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Improved stability analysis of networked control

systems under asynchronous sampling and input

delay

Wenjuan Jiang ∗ Alexandre Seuret ∗

∗ NeCS Team, Department of Automatic Control,
GIPSA-Lab-CNRS UMR 5216, Grenoble, France

(e-mail: wenjuan.jiang,alexandre.seuret@gipsa-lab.inpg.fr).

Abstract: This article presents a novel approach to assess the stability of linear systems with delayed
and sampled-data inputs. It proposes an extension of existing results on the stability of sampled-data
systems to the case where a delay is introduced in the control loop. The method is based on a continuous-
time modelling of the systems together with the discrete-time Lyapunov theorem, which provides easy
tractable sufficient conditions for asymptotic stability. Those conditions cope the problem of stability
under asynchronous samplings and time-varying delays. The period and delay-dependent conditions
are expressed using computable linear matrix inequalities. Several examples show the efficiency of the
stability criteria.

Keywords: Sampled-Data systems, Lyapunov-Krasovskii functionals, Linear systems, Delay systems.

1. INTRODUCTION

In the last decades, a large attention has been taken to Net-
worked Control Systems (NCS) (see [Hespanha et al., 2007],
or [Zampieri, 2008]). Such systems are controlled systems con-
taining several distributed plants which are connected through a
communication network. In such applications, one has to check
the robustness of a control law with respect to the additional
dynamics introduced by the communication networks. Among
these dynamics, this article focuses on the influence of trans-
mission delay and asynchronous samplings. The transmission
of a data packet through a network can not be achieved in-
stantaneously. Transmission delays are unavoidably introduced.
Those delays may lead to instability [Richard, 2003]. On the
other hand, a heavy temporary load of computation in a control
processor can corrupt the sampling period of a certain con-
troller. We can also imagine a situation where the sampling
period is scheduled in the control design in order to avoid this
load. In both cases, the variations of the sampling period will
also affect the stability properties. It is thus an important issue
to develop robust stability criteria with respect to transmission
delays and asynchronous samplings.

Sampled-data systems have extensively been studied in the
literature [Chen and Francis, 1995, Fridman et al., 2004, Fu-
jioka, 2009, Zhang and Branicky, 2001, Zhang et al., 2001]
and the references therein. It is now reasonable to design con-
trollers which guarantee the robustness of the solutions of the
closed-loop system under periodic samplings. However the case
of asynchronous samplings still leads to several open prob-
lems such that the guarantee of stability whatever the sam-
pling period lying in an interval. Recently, several articles
drive the problem of time-varying periods based on a discrete-
time approach, [Yue et al., 2008, Oishi and Fujioka, 2009,
Hetel et al., 2006]. Note that the discrete-time approaches do
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not fit with the case of uncertain systems or systems with
time-varying parameters. Recent papers considered the mod-
elling of continuous-time systems with sampled-data control
in the form of continuous-time systems with delayed control
input. In [Fridman et al., 2004], a Lyapunov-Krasovskii ap-
proach is introduced. Improvements are provided in [Fujioka,
2009, Mirkin, 2007], using the small gain theorem and in
[Naghshtabrizi et al., 2008] based on the analysis of impulsive
systems. These approaches are very relevant because they deal
with time-varying sampling periods and with uncertain systems
(see [Fridman et al., 2004] and [Naghshtabrizi et al., 2008]).
Nevertheless, these sufficient conditions are still conservative.
This means that the conditions obtained by continuous-time ap-
proaches are not able to guarantee asymptotic stability whereas
the system is stable. Recently several authors [Fridman, 2010,
Liu and Fridman, 2009a, Seuret, 2009, 2010] refine those ap-
proaches and obtain tighter conditions.

When transmission delays are introduced in the control loop,
the problem becomes more complex. It is indeed well known
that delays require a more accurate analysis since the time-
delay systems are of infinite dimension [Gu et al., 2003,
Richard, 2003]. Several articles have been provided to cope
with the stability of NCS under sampling and transmission
delays. In [Fridman et al., 2004, Liu and Fridman, 2009b,
Naghshtabrizi et al., 2010], stability conditions of systems un-
der asynchronous sampling and transmission delays are pre-
sented. However those conditions are still conservative and
require improvements. In the present article, we provide a novel
method to assess asymptotic stability of such systems. The
conditions are presented as an extension of [Seuret, 2010] to
the case of time-varying transmission delays. This problem of
NCS proposed here is hybrid since we consider a continuous
time model of the plant and a discrete-time communication.
Thus another important improvement presented here consists in
employing the discrete-time Lyapunov theorem to continuous-
time modelling of sampled-data systems with delays. The main
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Fig. 1. Control loop of Networked control systems under trans-
mission and sampling delays

idea in this paper is to consider separately the two types of
delays. This method provides a larger upper-bound of the al-
lowable sampling period than the existing ones (based on the
continuous-time approach).

