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ON POINCARÉ-WIRTINGER INEQUALITIES IN SPACES OF

FUNCTIONS OF BOUNDED VARIATION

M. BERGOUNIOUX

Abstract. The goal of this paper is to extend Poincaré-Wirtinger inequalities

from Sobolev spaces to spaces of functions of bounded variation of second
order. We give an application to an image processing variational problem.

1. Introduction

A useful tool when dealing with Sobolev spaces and partial differential equations
is the Poincaré-Wirtinger inequality that provides norm equivalences under appro-
priate assumptions. These inequalities usually provide Sobolev embeddings and
compactness results (see Adams [1]). The goal of this paper is to extend Poincaré-
Wirtinger inequalities from Sobolev spaces to spaces of functions of second order
bounded variation. The result is known for the space of functions of first-order
bounded variation (see [3]). Indeed, this space is very useful in image process-
ing context and many variational models are developed to deal with denoising of
texture extraction. Variational models in image processing can be improved us-
ing the so-called BV 2 space that we define in next section ([7, 9, 4, 6]. Generally
these models require a priori estimates on functions while first and/or second order
derivative estimates are available.

2. The spaces of functions of bounded variation

We briefly recall the definitions and the main properties of (classical) spaces of
functions of bounded variation. One can refer to [2, 3, 8] for a complete study of
the BV space and to [7, 4, 9] for the so-called BV 2 space.

Let Ω be an open bounded subset of Rn, n ≥ 2 smooth enough (Lipschitz for
example). The spaces BV (Ω) and BV 2(Ω) of functions of first-order and second-
order bounded variation are defined by

BV (Ω) = {u ∈ L1(Ω) | Φ1(u) < +∞},

where

(2.1) Φ1(u) := sup

{
∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1
c (Ω), ‖ξ‖∞ ≤ 1

}

.

and

BV 2(Ω) = {u ∈ W 1,1(Ω) | Φ2(u) < +∞},

where
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• The Sobolev space W 1,1(Ω) is defined as

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) }

• The second-order total variation is :

(2.2) Φ2(u) := sup

{
∫

Ω

〈∇u, div(ξ)〉
Rn | ξ ∈ C2

c (Ω,R
n×n), ‖ξ‖∞ ≤ 1

}

< ∞,

with div(ξ) = (div(ξ1), div(ξ2), . . . , div(ξn)), and

∀i, ξi = (ξ1i , ξ
2
i , . . . , ξ

n
i ) ∈ Rn and div(ξi) =

n
∑

k=1

∂ξki
∂xk

.

The following result makes precise the connection between BV (Ω) and BV 2(Ω):

Theorem 2.1. A function u belongs to BV 2(Ω) if and only if u ∈ W 1,1(Ω) and
∂u

∂xi

∈ BV (Ω) for i ∈ {1, . . . , n}. In particular

Φ2(u) ≤
n
∑

i=1

Φ1

(

∂u

∂xi

)

≤ n Φ2(u).

Proof. See Piffet [9]. �

The space BV (Ω), endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + Φ1(u), and

BV 2(Ω) endowed with the following norm

(2.3) ‖f‖BV 2(Ω) := ‖f‖W 1,1(Ω) +Φ2(f) = ‖f‖L1 + ‖∇f‖L1 +Φ2(f),

where Φ2 is given by (2.2), are Banach spaces.
As in [5] we may define the space BV0(Ω) of functions of bounded variation

that vanish on the boundary ∂Ω of Ω. More precisely as Ω is bounded and ∂Ω
is Lipschitz, functions of BV (Ω) have a trace of class L1 on ∂Ω, and the trace
mapping T : BV (Ω) → L1(∂Ω) is linear and bounded (see [8]). The space BV0(Ω)
is then defined as the kernel of T . It is a Banach space, endowed with the induced
norm.

We next recall standard properties of functions of 1st and 2nd order bounded
variation. We first have embedding theorems

Proposition 2.2. [2, 3, 7, 9] Let Ω be an open subset of Rn with Lipschitz boundary.

