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Abstract. The goal of this paper is to extend Poincaré-Wirtinger inequalities

from Sobolev spaces to spaces of functions of bounded variation of second

order.

1. Introduction

A useful tool when dealing with Sobolev spaces and partial differential equations
is the Poincaré-Wirtinger inequality that provides norm equivalences under appro-
priate assumptions. These inequalities usually provide Sobolev embeddings and
compactness results (see Adams [1]). The goal of this paper is to extend Poincaré-
Wirtinger inequalities from Sobolev spaces to spaces of functions of second order
bounded variation. The result is known for the space of functions of first-order
bounded variation (see [3, 10]). Indeed, this space is very useful in image process-
ing context and many variational models are developed to deal with denoising of
texture extraction. Variational models in image processing can be improved us-
ing the so-called BV 2 space that we define in next section ([4, 6, 7, 9]. Generally
these models require a priori estimates on functions while first and/or second order
derivative estimates are available.

2. The spaces of functions of bounded variation

We briefly recall the definitions and the main properties of (classical) spaces of
functions of bounded variation. One can refer to [2, 3, 8] for a complete study of
the BV space and to [4, 7, 9] for the so-called BV 2 space.

Let Ω be an open bounded subset of Rn, n ≥ 2 smooth enough (Lipschitz for
example). The spaces BV (Ω) and BV 2(Ω) of functions of first-order and second-
order bounded variation are defined by

BV (Ω) = {u ∈ L1(Ω) | Φ1(u) < +∞},

where

(2.1) Φ1(u) := sup

{∫
Ω

u(x) div φ(x) dx | φ ∈ C1
c (Ω), ‖φ‖∞ ≤ 1

}
.

and

BV 2(Ω) = {u ∈W 1,1(Ω) | Φ2(u) < +∞},
where
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• The Sobolev space W 1,1(Ω) is defined as

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) }
• The second-order total variation is :

(2.2) Φ2(u) := sup


∫

Ω

u

n∑
i,j=1

∂2ξij
∂xi∂xj

dx | ξ ∈ C2
c (Ω,Rn×n), ‖ξ‖∞ ≤ 1

 <∞,

with ‖ξ‖∞ = sup
x∈Ω

√√√√ n∑
i,j=1

|ξij(x)|2.

The following result makes precise the connection between BV (Ω) and BV 2(Ω):

Theorem 2.1. A function u belongs to BV 2(Ω) if and only if u ∈ W 1,1(Ω) and
∂u

∂xi
∈ BV (Ω) for i ∈ {1, . . . , n}. In particular

Φ2(u) ≤
n∑

i=1

Φ1

(
∂u

∂xi

)
≤ n Φ2(u).

Proof. Note that we may choose C∞ functions in the above definitions so that

Φ1(u) = sup

{∫
Ω

u divξ dx | ϕ ∈ C∞c (Ω,Rn), ‖ϕ‖∞ ≤ 1

}
, and

Φ2(u) = sup


∫

Ω

u

n∑
i,j=1

∂2ξij
∂xi∂xj

dx | ξ ∈ C∞c
(
Ω,Rn×n) , ‖ξ‖∞ ≤ 1

 .

We first prove the left-hand side inequality for any u ∈ BV 2(Ω)(⊂ W 1,1(Ω)) : let
ξ ∈ C∞c (Ω,Rn×n) and perform an integration by parts∫

Ω

u(x)

n∑
i,j=1

∂2ξij
∂xi∂xj

(x) dx = −
n∑

i,j=1

∫
Ω

∂u

∂xi

∂ξij
∂xj

dx =

n∑
i=1

∫
Ω

∂u

∂xi

n∑
j=1

∂(−ξij)
∂xj

dx.

As

n∑
j=1

∂(−ξij)
∂xj

= −div Li(ϕ) where Li(ξ) is the ith row of the matrix ξ and Li(ξ)

satisfies ‖Li(ξ)‖∞ ≤ 1, we get∫
Ω

u(x)

n∑
i,j=1

∂2ξij
∂xi∂xj

(x) dx ≤
n∑

i=1

Φ1

(
∂u

∂xi

)
.