This article is organized as follows. The next section formu-
lates the problem and presents a lemma that will be used in
the sequel. Section 3 exposes the novel stability criteria based
on the discrete-time Lyapunov theorem. Then, in Section 4,
asymptotic stability criteria for sampled-data systems are ex-
posed to cope with time-varying input delays. Some examples
are provided in Section 5 which shows the efficiency of the
method.

Notations. Throughout the article, for a n-dimensional state
vector x and a non-negative delay h, xt denotes a function such
that xt(θ) = x(t − θ) for all θ ∈ [−h, 0]. The notation Kh

stands for the set of the functions from [−h, 0] to R
n. The sets

R
+, R

n×n and S
n denote respectively the set of positive scalar,

the set of n × n matrices and the set of symmetric matrices of
R

n×n. The superscript ’T ’ stands for the matrix transposition.
The notation P > 0 for P ∈ S

n means that P is positive
definite, then the set of symmetric definite positive matrices is
denoted as S

n
+ . The symbols I and 0 represent the identity

and the zero matrices of appropriate dimension. Recall that a
function γ : R

+ → R
+ is a K-function if it is continuous,

strictly increasing and γ(0) = 0. A function γ′ belongs to the
set K∞ if γ′ ∈ K and γ(s) → ∞ as t → ∞. A function
β : R

+ × R
+ → R

+ is a KL-function if, for each fixed t ≥ 0,
the function β(·, t) is a K-function, and for each fixed s ≥ 0,
the function β(s, ·) is decreasing and β(s, t) → 0 as t → ∞.
For any matrices Ai, Aj , Aij = Ai − Aj .

2. PROBLEM FORMULATION

2.1 System definition

Consider the linear system with a sampled and delayed input as
shown in Figure 1:

ẋ(t) = Ax(t) + Bu(t), (1)

where x ∈ R
n and u ∈ R

m represent the state variable and
the input vector. The matrices A and B are constant and of
appropriate dimension. As in the situation of networked control
systems, the control input u is affected by the networked com-
munication. In this paper it is only assumed that the network
induces a time-varying transmission delay h and a sampling of
the transmitted signal. We are looking for a piecewise-constant
static state-feedback control law:

u(t) = Kx(sk), sk + h(sk) ≤ t < sk+1 + h(sk+1)

where 0 = s0 < s1 < ... < sk < ... represent the sampling
instants. The sequence of {sk}k≥0 is strictly increasing and
goes to infinity as k increases. The transmission delay h(t) is
assumed to be constant or time-varying and such that

∀t, h(t) ∈ [h1 h2], ǫ1 ≤ ḣ(t) ≤ ǫ2 < 1 (2)

where 0 ≤ h1 < h2 and ǫ1 < ǫ2. In order to simplify the
notation, hk = h(sk) is introduced. Denote tk = sk + hk.
These instants tk represent the instants where the control input
is updated, which refers to the actuation instants. Our objective
is to ensure the stability of the system together with a state-
feedback controller of the form

u(t) = Kx(tk − hk), tk ≤ t < tk+1. (3)

where the gain K in R
n×m is given. Assume that there exists a

positive scalar T such that the difference between two succes-
sive sampling instants Tk = sk+1 − sk satisfies

∀k ≥ 0, 0 ≤ T1 ≤ Tk ≤ T2. (4)

Then the actuation instants tk of the control input satisfies

T̄k = tk+1 − tk = sk+1 − sk + hk+1 − hk.

In order to keep a chronological order of the control values, the
value T̄k is necessarily positive, which leads to the condition

∀k ≥ 0, Tk > hk − hk+1.

Several authors investigated in guaranteeing the stability of
such systems. In Fridman et al. [2004], a continuous-time
approach to model sampled-data systems was developed. It
allows assimilating sampling effects as the ones of a particular
delay. Substituting (3) into (1), we obtain the following closed-
loop system:

ẋ(t) = Ax(t) + Adx(tk − hk),
τ(t) = t − tk, tk ≤ t < tk+1.

