C1),

– non-overlap constraints between material compo-
nents and the spaces of accessibility (dotted rect-
angle represented in figure 6) (C2),

– non-protrusion constraints between components,
spaces of accessibility and the shelter (C3),

– non-overlap constraints between cabinets and the
space below the air-conditioner (hatched rectangle
represented in figure 6) (C4).

The rectangular shape of components simplifies the
formulation of the design constraints. Thus, the non-
overlap constraint between the rectangles i and j is
equal to the intersection area between the component i
and j (in cm2). This area has been defined in equation
4. Actually, the objective function of the separation al-
gorithm is defined as:

F = C1 + C2 + C3 + C4 (6)

Design objectives
In collaboration with the engineering experts of this
specific problem, we have considered for this layout op-
timization problem the five following design objectives:

– to minimize the distance between the center of grav-
ity of components and the geometrical center of the
shelter, in order to balance the masses inside the
shelter (O1),

– to maximize the distance between the cabinet 1 and
the cabinets 2 and 3 and the electrical box 2, in order
to limit interactions between energetic and electrical
network (O2, O3, O4),

– to minimize the distance between the electrical box
2 and one of the shelter’s walls, in order to establish
a connection with exterior (O5).

The design objectives O2, O3, O4 and O5 are formu-
lated by the distance between the centers of gravity
of elements. For example, the distance dij between the
components i and j is equal to:

dij =
√

(xj − xi)2 + (yj − yj)2 (7)

where x and y are the coordinates of the centers of
gravity of the items i and j.

Let us consider the coordinates of the center of grav-
ity of all the elements which are placed in the shelter.
These coordinates are equal to:

Xgra =
∑N

i=1(xi × mi)∑N
i=1 mi

, Ygra =
∑N

i=1(yi × mi)∑N
i=1 mi

(8)

where N is equal to the number of elements which have
a mass: the cabinets, the desks, the electrical boxes and
the air-conditioners. Then, by considering the equation
7, the objective 1 (O1) is computed.

More designer’s knowledge could be incorporated in
the layout problem formulation. It means for example,
in the layout design of the shelter studied in this paper,
the design objective O5 can be deleted and the degree
of freedom of the electrical box 2 can be reduced, in
order to force it to only move along one of the shelter’s
walls. The designer’s contribution for the problem for-
mulation should simplify the search of feasible solutions
by reducing the number of possible designs.

3.3 Results and analysis

The resolution of this optimization problem has been
firstly realized only with the multi-objective optimizer
MOGA-II. The algorithm has been randomly initialized
with a population of 240 designs. Most of these initial
designs did not respect the non-overlap constraints be-
cause they had been randomly generated. Because of
the great density of this layout problem, only one or
two feasible variants were generated by the genetic al-
gorithm. A variant is defined as: the design j is a new
variant if it differs from the design i by at least one of
the following criteria:

– one of the layout components has been displaced
from at least � mm along one of the axis X or Y

(� is set to 500 mm in this application),
– one of the components has been rotated,
– the minimum difference between the values of the

objective functions of the two designs is bigger than
a limit for example fixed to 10 cm.

These results lead us to use the method proposed in this
paper in order to generate, with only one optimization
simulation, a set of well distributed Pareto-optimal de-
signs.

Thus, the results obtained for each step of the
method are described here:
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Fig. 8 Interactive environment for decision making

1. Separation algorithm and first interaction with the
designer:
the algorithm has also been randomly initialized with
designs that did not respect non-overlap constraints.
Then, a set of feasible designs have been computed and
by interacting directly with them and by relaxing the
design constraints (until 150 cm2 ), the designer has
selected 78 different designs. Then, this population has
been completed with 162 individuals, randomly gener-
ated, in order to create the first population of the ge-
netic algorithm (240 individuals) and to guarantee the
diversity of the solutions.

2. Multi-Objective Genetic Algorithm:
The algorithm has searched optimal solutions by con-
sidering the design constraints and all the objectives
of the problem. Then, after a hundred of generations,
a set of 14 variants have been computed. 7 of these
solutions are Pareto-optimal designs. Figure 8 repre-
sents these 7 Pareto-optimal variants and the solution,
initially created by the engineering expert. It is impor-
tant to mention that this initial solution is an intuitive
solution which has been generated only by considering
geometric aspects.

