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Introduction

In the whole paper, X is a polish (complete metric and separable) space equipped with its Borel σ-field and we denote P(X ) the set of all Borel probability measures on X .

Transport inequalities relate a cost T (ν, µ) of transporting a generic probability measure ν ∈ P(X ) onto a reference probability measure µ ∈ P(X ) with another functional J(ν|µ). A typical transport inequality is written: α(T (ν, µ)) ≤ J(ν|µ), for all ν ∈ P(X ), where α : [0, ∞) → [0, ∞) is an increasing function with α(0) = 0. In this case, it is said that the reference probability measure µ satisfies α(T ) ≤ J.

Typical transport inequalities are built with T = W p p where W p is the Wasserstein metric of order p, and J(•|µ) = H(•|µ) is the relative entropy with respect to µ. The left-hand side of α(W p p ) ≤ H contains W which is built with some metric d on X , while its right-hand side is the relative entropy H which, as Sanov's theorem indicates, is a measurement of the difficulty for a large sample of independent particles with common law µ to deviate from the prediction of the law of large numbers. On the left-hand side: a cost for displacing mass in terms of the ambient metric d; on the right-hand side: a cost for displacing mass in terms of fluctuations. Therefore, it is not a surprise that this interplay between displacement and fluctuations gives rise to a quantification of how fast µ(A r ) tends to 1 as r ≥ 0 increases, where A r := {x ∈ X ; d(x, y) ≤ r for some y ∈ A} is the enlargement of size r with respect to the metric d of the subset A ⊂ X . Indeed, we shall see that such transport-entropy inequalities are intimately related to the concentration of measure phenomenon and to deviation inequalities for average observables of samples.

Other transport inequalities are built with the Fisher information I(•|µ) instead of the relative entropy on the right-hand side. It is known since Donsker and Varadhan, see [START_REF] Donsker | Asymptotic evaluations of certain Markov process expectations for large time[END_REF][START_REF] Deuschel | Large Deviations[END_REF], that I is a measurement of the fluctuations of the occupation measure of a very long trajectory of a time-continuous Markov process with invariant ergodic law µ. Again, the transportinformation inequality α(W p p ) ≤ I allows to quantify concentration and deviation properties of µ.

Finally, there exist also free transport inequalities. They compare a transport cost with a free relative entropy which is the large deviation rate function of the spectral empirical measures of large random matrices, as was proved by Ben Arous and Guionnet [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF]. This is a survey paper about transport inequalities: a research topic which flied off in 1996 with the publications of several papers on the subject by Dembo, Marton, Talagrand and Zeitouni [START_REF] Dembo | Information inequalities and concentration of measure[END_REF][START_REF] Dembo | Transportation approach to some concentration inequalities in product spaces[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF][START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF][START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]. It was known from the end of the sixties that the total variation norm of the difference of two probability measures is controlled by their relative entropy. This is expressed by the Csiszár-Kullback-Pinsker inequality [START_REF] Pinsker | Information and information stability of random variables and processes[END_REF][START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF][START_REF] Kullback | A lower bound for discrimination information in terms of variation[END_REF] which is a transport inequality from which deviation inequalities have been derived. But the keystone of the edifice was the discovery in 1986 by Marton [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF] of the link between transport inequalities and the concentration of measure. This result was motivated by information theoretic problems; it remained unknown to the analysts and probabilists during ten years. Meanwhile, during the second part of the nineties, important progresses about the understanding of optimal transport have been achieved, opening the way to new unified proofs of several related functional inequalities, including a certain class of transport inequalities.

An overview

In order to present as soon as possible a couple of important transport inequalities and their consequences in terms of concentration of measure and deviation inequalities, let us recall precise definitions of the optimal transport cost and the relative entropy.

Optimal transport cost. Let c be a [0, ∞)-valued lower semicontinuous function on the polish product space X 2 and fix µ, ν ∈ P(X ). The Monge-Kantorovich optimal transport problem is (MK)

Minimize π ∈ P(X 2 ) → X 2 c(x, y) dπ(x, y) ∈ [0, ∞] subject to π 0 = ν, π 1 = µ where π 0 , π 1 ∈ P (X ) are the first and second marginals of π ∈ P(X 2 ). Any π ∈ P(X 2 ) such that π 0 = ν and π 1 = µ is called a coupling of ν and µ. The value of this convex minimization problem is

(1) T c (ν, µ) := inf X 2 c(x, y) dπ(x, y); π ∈ P(X 2 );

π 0 = ν, π 1 = µ ∈ [0, ∞].
It is called the optimal cost for transporting ν onto µ. Under the natural assumption that c(x, x) = 0, for all x ∈ X , we have: T c (µ, µ) = 0, and T c (ν, µ) can be interpreted as a cost for coupling ν and µ.

A popular cost function is c = d p with d a metric on X and p ≥ 1. One can prove that under some conditions W p (ν, µ) := T d p (ν, µ) 1/p defines a metric on a subset of P(X ). This is the Wasserstein metric of order p (see e.g [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chp 6]). A deeper investigation of optimal transport is presented at Section 2. It will be necessary for a better understanding of transport inequalities.