(5)

where Ad = BK and where the continuous delay function
corresponds to the continuous extension of the hk within a
sampling period. From (4), it follows that τ(t) ≤ T since
τ(t) ≤ tk+1 − tk. We will further consider (5) as a linear
system with uncertain and bounded delay δ(t) = t − tk + hk.
An example of such delays is presented in Figure 2.

In Fridman et al. [2004] or Millán et al. [2009], the authors pro-
pose an aggregated delay formulation. They develop stability
criteria which take into account the delay δ. However they did
not consider the different natures of the transmission and the
sampling delay. More especially the additional characteristic of
sampled delay which is τ̇ = 1 has not been included and thus
leads to conservative conditions.

In this paper, the aggregated delay δ representing the effect
of the transmission and the sampling delays is split into two
parts. The main idea is to consider separately the two types
delays. This allows having δ greater than the upper bound h2.
In this paper, a novel method to assess stability of systems
subject to this type of delay is proposed. The present article
establishes a novel approach to cope with the stability analysis
of continuous-time systems under delayed and sampled inputs.
This method is based on the discrete-time Lyapunov Theorem
and leads to less conservative necessary conditions. Those con-
ditions concern a class of functionals which are not required to
be of the Lyapunov-Krasovskii type. For the sake of simplicity,

the notation τττ , hhh and ḣ̇ḣh stand for the time-varying sampling
delay τ(t), the time-varying transmission delay h(t) and its

time-varying derivative ḣ(t).

Integrating the differential equation (5) with the control law (3)
over the interval [tk, s], for any instant s in [tk, tk+1], the
dynamics of the system satisfies
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Fig. 2. Examples of a delay generated by a transmission delay
hk bounded by h1 and h2 and an asynchronous sampling
of periods Tk

∀s ∈ [tk, tk+1], x(s) = Ã(τ(s))x(tk) + Ãd(τ(s))x(tk − hk),

∀τ ∈ [0, T̄ ], Ã(τ) = eAτ , Ãd(τ) =

∫ τ

0

eA(τ−θ)dθBK.

(6)
This equality leads naturally to the introduction of a novel

notation. Define the function for all integer k, χh2

k : [0, Tk] ×
[−h2, 0] → R

n such that for all τ in [0, Tk] and all θ in

[−h2, 0], χk(τ, θ) = x(tk + τ + θ). The set K
h2

T̄
represents

the set of functions defined by χh2

k as the set of continuous

functions from [0, T̄ ] × [−h2, 0] to R
n where T̄ is the upper-

bound of the Tk in (4).

2.2 Preliminary lemma

In order to clarify the presentation, the following lemma on a
property of convex linear matrix inequalities is stated.

Lemma 1. [Naghshtabrizi et al., 2008] Consider three matrices
X1, X2 and X3 ∈ S

n and a time-varying parameter λ :
R

+ → [λm λM ], for some given λm and λM . If the following
inequality is guaranteed

∀t ≥ 0, X1 + (λM − λ(t))X2 + (λ(t) − λm)X3 < 0, (7)

then, it is equivalent to

X1 + (λM − λm)X2 < 0, X1 + (λM − λm)X3 < 0. (8)

3. MAIN RESULT

This section is motivated by the difference between the discrete
and continuous-time Lyapunov Theorems. As the problem of
sampled-data systems is at the boundary of the discrete and
the continuous-time theories, it is important to put in clear the
difference between them. More especially, the main idea of
this section consists in developing a novel stability criterion for
systems, taken in a continuous-time model, using the discrete-
time Lyapunov Theorem.

Theorem 1. Let V : K
h2 → R

+ be a functional for which there
exist real numbers 0 < µ1 < µ2 and p > 0 such that

∀(xt) ∈ K, µ1|xt(0)|p ≤ V (xt) ≤ µ2|xt|
p. (9)

The two following statements are equivalent.

(i) ∀k ≥ 0, ∆V (k) = V (xtk+1
) − V (xtk

) < 0;

(ii) There exists a continuous functional V : R × K
h2

T̄
→ R,

differentiable over all intervals of the form [tk tk+1[ which
satisfies

∀k ≥ 0, V(Tk, χh2

k ) = V(0, χh2

k ). (10)

and such that, for all k > 0 and for all t in [tk tk+1], the
following inequality holds

W(τ(t), χh2

k ) < 0, (11)

where W(τ(t), χh2

k ) = d
dt

{

[V (xt) + V(τ(t), χkχh2

k )]
}

.