The inequality is obtained by taking the supremum over ξ .
Let us prove the right-hand side inequality : for every ϕ ∈ C∞c (Ω,Rn), we get∫

Ω

∂u

∂xi
(x) div ϕ(x) dx =

∫
Ω

∂u

∂xi
(x)

n∑
j=1

∂ϕj

∂xj
(x) dx = −

∫
Ω

u(x)

n∑
j=1

∂2ϕj

∂xj∂xi
(x) dx.

Let be ψk : Ω → Rn×n defined as follows : every line of the matrix ψk(x) but the
kth is null and the line k is [ϕ1(x), · · · , ϕn(x)] so that

n∑
j=1

∂2ϕj

∂xk∂xj
=

n∑
i,j=1

∂2ψk
ij

∂xi∂xj
.
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Therefore, ∀k ∈ {1, . . . , N},∫
Ω

∂u

∂xk
(x) div ϕ(x) dx = −

∫
Ω

u(x)

n∑
i,j=1

∂ψk
ij

∂xi∂xj
(x) dx ≤ Φ2(u) .

This holds for everyϕ ∈ C∞c (Ω,Rn), so that ∀i ∈ {1, . . . , n},

Φ1

(
∂u

∂xi

)
≤ Φ2(u)

and
n∑

i=1

Φ1

(
∂u

∂xi

)
≤ nΦ2(u) .

�

The space BV (Ω), endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + Φ1(u), and

BV 2(Ω) endowed with the following norm

(2.3) ‖u‖BV 2(Ω) := ‖u‖W 1,1(Ω) + Φ2(f) = ‖u‖L1 + ‖∇u‖L1 + Φ2(f),

where Φ2 is given by (2.2), are Banach spaces.
We next recall standard properties of functions of 1st and 2nd order bounded

variation. We first have embedding theorems

Proposition 2.2. [2, 3, 7, 9] Let Ω be an open subset of Rn with Lipschitz boundary.

(1) BV (Ω) ⊂ L2(Ω) with continuous embedding, if n = 2.
(2) BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2), if n = 2.
(3) Assume n ≥ 2. Then

BV 2(Ω) ↪→W 1,q(Ω) with q ≤ n

n− 1
,

with continuous embedding. Moreover the embedding is compact if q < n
n−1 .

We get lower semi-continuity results as well:

Theorem 2.3. (1) The mapping u 7→ Φ1(u) is lower semi-continuous from
BV (Ω) to R+ for the L1(Ω) topology.

(2) The mapping u 7→ Φ2(u) is lower semi-continuous from BV 2(Ω) endowed
with the strong topology of W 1,1(Ω) to R. More precisely, if {uk}k∈N is a
sequence of BV 2(Ω) that strongly converges to u in W 1,1(Ω) then

Φ2(u) ≤ lim inf
k→∞

Φ2(uk).

We end this section with a “density ” result in BV (Ω) :

Theorem 2.4 ([3] Theorem 10.1.2. p 375 ). The space C∞(Ω) is dense in BV (Ω) in
the following sense : for every u ∈ BV (Ω) there exist a sequence (un)n≥0 ∈ C∞(Ω)
such that

lim
n→+∞

‖un − u‖L1 = 0 and lim
n→+∞

Φ1(un) = Φ1(u) .

This convergence is called the strict convergence as in [2].
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Let us define the space BV0(Ω) as the space of functions of bounded variation
that vanish on the boundary ∂Ω of Ω. More precisely as Ω is bounded and ∂Ω is
Lipschitz, functions of BV (Ω) have a trace of class L1 on ∂Ω [2, 3, 10], and the trace
mapping T : BV (Ω)→ L1(∂Ω) is linear, continuous from BV (Ω) equiped with the
strict convergence to L1(∂Ω) endowed with the strong topology ([3] Theorem 10.2.2
p 386). The space BV0(Ω) is then defined as the kernel of T . It is a Banach space,
endowed with the induced norm.

Remark 2.5. We may also define B̃V0 as the closure of D(Ω) (the space of C∞
fuctions with compact support in Ω ) for the strict convergence of BV (Ω).

It is easy to see that B̃V0(Ω) ⊂ BV0(Ω). The converse inclusion is more technical
to prove: the proof of [3] p 189 has to be adapted. Though we do not prove it in the
present paper we conjecture it is true.