Relative entropy. The relative entropy with respect to µ ∈ P(X ) is defined by H(ν|µ) = X log dν dµ dν if ν ≪ µ +∞ otherwise , ν ∈ P(X ).

For any probability measures ν ≪ µ, one can rewrite H(ν|µ) = h(dν/dµ) dµ with h(t) = t log tt + 1 which is a strictly convex nonnegative function such that h(t) = 0 ⇔ t = 1.

0 1 t ∞ 1 | Graphic representation of h(t) = t log t -t + 1.
Hence, ν → H(ν|µ) ∈ [0, ∞] is a convex function and H(ν|µ) = 0 if and only if ν = µ.

Transport inequalities. We can now define a general class of inequalities involving transport costs.

Definition 1.1 (Transport inequalities). Besides the cost function c, consider also two functions J( • |µ) : P(X ) → [0, ∞] and α : [0, ∞) → [0, ∞) an increasing function such that α(0) = 0. One says that µ ∈ P(X ) satisfies the transport inequality α(T c ) ≤ J if (α(T c ) ≤ J) α(T c (ν, µ)) ≤ J(ν|µ), for all ν ∈ P(X ).

When J( • ) = H( • |µ), one talks about transport-entropy inequalities.

For the moment, we focus on transport-entropy inequalities, but in Section 10, we shall encounter the class of transport-information inequalities, where the functional J is the Fisher information.

Note that, because of H(µ|µ) = 0, for the transport-entropy inequality to hold true, it is necessary that α(T c (µ, µ)) = 0. A sufficient condition for the latter equality is • c(x, x) = 0, for all x ∈ X and • α(0) = 0. This will always be assumed in the remainder of this article.

Among this general family of inequalities, let us isolate the classical T 1 and T 2 inequalities. For p = 1 or p = 2, one says that µ ∈ P p := {ν ∈ P(X ); d(x o , •) p dν < ∞} satisfies the inequality T p (C), with C > 0 if (T p (C))

W 2 p (ν, µ) ≤ CH(ν|µ), for all ν ∈ P(X ).

Remark 1.2. Note that this inequality implies that µ is such that H(ν|µ) = ∞ whenever ν ∈ P p .

With the previous notation, T 1 (C) stands for the inequality C -1 T 2 d ≤ H and T 2 (C) for the inequality C -1 T d 2 ≤ H. Applying Jensen inequality, we get immediately that (2)

T 2 d (ν, µ) ≤ T d 2 (ν, µ). As a consequence, for a given metric d on X , the inequality T 1 is always weaker than the inequality T 2 .

We now present two important examples of transport-entropy inequalities: the Csiszár-Kullback-Pinsker inequality, which is a T 1 inequality and Talagrand's T 2 inequality for the Gaussian measure.

Csiszár-Kullback-Pinsker inequality. The total variation distance between two probability measures ν and µ on X is defined by

ν -µ T V = sup |ν(A) -µ(A)|,
where the supremum runs over all measurable A ⊂ X . It appears that the total variation distance is an optimal transport-cost. Namely, consider the so-called Hamming metric d H (x, y) = 1 x =y , x, y ∈ X , which assigns the value 1 if x is different from y and the value 0 otherwise. Then we have the following result whose proof can be found in e.g [START_REF] Massart | Concentration inequalities and model selection[END_REF]Lemma 2.20].

Proposition 1.3. For all ν, µ ∈ P(X ), T d H (ν, µ) = νµ T V .

The following theorem gives the celebrated Csiszár-Kullback-Pinsker inequality (see [START_REF] Pinsker | Information and information stability of random variables and processes[END_REF][START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF][START_REF] Kullback | A lower bound for discrimination information in terms of variation[END_REF]).

Theorem 1.4. The inequality

ν -µ 2 T V ≤ 1 2 H(ν|µ),
holds for all probability measures µ, ν on X .

In other words, any probability µ on X enjoy the inequality T 1 (1/2) with respect to the Hamming distance d H on X .

Proof. The following proof is taken from [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Remark 22.12] and is attributed to Talagrand. Suppose that H(ν|µ) < +∞ (otherwise there is nothing to prove) and let f = dν dµ and u = f -1. By definition and since u dµ = 0,

H(ν|µ) = X f log f dµ = X (1 + u) log(1 + u) -u dµ.
The function ϕ(t) = (1 + t) log(1 + t)t, verifies ϕ ′ (t) = log(1 + t) and ϕ ′′ (t) = 1 1+t , t > -1. So, using a Taylor expansion,

ϕ(t) = t 0 (t -x)ϕ ′′ (x) dx = t 2 1 0 1 -s 1 + st ds, t > -1.
So,

H(ν|µ) = X ×[0,1]
u 2 (x)(1s) 1 + su(x) ds dµ(x).

According to Cauchy-Schwarz inequality,

X ×[0,1] |u|(x)(1 -s) dµ(x)ds 2 ≤ X ×[0,1] u(x) 2 (1 -s) 1 + su(x) dµ(x)ds • X ×[0,1]
(1s)(1 + su(x)) dµ(x)ds = H(ν|µ) 2 .