Moreover, if one of these two statements is satisfied, the solu-
tions of system (1) with the control law (3) are asymptotically
stable.

Proof. Consider a positive integer k and t ∈ [tk, tk+1]. Assume
(ii) is satisfied. Integrating Wα over the interval [tk tk+1[ and
assuming that (10) holds, this directly implies ∆αV (k) < 0
and that (i) holds.

Assume now that (i) is satisfied. Inspired by Lemma 2 in Peet

et al. [2009], consider the functional V(τ, χh2

k ) = −V (xt) +
τ/Tk∆V (k). Indeed, V is a functional since it is expressed with

respect to ∆V (k) which depends on the function χh2

k (0, θ) =

xtk
(θ), χh2

k (Tk, θ) = xtk+1
(θ) and χk(τ, θ) = xt(θ) for all t ∈

[tk, tk+1]. By simple computations, it is easy to obtain that this
functional satisfies (10) and that W(τ, χk) = ∆V (k). Thus,
W has the same sign as ∆V (k). This proves the equivalence
between (i) and (ii).

From the discrete-time Lyapunov theorem, the equilibrium of
the discrete-time system is asymptotically stable.

The end of the proof consists in ensuring that the solutions of
the continuous-time system are not diverging within a sampling
period. Consider any s ∈ [tk, tk+1]. From (9), it follows that

V (xs) < λ2|xs|

From (6), the following equality holds

x(s) = Ã(τ(s))x(tk) + Ãd(τ(s))x(tk − hk),

where Ã and Ãd are given in (6). Since those matrix functions
are considered only on τ(s) ∈ [0, Tmax] and continuous over
this interval, it is clear that there exist a constant parameter λ∗

such that |x(s)| ≤ λ∗|xtk
|. Since |xtk

| is converging to zero as
tk tends to infinity, it is clear that x(s) also converges to zero as
tk tends to infinity.

The statement of Theorem 1 is finally simple. However the
consequences on the functional V are relevant. No conditions
on the positive definiteness of V are introduced. The positivity
requirements to ensure stability is on the functional V and (10).

Knowing that V (xtk+1
)−V (xtk

) =
∫ tk+1

tk

V̇ (xs)ds, the objec-

tive consists in ensuring that this integral is negative definite.
In [Peet et al., 2009], it was shown that there is an equivalence

between this condition and the existence of a function V̇ , such

that
∫ tk+1

tk

V̇ = 0 and V̇ + V̇ < 0. Thus the objective is to find

appropriate functionals V such that W < 0.

In the following, a theorem provides sufficient conditions to
ensure (11) in the case of time-varying delay hhh.

4. STABILITY CRITERIA

Consider system (5) under an asynchronous sampling (i.e. Tk

is time-varying) and a time-varying delay hhh satisfying (2). The
following theorem is proposed:

Theorem 2. For given 0 ≤ T1 < T2 and 0 ≤ h1 < h2, consider
an asynchronous sampling and a time-varying delay hhh which
satisfy (2) and (4). Assume that there exist, for p = 1, 2, 3
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and for l = 1, 2, 3, 4, the matrices Qp and Rl ∈ S
n
+, P and

U ∈ S
2n
+ , S1 and X ∈ S

2n and three matrices S2 ∈ R
2n×2n,

Y1, Y2 ∈ R
2n×n, Y3 ∈ R

5n×2n, that satisfy for i = 1, 2 and
j = 1, 2

[

Π1(hj) + T̄i(N
T
2 XN2 + Π2) h21N1Yj

∗ −h21Π3j

]

< 0, (12)





Π1(hj) − T̄iN
T
2 XN2 T̄iN3Y3 h21N1Yj

∗ −T̄iU 0
∗ ∗ −h21Π3j



 < 0, (13)

Q23 = Q2 − Q3 > 0 (14)

where T̄1 = max(0, T1 − h21), T̄2 = T2 + h21 and

Π1(hi) = 2NT
1 PN0 − NT

12S1N12 − 2NT
2 S2N12

+MT
1 Q1M1 − (1 − ǫ2)M

T
2 Q23M2

−MT
3 Q12M3 − MT

4 Q3M4 + MT
0 R̃(hi)M0

−1/h1M
T
13((1 − ǫ2)R2 + R3)M13

−1/(1 − ǫ1)M
T
5 R1M5 − 2N1Y1M24

+2N1Y2M23 − 2N3Y3N12,
Π2 = NT

0 (UN0 + 2S1N12 + 2ST
2 N2),

Π31 = R3 + R4,
Π32 = (1 − ǫ2)R2 + R3 + R4,

R̃(hi) = R1 + hiR2 + h2R3 + h21R4.