3. Poincaré-Wirtinger inequalities

3.1. Poincaré-Wirtinger inequality in BV (Ω). We first recall the classical
Poincaré-Wirtinger inequality for the Sobolev-space W 1,1(Ω)(see [3] p. 161–180
for example, or [1]).

Theorem 3.1. Let Ω be an open subset of Rn, which is bounded in one direction.
Then, there exists a constant CΩ such that

∀v ∈W 1,1
0 (Ω) ‖v‖L1(Ω) ≤ CΩ ‖∇v‖L1(Ω) .

Moreover, if Ω is an open bounded set of class C1, then there exists a constant CΩ

such that

∀u ∈W 1,1(Ω) ‖u−m(u)‖L1(Ω) ≤ CΩ ‖∇u‖L1(Ω) ,

where where m(u) :=
1

|Ω|

∫
Ω

u(x)dx is the mean-value of u.

A consequence of the previous results is a Poincaré-Wirtinger inequality in the BV-
space

Theorem 3.2. Let Ω ⊂ Rn be a Lipschitz open bounded set. Then there exists a
constant C > 0 such that

∀u ∈ BV (Ω) ‖u−m(u)‖L1(Ω) ≤ CΦ1(u) .

Proof. The result is mentioned in [3], p. 399 (proof of Lemma 10.3.2), but we give
the proof for convenience. Let u ∈ BV (Ω) and (un)n≥0 ∈ C∞(Ω) be a sequence
such that

lim
n→+∞

‖un − u‖L1 = 0 and lim
n→+∞

Φ1(un) = Φ1(u) .

It is clear that m(un)→ m(u). In addition un ∈ W 1,1(Ω) since Ω is bounded. We
use theorem 3.1 to infer

∀n ‖un −m(un)‖L1(Ω) ≤ C‖∇un‖L1 = Φ1(un) .

Passing to the limit gives the result. �
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Corollary 3.3. Let Ω ⊂ Rn be a Lipschitz open bounded set. Then there exists a
constant C > 0 such that

∀u ∈ BV (Ω) such that

∫
Ω

u(x)dx = 0 ‖u‖L1(Ω) ≤ CΦ1(u) .

Remark 3.4. We have the same result on the set Ω for functions in B̃V0. The

proof is the same and we use the definition of B̃V0 to approximate any function of

B̃V0 by a sequence of D(Ω) functions : let Ω be a Lipschitz open bounded subset of
Rn, then there exists a constant CΩ > 0 such that

∀u ∈ B̃V0 ‖u‖L1(Ω) ≤ CΩΦ1(u) .

Another result can be found in [10] for functions in BV0(Ω). More precisely

Theorem 3.5. Let Ω be a connected and Lipschitz open bounded subset of Rn.
There exists a constant CΩ > 0 such that

∀u ∈ BV0(Ω) ‖u‖L1(Ω) ≤ CΩΦ1(u) .

Proof. We use the fact that ∂Ω is a borelian set so that Corollary 5.12.8 of [10] can
be used. Indeed the capacity of ∂Ω is different from 0 since the n− 1 dimensional
Hausdorff measure of A is nonnegative ( [10] Lemma 5.12.3). �

3.2. Poincaré-Wirtinger inequality in BV 2(Ω). We may extend the previous
inequalities to functions in BV 2(Ω):

Corollary 3.6. Let Ω ⊂ Rn be a connected Lipschitz open, bounded set . Then
there exists a constant C > 0 such that

∀u ∈ BV 2(Ω) ‖∇u−M(∇u)‖L1(Ω),N ≤ CNΦ2(u) ,

where M(V ) := {m(V1), · · · ,m(Vn)) is the (vectorial) mean-value of V and

‖V ‖L1(Ω),N = N ((‖V1‖L1(Ω), · · · , ‖Vn‖L1(Ω))) ,

where N denotes any norm in Rn (for example the `1-norm).

Proof. As u ∈ BV 2(Ω) we use Proposition 2.1 to infer that for every i ∈ {1, · · · , n}
∂u

∂xi
∈ BV (Ω). With Theorem 3.2 we get the existence of C such that

(3.1) ∀i ∈ {1, · · · , n} ‖ ∂u
∂xi
−m(

∂u

∂xi
)‖L1(Ω) ≤ CΦ1(

∂u

∂xi
) ≤ nC Φ2(u) .