3. Interactive decision making:
These 7 Pareto-optimal variants do not dominate the
initial solution. On the other hand, the initial solution
does not dominate either these solutions, generated by
the proposed method. Actually, as it is explained in
the section 2, the designer is the only person who can
make a final decision on these optimal layout designs.
In order to make this decision, an interactive geometric
and numerical visualization of the design is used. This
environment is illustrated in figure 8.

This interactive environment allows the designer to
locally modify a selected design and compare the mod-

1

2 3

4

5

6

7

8

1

2 3

4

5

6
7

8

initial solution 3 modified solution 3

Fig. 9 Local modification of the solution 3

Design
Objective

Initial
solution

Improved
solution 3

O1 (minimize) 25,41 cm 3,48 cm
O2 (maximize) 240,58 cm 240,58 cm
O3 (maximize) 198,50 cm 198,50 cm
O4 (maximize) 165,80 cm 172,51 cm
O5 (minimize) 0 cm 0 cm

Table 3 Industrial solution vs solution 3

ified solution with the initial one and the solution ini-
tially proposed by the engineering experts. In figure 8,
we can see that a white area is displayed around the
layout component 4. The area represents the set of po-
sitions where the designer can place the layout com-
ponent 4 without damaging the design objectives. It
means that, considering the current orientation of the
layout components, if the component 4 moves inside the
white area, the new solution will not be dominated by
the current one.

Let us consider that, according to his personal judg-
ment, the designer decides to select the solution 3 illus-
trated in figure 7. By locally changing the location of
some components of the shelter, he improves the per-
formances of the design. A local modification of this
layout design, as shown in figure 9, improves the design
objectives.

Table 3 describes all the objectives values for the
initial solution and the solution 3 locally modified by
the designer. Actually, thanks to the interaction of the
designer with the final solutions, a new solution, better
than the initial one, is created.

4 Review and outlooks

This paper has introduced a new interactive optimiza-
tion strategy for solving layout problems. The method
can be divided into several steps, as shown in figure 10.
Firstly, a population of designs, randomly initialized, is
optimized by the separation algorithm. Then, the de-
signer interacts with the solutions computed by the sep-
aration algorithm and selects some individuals accord-
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Fig. 7 Initial solution and Pareto-optimal solutions

ing to the design constraints. Secondly, the new popu-
lation is optimized by the multi-objective optimizer by
considering all the design objectives. Then, the designer
can locally modify some computed designs in order to
improve their objectives. Actually, our strategy has the
innovative particularity to allow the designer to inter-
act with the optimization process in order to improve
the performances of the Pareto-optimal designs and to
keep a good diversity in computed solutions.

This innovative optimization process proposed in
this paper suggests that the method could be improved
according to the designer preferences:

– qualitative fitness could be inserted into design pro-
cess (?). In some layout problems, all constraints
and objectives can not be easily formulated as sim-
ple mathematical expressions. It means that these
constraints and objectives could be replaced by sub-
jective criteria, defined by the designer in order to
characterize the design. For example, this qualita-
tive fitness could be represented by a mark and
considered by the algorithm as a design objective.
Brintrup et al. have already developed an interac-
tive genetic algorithm based framework for handling
qualitative criteria in design optimization (Brintrup
et al (2007)),

– the designer could interact with design variables
during the optimization process. Stopping the op-
timizer would allow the designer to firstly analyze a
specific solution, secondly locally modify the design
configuration and then decide to keep this modified
design in the next generation of the genetic algo-
rithm. We can find in (Michalek and Papalambros

(2002)) a significant contribution to this concept ap-
plied to the design optimization of architectural lay-
outs.

5 Conclusion

This article presents an innovative layout problem for-
mulation including the concept of virtual component
defined in section 3. It shows that the problem for-
mulation is a very important step in the optimization
process because it has a great impact on computed so-
lutions. Secondly, the hybridization of the separation
algorithm and the multi-objective algorithm is a very
efficient method to ensure a good diversity in Pareto-
optimal solutions. Moreover, the strategy is designed
to allow the interaction between the user and the opti-
mization process in order to improve the performances
of Pareto-optimal designs.

Actually, for industrial experts, design optimization
has great advantages. On the one hand, it allows the
designers to explore more alternative solutions to their
problem. It is a very good way to encourage the inno-
vation. On the other hand, using design optimization
allows the designer to easily make a final decision and
justify it with quantitative values related to the prob-
lem formulation.
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Fig. 10 Schematic representation of the optimization strategy
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