The constant matrices Mi ∈ R
n×7n, for l = 0, . . . , 7 are such

that

[MT
1 MT

2 ...MT
7 ] = I

M0 = A0M1 + AdM7

N0 = [MT
0 MT

5 ]T , N1 = [MT
1 MT

2 ]T , N2 = [MT
6 MT

7 ]T ,
N3 = [MT

1 MT
2 MT

5 MT
6 MT

7 ]T

The matrices Mij = Mi − Mj , Nij = Ni − Nj , i, j ∈ 1 . . . 7
refer to the notation at the end of the section introduction.
System (5) is thus asymptotically stable for the sampling period
T and the time-varying input delay h.

Proof. Consider the functional:

V (t, xt, ẋt) = zT (t)Pz(t) +

∫ t

t−h1

xT (s)Q1x(s)ds

+

∫ t−h1

t−hhh

xT (s)Q2x(s)ds +

∫ t−hhh

t−h2

xT (s)Q3x(s)ds

+

∫ t

t−hhh

ẋT (s)(R1 + (hhh − t + s)R2)ẋ(s)ds

+

∫ 0

−h2

∫ t

t+θ

ẋT (s)R3ẋ(s)dsdθ

+

∫ −h1

−h2

∫ t

t+θ

ẋT (s)R4ẋ(s)dsdθ

(15)

where z(t) = [xT (t) xT (t−hhh)]T . This functional corresponds
to a classical type of Lyapunov-Krasovskii functionals to check
the stability of time-delay systems. Here we only consider the
assumption on the positivity of V achieved by the positive
definiteness of the matrices P,Qi, Rj . On the other hand, we
introduce an additional functional V(t, xt) given by

V(t, xt) = (T̄k − τττ)ζT
1 (t)[S1ζ1(t) + 2S2z(tk)]

+(T̄k − τττ)

∫ t

tk

żT (s)Uż(s)ds

+(T̄k − τττ)τττzT (tk)Xz(tk),

(16)

where ζ1(t) = z(t) − z(tk). The first step of the proof consists
in establishing some properties of the additional functional V .
To prove the continuity over [tk tk+1], note that for t = t+k ,

ζ0(tk) = 0, the integral is zero and the last term is also zero

since τ(tk) = 0. When t = t−k+1, T̄k − τττ is equal to zero. Then
following equalities are satisfied

lim
ǫ→0

V(tk − ǫ, xtk−ǫ) = 0,

lim
ǫ→0

V(tk + ǫ, xtk+ǫ) = 0.
(17)

The functional V is thus continuous with respect to t and is
differentiable over [tk tk+1[. Thus the functional V + V is
continuous with respect to the time variable and moreover
V is zero at all sampling instants. This makes V suitable
for applying Theorem 1. As suggested in the theorem, no
additional constraint is introduced on S1, S2, U and X . Thus
V + V is not necessary positive definite within two sampling
instants. This corresponds to the improvement with respect
to the previous approaches exposed in the case of sampled
data systems [Fridman, 2010, Liu and Fridman, 2009a, Seuret,
2009] and [Liu and Fridman, 2009a, Naghshtabrizi et al., 2010,
Millán et al., 2009] for sampled and delayed input. Note that
the positivity of U is not required as it will be introduced in the
sequel.

The rest of the proof consists in ensuring W < 0 over [tk tk+1[.
The computation of the derivative of W leads to

W(t, xt, ẋt) = 2zT (t)P ż(t) + xT (t)Q1x(t)

−xT
t (h1)Q12xt(h1) − (1 − ḣ̇ḣh)xT

t (hhh)Q23xt(hhh)

−xT
t (h2)Q3xt(h2) − (1 − ḣ̇ḣh)ẋT

t (hhh)R1ẋt(hhh)

+ẋT (t)R̃(hi)ẋ(t) − ζT
1 (t)[S1ζ1(t) + 2S2z(tk)]

+(T̄k − τττ)ż(t)T [Uż(t) + 2S1ζ1(t) + 2S2z(tk)]
+(T̄k − 2τττ)zT (tk)Xz(tk)

−

∫ t

t−h2

ẋT (s)R3ẋ(s)ds −

∫ t−h1

t−h2

ẋT (s)R4ẋ(s)ds

−(1 − ḣ̇ḣh)

∫ t

t−hhh

ẋT (s)R2ẋ(s)ds −

∫ t

tk

żT (s)Uż(s)ds.