(1) BV (Ω) ⊂ L2(Ω) with continuous embedding, if n = 2.
(2) BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2), if n = 2.
(3) Assume n ≥ 2. Then

BV 2(Ω) →֒ W 1,q(Ω) with q ≤
n

n− 1
,

with continuous embedding. Moreover the embedding is compact if q < n
n−1 .

In particular

BV 2(Ω) →֒ Lq(Ω) for q ≤
n

n− 2
if n > 2

BV 2(Ω) →֒ Lq(Ω), ∀q ∈ [1,∞[, if n = 2.

We get lower semi-continuity results as well:
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Theorem 2.3. (1) The mapping u 7→ Φ1(u) is lower semi-continuous from
BV (Ω) to R+ for the L1(Ω) topology.

(2) The mapping u 7→ Φ2(u) is lower semi-continuous from BV 2(Ω) endowed
with the strong topology of W 1,1(Ω) to R. More precisely, if {uk}k∈N is a
sequence of BV 2(Ω) that strongly converges to u in W 1,1(Ω) then

Φ2(u) ≤ lim inf
k→∞

Φ2(uk).

We end this section with a “density ” result in BV (Ω) :

Theorem 2.4 ([3] Theorem 10.1.2. p 375 ). The space C∞(Ω) is dense in BV (Ω) in
the following sense : for every u ∈ BV (Ω) there exist a sequence (un)n≥0 ∈ C∞(Ω)
such that

lim
n→+∞

‖un − u‖L1 = 0 and lim
n→+∞

Φ1(un) = Φ1(u) .

3. Poincaré-Wirtinger inequalities

3.1. Poincaré-Wirtinger inequality in BV (Ω). We first recall the classical
Poincaré-Wirtinger inequality for the Sobolev-space W 1,1(Ω)(see [3] p. 161–180
for example, or [1]).

Theorem 3.1. Let Ω be an open subset of Rn, which is bounded in one direction.
Then, there exists a constant CΩ such that

∀v ∈ W
1,1
0 (Ω) ‖v‖L1(Ω) ≤ CΩ ‖∇v‖L1(Ω) .

Moreover, if Ω is an open bounded set of class C1, then there exists a constant CΩ

such that

∀u ∈ W 1,1(Ω) ‖u−m(u)‖L1(Ω) ≤ CΩ ‖∇u‖L1(Ω) ,

where where m(u) :=
1

|Ω|

∫

Ω

u(x)dx is the mean-value of u.

A consequence of the previous results is a Poincaré-Wirtinger inequality in the BV-
space

Theorem 3.2. Let Ω ⊂ Rn be an open bounded set of class C1. Then there exists
a constant C > 0 such that

∀u ∈ BV (Ω) ‖u−m(u)‖L1(Ω) ≤ CΦ1(u) .

Proof. The result is mentioned in [3], p. 399 (proof of Lemma 10.3.2), but we give
the proof for convenience. Let u ∈ BV (Ω) and (un)n≥0 ∈ C∞(Ω) be a sequence
such that

lim
n→+∞

‖un − u‖L1 = 0 and lim
n→+∞

Φ1(un) = Φ1(u) .

It is clear that m(un) → m(u). In addition un ∈ W 1,1(Ω) since Ω is bounded. We
use theorem 3.1 to infer

∀n ‖un −m(un)‖L1(Ω) ≤ C‖∇un‖L1 = Φ1(un) .

Passing to the limit gives the result. �
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We have the same result without any regularity assumption on the set Ω for func-
tions in BV0(Ω) (the proof is the same):

Theorem 3.3. Let Ω ⊂ Rn be an open bounded subset of Rn, Then there exists a
constant C > 0 such that

∀u ∈ BV0(Ω) ‖u‖L1(Ω) ≤ CΦ1(u) .