Since νµ T V = 1 2 |1f | dµ, the left-hand side equals νµ 2 T V and this completes the proof.

Talagrand's transport inequality for the Gaussian measure. In [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF], Talagrand proved the following transport inequality T 2 for the standard Gaussian measure γ on R equipped with the standard distance d(x, y) = |x -y|.

Theorem 1.5. The standard Gaussian measure γ on R verifies

(3)
W 2 2 (ν, γ) ≤ 2H(ν|γ), for all ν ∈ P(R).

This inequality is sharp. Indeed, taking ν to be a translation of γ, that is a normal law with unit variance, we easily check that equality holds true.

The following notation will appear frequently in the sequel: if T : X → X is a measurable map, and µ is a probability measure on X , the image of µ under T is the probability measure denoted by T # µ and defined by [START_REF] Bakry | Diffusions hypercontractives[END_REF] T # µ(A) = µ T -1 (A) , for all Borel set A ⊂ X .

Proof. In the following lines, we present the short and elegant proof of (3), as it appeared in [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF]. Let us consider a reference measure dµ(x) = e -V (x) dx.

We shall specify later to the Gaussian case, where the potential V is given by V (x) = x 2 /2 + log(2π)/2, x ∈ R. Let ν be another probability measure on R. It is known since Fréchet that any measurable map y = T (x) which verifies the equation ( 5) ν((-∞, T (x)]) = µ((-∞, x]), x ∈ R is a coupling of ν and µ, i.e. such that ν = T # µ, which minimizes the average squared distance (or equivalently: which maximizes the correlation), see [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] below for a proof of this statement. Such a transport map is called a monotone rearrangement. Clearly T is increasing, and assuming from now on that ν = f µ is absolutely continuous with respect to µ, one sees that T is Lebesgue almost everywhere differentiable with T ′ > 0. Equation [START_REF] Barthe | Inégalités fonctionnelles et géométriques obtenues par transport de mesures[END_REF] becomes for all real x, T

-∞ f (z)e -V (z) dz =

x -∞ e -V (z) dz. Differentiating, one obtains (6)

T ′ (x)f (T (x))e -V (T (x)) = e -V (x) , x ∈ R.

The relative entropy writes: H(ν|µ) = log(f ) dν = log(f (T (x)) dµ since ν = T # µ. Extracting f (T (x)) from [START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF] and plugging it into this identity, we obtain H(ν|µ) = [V (T (x)) -V (x)log T ′ (x)] e -V (x) dx.

On the other hand, we have (T (x)x)V ′ (x)e -V (x) dx = (T ′ (x) -1)e -V (x) dx as a result of an integration by parts. Therefore,

H(ν|µ) = V (T (x)) -V (x) -V ′ (x)[T (x) -x] dµ(x) + (T ′ (x) -1 -log T ′ (x)) dµ(x). ≥ V (T (x)) -V (x) -V ′ (x)[T (x) -x] dµ(x) (7) 
where we took advantage of b -1log b ≥ 0 for all b > 0, at the last inequality. Of course, the last integral is nonnegative if V is assumed to be convex.

Considering the Gaussian potential V (x) = x 2 /2 + log(2π)/2, x ∈ R, we have shown that

H(ν|γ) ≥ R (T (x) -x) 2 /2 dγ(x) ≥ W 2 2 (ν, γ)/2
for all ν ∈ P(R), which is [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF].

Concentration of measure. If d is a metric on X , for any r ≥ 0, one defines the rneighborhood of the set A ⊂ X by A r := {x ∈ X ; d(x, A) ≤ r}, r ≥ 0, where d(x, A) := inf y∈A d(x, y) is the distance of x from A.

Let β : [0, ∞) → R + such that β(r) → 0 when r → ∞; it is said that the probability measure µ verifies the concentration inequality with profile β if µ(A r ) ≥ 1β(r), r ≥ 0, for all measurable A ⊂ X , with µ(A) ≥ 1/2.

According to the following classical proposition, the concentration of measure (with respect to metric enlargement) can be alternatively described in terms of deviations of Lipschitz functions from their median. Proposition 1.6. Let (X , d) be a metric space, µ ∈ P(X ) and β : [0, ∞) → [0, 1]; the following propositions are equivalent [START_REF] Anderson | An Introduction to Random Matrices[END_REF] The probability µ verifies the concentration inequality µ(A r ) ≥ 1β(r), r ≥ 0, for all A ⊂ X , with µ(A) ≥ 1/2.

(2) For all 1-Lipschitz function f : X → R, µ(f > m f + r) ≤ β(r), r ≥ 0, where m f denotes a median of f . Proof. (1) ⇒ (2). Let f be a 1-Lipschitz function and define A = {f ≤ m f }. Then it is easy to check that A r ⊂ {f ≤ m f +r}. Since µ(A) ≥ 1/2, one has µ(f ≤ m f +r) ≥ µ(A r ) ≥ 1-β(r), for all r ≥ 0.