(18)
Introduce the augmented vector φ(t) ∈ R

7n such that

φ(t) = [zT (t) xT
t (h1) xT

t (h2) (1 − ḣ̇ḣh)ẋT
t (hhh) zT (tk)]T .

It regroups the necessary variables to represents the dynamics
of the system. From the definition of the delay hhh given in (2),
and knowing that the matrices R1 is positive definite, we have

−1/(1 − ḣ̇ḣh) ≤ −1/(1 − ǫ1) and

−(1 − ḣ̇ḣh)ẋT
t (hhh)R1ẋt(hhh) = −1/(1 − ḣ̇ḣh)φT (t)MT

5 R1M5φ(t)
≤ −1/(1 − ǫ1)φ

T (t)MT
5 R1M5φ(t)

Concerning the integrals of (18), they can be rewritten as
follows

−

∫ t

t−h2

ẋT (s)R3ẋ(s)ds −

∫ t−h1

t−h2

ẋT (s)R4ẋ(s)ds

−(1 − ḣ̇ḣh)

∫ t

t−hhh

ẋT (s)R2ẋ(s)ds −

∫ t

tk

żT (s)Uż(s)ds

= −

∫ t

tk

żT (s)Uż(s)ds

−

∫ t

t−h1

ẋT (s)((1 − ḣ̇ḣh)R2 + R3)ẋ(s)ds

−

∫ t−h1

t−hhh

ẋT (s)((1 − ḣ̇ḣh)R2 + R3 + R4)ẋ(s)ds

−

∫ t−hhh

t−h2

ẋT (s)(R3 + R4)ẋ(s)ds

= I1 + I2 + I3 + I4

(19)
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The following developments concern the integral terms of (19).
Consider the last integral and a matrix Ȳ3 ∈ R

7n×2n and the
following equality

2φT (t)Ȳ3 [z(t) − z(tk)] =

∫ t

tk

[

2φT (t)Ȳ3ż(s)
]

ds.

Since U is assumed to be positive definite and thus non singular,
a classical bounding ensures that for all t ∈ [tk, tk+1[ and for
all s ∈ [tk, t]

2φT (t)Ȳ3ż(s) ≤ φT (t)Ȳ3U
−1(Ȳ3)

T φ(t) + żT (s)Uż(s).

Integrating the previous inequality over [tk, t], the following
inequality is obtained

I1 ≤ −2φT (t)Ȳ3(z(t) − z(tk)) + τττφT (t)Ȳ3U
−1Ȳ T

3 φ(t),

Since ḣ̇ḣh ≤ ǫ2 and R2 > 0, applying Jensen’s inequality to the
first integral of (19) leads to

I2 ≤ −φT (t)MT
13

(1 − ǫ2)R2 + R3

h1
M13φ(t). (20)

Based on the same bounding method, the two last integrals of
(19) are bounded as follows

I3 ≤ φT (t)[2Ȳ2M23 + (hhh − h1)Ȳ2Π
−1
32 Ȳ T

2 ]φ(t) (21)

and

I4 ≤ φT (t)[−2Ȳ1M24 + (h2 − hhh)Ȳ1Π
−1
31 Ȳ T

1 ]φ(t), (22)

where Ȳ1, Ȳ2 ∈ R
7n×n. Noting that

ẋ(t) = Ax(t) + Adx(tk − hk) = M0φ(t),
x(t) = M1φ(t), x(t − h) = M2φ(t),
x(t) − xt(h) = M12φ(t), z(t) = N1φ(t),
z(tk) = N2φ(t), ζ0(t) = z(t) − z(tk) = N12φ(t)

ż(t) = [(Ax(t) + Adx(tk − hk))T (1 − ḣ̇ḣh)ẋT
t (hhh)]T = N0φ(t)

Using the definition of the matrices Mi’s and Ni’s and adding
(20), (21) and(22) to (18), the following inequality is obtained
for all t ∈ [tk, tk+1[

V(t, xt, ẋt) ≤ φT (t)[Π1(hhh) + (T̄k − τττ)Π2

+(T̄k − 2τττ)NT
2 XN2 + τττ Ȳ3U

−1Ȳ T
3

+(hhh − h1)Ȳ2Π
−1
32 Ȳ T

2 + (h2 − hhh)Ȳ1Π
−1
31 Ȳ T

1 ]φ(t).