This gives the result. �

Let us detail the particular case where u ∈ BV 2
m(Ω) defined as follows

BV 2
m(Ω) :=

{
u ∈ BV 2(Ω) |

∫
Ω

∂u

∂xi
dx = 0 i = 1, · · · , n

}
.

Corollary 3.7. Let Ω ⊂ Rn be a connected Lipschitz open, bounded set. Then,
there exists a constant CΩ > 0 only depending on Ω such that

(3.2) ∀u ∈ BV 2
m(Ω), ∀i = 1, · · · , n ‖ ∂u

∂xi
‖L1(Ω) ≤ CΩΦ2(u) .
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At last a direct corollary of Theorem 3.5 is the following:

Corollary 3.8. Let Ω ⊂ Rn be a connected Lipschitz open, bounded set. Then,
there exists a constant CΩ > 0 only depending on Ω such that
(3.3)

∀u ∈ BV 2(Ω) such that
∂u

∂xi
= 0 on ∂Ω, ∀i = 1, · · · , n ‖ ∂u

∂xi
‖L1(Ω) ≤ CΩΦ2(u) .

Proof. We use Theorem 3.5 with
∂u

∂xi
to infer

‖ ∂u
∂xi
‖L1(Ω) ≤ CΦ1(

∂u

∂xi
) ,

and we conclude with Theorem 2.1. �

3.3. Example. Assume n = 2 and Ω =]a1, b1[×]a2, b2[. Then BV 2(Ω) ⊂W 1,2(Ω),
the trace of any function in BV 2(Ω) belongs to L2(Ω) and the Green-formula gives∫

Ω

∂u

∂x1
dx1 dx2 =

∫ b2

a2

(u(b1, x2)− u(a1, x2)) dx2 ,

and ∫
Ω

∂u

∂x2
dx2 dx1 =

∫ b1

a1

(u(x1, b2)− u(x1, a2) dx1 .

Therefore we get : for all u ∈ BV 2(Ω) such that u = 0 on ∂Ω

(3.4) Φ1(u) = ‖∇u‖L1(Ω) ≤ CΩΦ2(u) .

4. An application in image processing

In [4] we have investigated a second order variational model for image processing:

min
v∈BV 2(Ω)

F (v) :=
1

2
‖ud − v‖2L2(Ω) + λΦ2(v) + δ‖v‖W 1,1(Ω),

where Ω is a square open set of R2, λ, δ > 0 and ud ∈ L2(Ω). We chose δ > 0
because we were not able to prove existence of solution without this assumption.
However, we may now avoid the use of the penalization term δ‖v‖W 1,1(Ω) if we look

for solutions in
BV 2

0 (Ω) := {u ∈ BV 2(Ω) | u|∂Ω = 0 } ,
solving

(P) inf{ F (v) | v ∈ BV 2
0 (Ω) } .

More precisely

Theorem 4.1. Assume λ > 0 and δ = 0. Then problem (P) has at least a solution.

Proof. Let vn ∈ BV 2
0 (Ω) be a minimizing sequence, i.e.

lim
n→+∞

F (vn) = inf{ F (v) | v ∈ BV 2
0 (Ω) } < +∞.

The sequence (vn)n∈N is bounded in BV 2(Ω).
Indeed Φ2(vn) is bounded and Φ1(vn) as well with relation (3.4). As vn is

L2-bounded it is also bounded in W 1,1(Ω). This yields that vn is bounded in
BV 2(Ω). With Proposition 2.2 we get the strong convergence (up to a subsequence)
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of (vn)n∈N in W 1,1(Ω) to v∗, the weak convergence in W 1,2(Ω) and the strong
convergence in L2(Ω). With Theorem 2.3 we get

Φ2(v∗) ≤ lim inf
n→+∞

Φ2(vn),

so that
F (v∗) ≤ lim inf

n→+∞
F (vn) = min

v∈BV 2
0 (Ω)

F (v).

It remains to prove that v∗ ∈ BV 2
0 (Ω). The compactness of the trace operator γ0

from W 1,2(Ω)to L2(∂Ω) (see [5] for example) gives the result since γ0(vn) = 0 for
every n and vn weakly converges to v∗ in W 1,2(Ω). �

A full study of this model with δ > 0 (including numerical tests) has been
performed in [4].
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