(2) ⇒ (1). For all A ⊂ X , the function f A : x → d(x, A) is 1-Lipschitz. If µ(A) ≥ 1/2, then 0 is a median of f A . Since A r = {f A ≤ r}, one has µ(A r ) ≥ 1 -µ{f A > r} ≥ 1β(r), r ≥ 0.

Applying the deviation inequality to ±f , we arrive at

µ(|f -m f | < r) ≤ 2β(r), r ≥ 0.
In other words, Lipschitz functions are, with a high probability, concentrated around their median, when the concentration profile β decreases rapidly to zero. In the above proposition, the median can be replaced by the mean µ(f ) of f (see e.g. [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF]): [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF] µ(f > µ(f ) + r) ≤ β(r), r ≥ 0.

The following theorem explains how to derive concentration inequalities (with profiles decreasing exponentially fast) from transport-entropy inequalities of the form α (T d ) ≤ H, where the cost function c is the metric d. The argument used in the proof is due to Marton [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF] and is referred as "Marton's argument" in the literature.

Theorem 1.7. Let α : R + → R + be a bijection and suppose that µ ∈ P(X ) verifies the transport-entropy inequality α (T d ) ≤ H. Then, for all measurable A ⊂ X with µ(A) ≥ 1/2, the following concentration inequality holds µ(A r ) ≥ 1e -α(r-ro) , r ≥ r o := α -1 (log 2), where A r is the enlargement of A for the metric d which is defined above.

Equivalently, for all 1-Lipschitz f : X → R, the following inequality holds

µ(f > m f + r + r o ) ≤ e -α(r) , r ≥ 0.
Proof. Take A ⊂ X , with µ(A) ≥ 1/2 and set B = X \ A r . Consider the probability measures dµ A (x) = 1 µ(A) 1 A (x) dµ(x) and dµ B (x) = 1 µ(B) 1 B (x) dµ(x). Obviously, if x ∈ A and y ∈ B, then d(x, y) ≥ r. Consequently, if π is a coupling between µ A and µ B , then d(x, y) dπ(x, y) ≥ r and so T d (µ A , µ B ) ≥ r. Now, using the triangle inequality and the transport-entropy inequality we get

r ≤ T d (µ A , µ B ) ≤ T d (µ A , µ) + T d (µ B , µ) ≤ α -1 (H(µ A |µ)) + α -1 (H(µ B |µ)) .

It is easy to check that H(µ

A |µ) = -log µ(A) ≤ log 2 and H(µ B |µ) = -log(1 -µ(A r )). It follows immediately that µ(A r ) ≥ 1 -e -α(r-ro) , for all r ≥ r o := α -1 (log 2).
If µ verifies T 2 (C), by (2) it also verifies T 1 (C) and one can apply Theorem 1.7. Therefore, it appears that if µ verifies T 1 (C) or T 2 (C), then it concentrates like a Gaussian measure:

µ(A r ) ≥ 1 -e -(r-ro) 2 /C , r ≥ r o = C log(2).
At this stage, the difference between T 1 and T 2 is invisible. It will appear clearly in the next paragraph devoted to tensorization of transport-entropy inequalities.

Tensorization. A central question in the field of concentration of measure is to obtain concentration estimates not only for µ but for the entire family {µ n ; n ≥ 1} where µ n denotes the product probability measure µ ⊗ • • • ⊗ µ on X n . To exploit transport-entropy inequalities, one has to know how they tensorize. This will be investigated in details in Section 4. Let us give in this introductory section, an insight on this important question.

It is enough to understand what happens with the product X 1 × X 2 of two spaces. Indeed, it will be clear in a moment that the extension to the product of n spaces will follow by induction.

Let µ 1 , µ 2 be two probability measures on two polish spaces X 1 , X 2 , respectively. Consider two cost functions c 1 (x 1 , y 1 ) and c 2 (x 2 , y 2 ) defined on X 1 × X 1 and X 2 × X 2 ; they give rise to the optimal transport cost functions T c 1 (ν 1 , µ 1 ), ν 1 ∈ P(X 1 ) and T c 2 (ν 2 , µ 2 ), ν 2 ∈ P(X 2 ). On the product space X 1 × X 2 , we now consider the product measure µ 1 ⊗ µ 2 and the cost function

c 1 ⊕ c 2 (x 1 , y 1 ), (x 2 , y 2 ) := c 1 (x 1 , y 1 ) + c 2 (x 2 , y 2 ), x 1 , y 1 ∈ X 1 , x 2 , y 2 ∈ X 2
which give rise to the tensorized optimal transport cost function

T c 1 ⊕c 2 (ν, µ 1 ⊗ µ 2 ), ν ∈ P(X 1 × X 2 ). A fundamental example is X 1 = X 2 = R k with c 1 (x, y) = c 2 (x, y) = |y -x| 2
2 : the Euclidean metric on R k tensorizes as the squared Euclidean metric on R 2k .