Applying Lemma 1 with λ(t) = τττ , the right hand-side term is
negative definite if and only if

Π1(hhh) + T̄k(Π2 + NT
2 XN2) + (h2 − hhh)Ȳ1Π

−1
31 Ȳ T

1

+(hhh − h1)Ȳ2Π
−1
32 Ȳ T

2 < 0,

and

Π1(hhh) + T̄k(NU−1NT − NT
2 XN2 + Ȳ3U

−1Ȳ T
3 )

+(h2 − hhh)Ȳ1Π
−1
31 Ȳ T

1 + (hhh − h1)Ȳ2Π
−1
32 Ȳ T

2 < 0.

Then noting that the previous conditions depend linearly on
hhh, we apply once more Lemma 1 considering λ(t) = hhh.
The same lemma is finally applied to λ(t) = T̄k which
belongs to [max{0, T1 + h1 − h2}, T2 + h2 − h1].The Schur
complement allows obtaining conditions (12) and (13). By
virtue of Theorem 1, the asymptotically stability of system (5)
is guaranteed.

The final step of the proof consists in reducing the number
of variables by noting that some variables of the matrices Ȳ1,
Ȳ2 and Ȳ3 does not help to solve the conditions of Theorem
2. Thus we defined the variables Y1 = N1Ȳ1 ∈ R

2n×n,
Y2 = N1Ȳ2 ∈ R

2n×n and Y3 = N3Ȳ3 ∈ R
5n×2n

Remark 1. If the minimal bound of the transmission delay h1 is
zero, it is possible to reduce the size of the LMI and the number
of variables to solve the problem. This is because the term

xt(h1) is not required anymore and furthermore, the matrices
Q1 is then chosen equal to zero.

Remark 2. It is clear that discrete time approaches proposed
for instance in [Fujioka, 2009] or in li et al. [2009] leads to
less conservative stability conditions. However it is possible
to extend the previous stability criteria to the case of time-
varying polytopic uncertainties since all the stability conditions
provided in this article are linear with respect to the system
matrices A and Ad. This makes the proposed method still
relevant with respect to the discrete-time approach.

Remark 3. Note that the conditions of Theorem 2 consider
separately the delay parameters h1, h2, ǫ1, ǫ2 and the sampling
period T . It is important to see that the conditions require at
least the system to be stable with the transmission delay. To see
that one can choose T = 0 and we will obtain the classical LMI
conditions for TDS by using Lyapunov-Krasovskii functional.

5. EXAMPLES

In this section, the following examples will be studied.

Example 1 Consider system (1) from [Fridman et al., 2004],
[Millán et al., 2009], [Naghshtabrizi et al., 2008] with

A =

[

0 1
0 −0.1

]

, Ad = BK =

[

0
−0.1

] [

−3.75
−11.5

]T

.

Example 2 Consider system (1) from [Fridman, 2010] with

A =

[

−2 0
0 −0.9

]

, Ad =

[

−1 0
−1 −1

]

.

Example 3 Consider system (1) from [Fridman, 2010] with

ẋ(t) = −x(tk − h).

Concerning the time-varying transmission delay, we consider
h1 = 10−4, ǫ2 = 1 and ǫ1 = −0.2 and −1. The results
delivered Theorem 2 for examples 1, 2 and 3 are summarized
in Table 1. They show the influence of the delay variation ǫ1.
Note finally that the conditions of Theorem 2 with T̄ = 0 are
satisfied for example 1. This means that the systems are stable
under asynchronous sampling whose maximal periods are given
in Table 1.

6. CONCLUSION

A novel analysis of NCS under asynchronous sampling and
input delay is provided in this article. This approach is based on
the discrete-time Lyapunov Theorem applied to the continuous-
time model of the sampled-data systems. Tractable conditions
are derived to ensure asymptotic stability. The examples show
the efficiency of the method and the reduction of the conser-
vatism compared to other results from the literature. Further
work would reduce the conservatism of the stability conditions.
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