3.2. Poincaré-Wirtinger inequality in BV 2(Ω). We may extend the previous
inequalities to functions in BV 2(Ω):

Corollary 3.4. Let Ω ⊂ Rn be an open, bounded set of class C1. Then there exists
a constant C > 0 such that

∀u ∈ BV 2(Ω) |∇u−M(∇u)|L1(Ω),N ≤ CNΦ2(u) ,

where M(V ) := {m(V1), · · · ,m(Vn)) is the (vectorial) mean-value of V and

|V |L1(Ω),N = N ((‖V1‖L1(Ω), · · · , ‖Vn‖L1(Ω))) ,

where N denotes any norm in Rn (for example the ℓ1-norm).

Proof. As u ∈ BV 2(Ω) we use Proposition 2.1 to infer that for every i ∈ {1, · · · , n}
∂u

∂xi

∈ BV (Ω). With Theorem 3.3 we get the existence of C such that

∀i ∈ {1, · · · , n} ‖
∂u

∂xi

−m(
∂u

∂xi

)‖L1(Ω) ≤ CΦ1(
∂u

∂xi

) ≤ nC Φ2(u) .

This gives the result. �

Corollary 3.5. Let Ω ⊂ Rn be an open, bounded set. Then, there exists a constant
C > 0 such that

∀u ∈ BV 2(Ω) such that
∂u

∂xi

= 0 on ∂Ω ‖
∂u

∂xi

‖L1(Ω) ≤ CΦ2(u) .

3.3. Examples. Let us detail the particular case where u ∈ BV 2(Ω) and
∂u

∂n
= 0

on ∂Ω. This is the usual case in the context of image processing. Indeed, one often
performs a reflexion of the image along its frame to avoid undesirable boundary

effects. We assume also that Ω =

n
∏

i=1

]ai, bi[ (the frame is a square). This is a

bounded open subset (not C1).

By definition, for every i ∈ {1, · · · , n},
∂u

∂xi

∈ BV0(Ω); indeed,

∂u

∂xi

∈ BV (Ω) and
∂u

∂xi

=
∂u

∂n |]ai,bi[
= 0 .

Therefore we use Corollary 3.5 to get : for all u ∈ BV 2(Ω) such that
∂u

∂n
= 0

(3.1) Φ1(u) ≃ ‖∇u‖L1(Ω) ≤ CΦ2(u) ,

where C denotes a generic constant.
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4. An application in image processing

In [4] we have investigated a second order model for image processing:

F (v) =
1

2
‖ud − v‖2L2(Ω) + λΦ2(v) + δ‖v‖W 1,1(Ω),

where Ω is a squared bounded open set, λ, δ > 0, ud ∈ L2(Ω) and v ∈ BV 2(Ω) such

that
∂v

∂n
= 0 on ∂Ω. We are looking for a solution to the optimization problem

(P) inf{ F (v) | v ∈ B̃V 2(Ω) } ,

where

B̃V 2(Ω) = { v ∈ BV 2(Ω) |
∂v

∂n |∂Ω
= 0 .}

We chose δ > 0 because we were not able to prove existence of solution without
this assumption. Now, with Poincaré-Wirtinger tool we can get rid of the δ-term
so that the model is improved. More precisely

Theorem 4.1. Assume λ > 0 and δ = 0. Then problem (P) has at least a solution.

Proof. Let vn ∈ B̃V 2(Ω) be a minimizing sequence, i.e.

lim
n→+∞

F (vn) = inf{ F (v) | v ∈ B̃V 2(Ω) } < +∞.

The sequence (vn)n∈N is bounded in BV 2(Ω). Indeed Φ2(vn) is bounded and Φ1(vn)
as well with relation (3.1). As vn is L2-bounded it is also bounded in W 1,1(Ω).
With the compactness result of Proposition 2.2 this yields that (vn)n∈N strongly
converges (up to a subsequence) in W 1,1(Ω) to v∗ ∈ BV 2(Ω). With the continuity

of the trace operator we get v∗ ∈ B̃V 2(Ω). Theorem 2.3 gives the following:

Φ2(v
∗) ≤ lim inf

n→+∞
Φ2(vn).

So

F (v∗) ≤ lim inf
n→+∞

F (vn) = min
v∈BV 2(Ω)

F (v),

and v∗ is a solution to (P). �
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