For any probability measure ν on the product space X 1 ×X 2 , let us write the disintegration of ν (conditional expectation) with respect to the first coordinate as follows: [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] dν(x 1 , x 2 ) = dν 1 (x 1 )dν x 1 2 (x 2 ). As was suggested by Marton [START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF] and Talagrand [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF], it is possible to prove the intuitively clear following assertion:

(10) T c 1 ⊕c 2 (ν, µ 1 ⊗ µ 2 ) ≤ T c 1 (ν 1 , µ 1 ) + X 1 T c 2 (ν x 1 2 , µ 2 ) dν 1 (x 1 ).
We give a detailed proof of this claim at the Appendix, Proposition A.1.

On the other hand, it is well-known that the fundamental property of the logarithm together with the product form of the disintegration formula (9) yield the analogous tensorization property of the relative entropy:

(11) H(ν|µ 1 ⊗ µ 2 ) = H(ν 1 |µ 1 ) + X 1 H(ν x 1 2 |µ 2 ) dν 1 (x 1 ).
Recall that the inf-convolution of two functions α 1 and α 2 on [0, ∞) is defined by

α 1 α 2 (t) := inf{α 1 (t 1 ) + α 2 (t 2 ); t 1 , t 2 ≥ 0 : t 1 + t 2 = t}, t ≥ 0.
Proposition 1.8. Suppose that the transport-entropy inequalities

α 1 (T c 1 (ν 1 , µ 1 )) ≤ H(ν 1 |µ 1 ), ν 1 ∈ P(X 1 ) α 2 (T c 2 (ν 2 , µ 2 )) ≤ H(ν 2 |µ 2 ), ν 2 ∈ P(X 2 ) hold with α 1 , α 2 : [0, ∞) → [0, ∞) convex increasing functions. Then, on the product space X 1 × X 2 , we have α 1 α 2 T c 1 ⊕c 2 (ν, µ 1 ⊗ µ 2 ) ≤ H(ν|µ 1 ⊗ µ 2 ),
for all ν ∈ P(X 1 × X 2 ).

Proof. For all ν ∈ P(X 1 × X 2 ),

α 1 α 2 (T c 1 ⊕c 2 (ν, µ 1 ⊗ µ 2 )) (a) ≤ α 1 α 2 T c 1 (ν 1 , µ 1 ) + X 1 T c 2 (ν x 1 2 µ 2 ) dν 1 (x 1 ) (b) ≤ α 1 (T c 1 (ν 1 , µ 1 )) + α 2 X 1 T c 2 (ν x 1 2 , µ 2 ) dν 1 (x 1 ) (c) ≤ α 1 (T c 1 (ν 1 , µ 1 )) + X 1 α 2 T c 2 (ν x 1 2 , µ 2 ) dν 1 (x 1 ) (d) ≤ H(ν 1 |µ 1 ) + X 1 H(ν x 1 2 |µ 2 ) dν 1 (x 1 ) = H(ν|µ 1 ⊗ µ 2 ).
Inequality (a) is verified thanks to (10) since α 1 α 2 is increasing, (b) follows from the very definition of the inf-convolution, (c) follows from Jensen inequality since α 2 is convex, (d) follows from the assumed transport-entropy inequalities and the last equality is [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF].

Obviously, it follows by an induction argument on the dimension n that, if µ verifies α(T c ) ≤ H, then µ n verifies α n (T c ⊕n ) ≤ H where as a definition

c ⊕n (x 1 , y 1 ), . . . , (x n , y n ) := n i=1 c(x i , y i ).
Since α n (t) = nα(t/n) for all t ≥ 0, we have proved the next proposition. Proposition 1.9. Suppose that µ ∈ P(X ) verifies the transport-entropy inequality α(T c ) ≤ H with α : [0, ∞) → [0, ∞) a convex increasing function. Then, µ n ∈ P(X n ) verifies the transport-entropy inequality

nα T c ⊕n (ν, µ n ) n ≤ H(ν|µ n ),
for all ν ∈ P(X n ).

We also give at the end of Section 3 an alternative proof of this result which is based on a duality argument. The general statements of Propositions 1.8 and 1.9 appeared in the authors' paper [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF].

In particular, when α is linear, one observes that the inequality α(T c ) ≤ H tensorizes independently of the dimension. This is for example the case for the inequality T 2 . So, using the one dimensional T 2 verified by the standard Gaussian measure γ together with the above tensorization property, we conclude that for all positive integer n, the standard Gaussian measure γ n on R n verifies the inequality T 2 (2). Now let us compare the concentration properties of product measures derived from T 1 or T 2 . Let d be a metric on X , and let us consider the ℓ 1 and ℓ 2 product metrics associated to the metric d:

d 1 (x, y) = n i=1 d(x i , y i ) and d 2 (x, y) = n i=1 d 2 (x i , y i ) 1/2 , x, y ∈ X n .
The distance d 1 and d 2 are related by the following obvious inequality

1 √ n d 1 (x, y) ≤ d 2 (x, y) ≤ d 1 (x, y), x, y ∈ X n .
If µ verifies T 1 on X , then according to Proposition 1.9, µ n verifies the inequality T 1 (nC) on the space X n equipped with the metric d 1 . It follows from Marton's concentration Theorem 1.7, that [START_REF] Beiglböck | Duality for Borel measurable cost functions[END_REF] µ n (f

> m f + r + r o ) ≤ e -r 2 nC , r ≥ r o = nC log(2),
for all function f which is 1-Lipschitz with respect to d 1 . So the constants appearing in the concentration inequality are getting worse and worse when the dimension increases.

On the other hand, if µ verifies T 2 (C), then according to Proposition 1.9, µ n verifies the inequality T 2 (C) on the space X n equipped with d 2 . Thanks to Jensen inequality µ n also verifies the inequality T 1 (C) on (X n , d 2 ), and so [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF] µ n (g

> m g + r + r o ) ≤ e -r 2 C , r ≥ r o = C log(2),
for all function g which is 1-Lipschitz with respect to d 2 . This time, one observes that the concentration profile does not depend on the dimension n. This phenomenon is called (Gaussian) dimension-free concentration of measure. For instance, if µ = γ is the standard Gaussian measure, we thus obtain

(14) γ n (f > m f + r + r o ) ≥ 1 -e -r 2 /2 , r ≥ r o := 2 log 2
for all function f which is 1-Lipschitz for the Euclidean distance on R n . This result is very near the optimal concentration profile obtained by an isoperimetric method, see [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF]. In fact the Gaussian dimension-free property [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF] is intrinsically related to the inequality T 2 . Indeed, a recent result of Gozlan [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF] presented in Section 5 shows that Gaussian dimension concentration holds if and only if the reference measure µ verifies T 2 (see Theorem 5.4 and Corollary 5.5).

Since a 1-Lipschitz function f for d 1 is √ n-Lipschitz for d 2 , it is clear that [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF] gives back [START_REF] Beiglböck | Duality for Borel measurable cost functions[END_REF], when applied to g = f / √ n. On the other hand, a 1-Lipschitz function g for d 2 is also 1-Lipschitz for d 1 , and its is clear that for such a function g the inequality ( 13) is much better than [START_REF] Beiglböck | Duality for Borel measurable cost functions[END_REF] applied to f = g. So, we see from this considerations that T 2 is a much stronger property than T 1 . We refer to [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] or [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF][START_REF] Talagrand | new look at independence[END_REF], for examples of applications where the independence on n in concentration inequalities plays a decisive role.

Nevertheless, dependence on n in concentration is not always something to fight against, as shown in the following example of deviation inequalities. Indeed, suppose that µ verifies the inequality α (T d ) ≤ H, then for all positive integer n,

µ n f ≥ f dµ n + t ≤ e -nα(t/n) , t ≥ 0,
for all f 1-Lipschitz for d 1 (see Corollary 5.3). In particular, choose f (x) = u(x 1 )+• • •+u(x n ), with u a 1-Lipschitz function for d; then f is 1-Lipschitz for d 1 , and so if X i is an i.i.d sequence of law µ, we easily arrive at the following deviation inequality

P 1 n n i=1 u(X i ) ≥ E[u(X 1 )] + t ≤ e -nα(t) , t ≥ 0.
This inequality presents the right dependence on n. Namely, according to Cramér theorem (see [START_REF] Dembo | Large deviations techniques and applications[END_REF]) this probability behaves like e -nΛ * u (t) when n is large, where Λ * u is the Cramér transform of u(X 1 ). The reader can look at [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] for more information on this subject. Let us mention that this family of deviation inequalities characterize the inequality α(T d ) ≤ H (see Theorem 5.2 and Corollary 5.3).

Optimal transport

Optimal transport is an active field of research. The recent textbooks by Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] make a very good account on the subject. Here, we recall basic results which will be necessary to understand transport inequalities. But the interplay between optimal transport and functional inequalities in general is wider than what will be exposed below, see [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] for instance.

Let us make our underlying assumptions precise. The cost function c is assumed to be a lower semicontinuous [0, ∞)-valued function on the product X 2 of the polish space X . The Monge-Kantorovich problem with cost function c and marginals ν, µ in P(X ), as well as its optimal value T c (ν, µ) were stated at (MK) and (1) in Section 1.

Proposition 2.1. The Monge-Kantorovich problem (MK) admits a solution if and only if

T c (ν, µ) < ∞.
Outline of the proof. The main ingredients of the proof of this proposition are

• the compactness with respect to the narrow topology of {π ∈ P(X 2 ); π 0 = ν, π 1 = µ} which is inherited from the tightness of ν and µ and • the lower semicontinuity of π → X 2 c dπ which is inherited from the lower semicontinuity of c.

The polish assumption on X is invoked at the first item.

The minimizers of (MK) are called optimal transport plans, they are not unique in general since (MK) is not a strictly convex problem: it is an infinite dimensional linear programming problem.

If d is a lower semicontinuous metric on X (possibly different from the metric which turns X into a polish space), one can consider the cost function c = d p with p ≥ 1. One can prove that W p (ν, µ) := T d p (ν, µ) 1/p defines a metric on the set P d p (X ) (or P p for short) of all probability measures which integrate d p (x o , • ): it is the so-called Wasserstein metric of order p. Since T d p (ν, µ) < ∞ for all ν, µ in P p , Proposition 2.1 tells us that the corresponding problem (MK) is attained in P p .

Kantorovich dual equality. In the perspective of transport inequalities, the keystone is the following result. Let C b (X ) be the space of all continuous bounded functions on X and denote u ⊕ v(x, y) = u(x) + v(y), x, y ∈ X . Theorem 2.2 (Kantorovich dual equality). For all µ and ν in P(X ), we have

T c (ν, µ) = sup X u(x) dν(x) + X v(y) dµ(y); u, v ∈ C b (X ), u ⊕ v ≤ c (15) = sup X u(x) dν(x) + X v(y) dµ(y); u ∈ L 1 (ν), v ∈ L 1 (µ), u ⊕ v ≤ c . ( 16 
)
Note that for all π such that π 0 = ν, π 1 = µ and (u, v) such that u ⊕ v ≤ c, we have

X u dν + X v dµ = X 2 u ⊕ v dπ ≤ X 2 c dπ. Optimizing both sides of this inequality leads us to sup X u dν + X v dµ; u ∈ L 1 (ν), v ∈ L 1 (µ), u ⊕ v ≤ c ≤ inf X 2 c dπ; π ∈ P(X 2 ); π 0 = ν, π 1 = µ (17)
and Theorem 2.2 appears to be a no dual gap result.

The following is a sketch of proof which is borrowed from Léonard's paper [START_REF] Léonard | A saddle-point approach to the Monge-Kantorovich optimal transport problem[END_REF].

Outline of the proof of Theorem 2.2. For a detailed proof, see [START_REF] Léonard | A saddle-point approach to the Monge-Kantorovich optimal transport problem[END_REF]Thm 2.1]. Denote M(X 2 ) the space of all signed measures on X 2 and

ι {x∈A} = 0 if x ∈ A +∞ otherwise . Consider the (-∞, +∞]-valued function K(π, (u, v)) = X u dν + X v dµ- X 2 u⊕v dπ + X 2 c dπ +ι {π≥0} , π ∈ M(X 2 ), u, v ∈ C b (X ).
For each fixed (u, v), it is a convex function of π and for each fixed π, it is a concave function of (u, v). In other words, K is a convex-concave function and one can expect that it admits a saddle value, i.e. [START_REF] Bobkov | Isoperimetric constants for product probability measures[END_REF] inf

π∈M(X 2 ) sup u,v∈C b (X ) K(π, (u, v)) = sup u,v∈C b (X ) inf π∈M(X 2 ) K(π, (u, v)).
The detailed proof amounts to check that standard assumptions for this min-max result hold true for (u, v) as in [START_REF] Biane | A free probability analogue of the Wasserstein metric on the trace-state space[END_REF]. We are going to show that ( 18) is the desired equality [START_REF] Biane | A free probability analogue of the Wasserstein metric on the trace-state space[END_REF]. Indeed, for fixed π,

sup (u,v) K(π, (u, v)) = X 2 c dπ + ι {π≥0} + sup (u,v) X u dν + X v dµ - X 2 u ⊕ v dπ = X 2 c dπ + ι {π≥0} + sup (u,v) X u d(ν -π 0 ) + X v d(µ -π 1 ) = X 2 c dπ + ι {π 0 =ν,π 1 =µ}
and for fixed (u, v),

inf π K(π, (u, v)) = X u dν + X v dµ + inf π≥0 X 2 (c -u ⊕ v) dπ = X u dν + X v dµ -ι {u⊕v≤c} .
Once ( 15) is obtained, [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] follows immediately from [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] and the following obvious inequality: sup

u,v∈C b (X ),u⊕v≤c ≤ sup u∈L 1 (ν),v∈L 1 (µ),u⊕v≤c
.

Let u and v be measurable functions on X such that u ⊕ v ≤ c. The family of inequalities v(y) ≤ c(x, y)-u(x), for all x, y is equivalent to v(y) ≤ inf x {c(x, y)-u(x)} for all y. Therefore, the function

u c (y) := inf x∈X {c(x, y) -u(x)}, y ∈ X satisfies u c ≥ v and u ⊕ u c ≤ c. As J(u, v) := X u dν + X v dµ is an increasing function of its arguments u and v, in view of maximizing J on the set {(u, v) ∈ L 1 (ν) × L 1 (µ) : u ⊕ v ≤ c}, the couple (u, u c
) is better than (u, v). Performing this trick once again, we see that with v c (x) := inf y∈X {c(x, y)v(y)}, x ∈ X , the couple (u cc , u c ) is better than (u, u c ) and (u, v).

We have obtained the following result.

Lemma 2.3. Let u and v be functions on X such that u(x) + v(y) ≤ c(x, y) for all x, y.

Then, u c and u cc also satisfy u cc ≥ u, u c ≥ v and u cc (x) + u c (y) ≤ c(x, y) for all x, y. Recall that whenever A and B are two vector spaces linked by the duality bracket a, b , the convex conjugate of the function f : A → (-∞, ∞] is defined by

Iterating
f * (b) := sup a∈A { a, b -f (a)} ∈ (-∞, ∞], b ∈ B.
Clearly, the definition of u c is reminiscent of that of f * . Indeed, with the quadratic cost function

c 2 (x, y) = |y -x| 2 /2 = |x| 2 2 + |y| 2 2 -x•y on R k , one obtains (19) | • | 2 2 -u c 2 = | • | 2 2 -u * .
It is worth recalling basic facts about convex conjugates for we shall use them several times later. Being the supremum of a family of affine continuous functions, f * is convex and σ(B, A)-lower semicontinuous. Defining

f * * (a) = sup b∈B { a, b -f * (b)} ∈ (-∞, ∞], a ∈ A, one knows that f * * = f if and only if f is a lower semicontinuous convex function. It is a trivial remark that (20) a, b ≤ f (a) + f * (b), (a, b) ∈ A × B.
The case of equality (Fenchel's identity) is of special interest, we have

(21) a, b = f (a) + f * (b) ⇔ b ∈ ∂f (a) ⇔ a ∈ ∂f * (b)
whenever f is convex and σ(A, B)-lower semicontinuous. Here, ∂f (a) := {b ∈ B; f (a + h) ≥ f (a) + h, b , ∀h ∈ A} stands for the subdifferential of f at a.

Metric cost.

The cost function to be considered is c(x, y) = d(x, y): a lower semicontinuous metric on X which might be different from the original polish metric on X .

Remark 2.5. In the sequel, the Lipschitz functions are to be considered with respect to the metric cost d and not with respect to the underlying metric on the polish space X which is here to generate the Borel σ-field, specify the continuous, lower semicontinuous or Borel functions. Indeed, we have in mind to work sometimes with trivial metric costs (weighted Hamming's metrics) which are lower semicontinuous with respect to any reasonable nontrivial metric but generate a too rich Borel σ-field. As a consequence a d-Lipschitz function might not be Borel measurable.

One writes that u is d-Lipschitz(1) to specify that |u(x)u(y)| ≤ d(x, y) for all x, y ∈ X . Denote P 1 := {ν ∈ P(X ); X d(x o , x) dν(x)} where x o is any fixed element in X . With the triangle inequality, one sees that P 1 doesn't depend on the choice of x o . Let us denote the Lipschitz seminorm u Lip := sup x =y |u(y)-u(x)| d(x,y) . Its dual norm is for all µ, ν in P 1 , ν -µ * Lip = sup X u(x) [νµ](dx); u measurable, u Lip ≤ 1 . As it is assumed that µ, ν ∈ P 1 , note that any measurable d-Lipschitz function is integrable with respect to µ and ν.

Theorem 2.6 (Kantorovich-Rubinstein). For all µ, ν ∈

P 1 , W 1 (ν, µ) = ν -µ * Lip .
Proof. For all measurable d-Lipschitz(1) function u and all π such that π 0 = ν and π 1 = µ,

X u(x) [ν -µ](dx) = X 2 (u(x) -u(y)) dπ(x, y) ≤ X 2 d(x, y) dπ(x, y). Optimizing in u and π one obtains ν -µ * Lip ≤ W 1 (ν, µ).
Let us look at the reverse inequality. Claim. For any function u on X , (i) u d is d-Lipschitz(1) and (ii)

u dd = -u d . Let us prove (i). Since y → d(x, y) is d-Lipschitz(1), y → u d (y) = inf x {d(x, y) -u(x)} is also d-Lipschitz(1)
as an infinum of d-Lipschitz(1) functions. Let us prove (ii). Hence for all x, y, u d (y)u d (x) ≤ d(x, y). But this implies that for all y, -u d (x) ≤ d(x, y)u d (y). Optimizing in y leads to -u d (x) ≤ u dd (x). On the other hand, u dd (x) = inf y {d(x, y)u d (y)} ≤ -u d (x) where the last inequality is obtained by taking y = x.

With Theorem 2.2, Lemma 2.3 and the above claim, we obtain that

W 1 (ν, µ) = sup (u,v) X u dν + X v dµ = sup u X u dd dν + X u d dµ ≤ sup X u d[ν -µ]; u : u Lip ≤ 1 = ν -µ * Lip .
which completes the proof of the theorem.

For interesting consequences in probability theory, one can look at Dudley's textbook [START_REF] Dudley | Real Analysis and Probability, volume 74 of Cambridge studies in advanced mathematics[END_REF]Chp. 11].

Optimal plans. What about the optimal plans? If one applies formally the Karush-Kuhn-Tucker characterization of the saddle point of the Lagrangian function K in the proof of Theorem 2.2, one obtains that π is an optimal transport plan if and only if 0 ∈ ∂ π K(π, (û, v)) for some couple of functions (û, v) such that 0 ∈ ∂ (u,v) K(π, (û, v)) where ∂ π K stands for the subdifferential of the convex function π → K(π, (û, v)) and ∂ (u,v) K for the superdifferential of the concave function (u, v) → K(π, (u, v)). This gives us the system of equations

û ⊕ v -c ∈ ∂(ι M + )(π) (π 0 , π1 ) = (ν, µ)
where M + is the cone of all positive measures on X 2 . Such a couple (û, v) is called a dual optimizer. The second equation expresses the marginal constraints of (MK) while by [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF] one can recast the first one as the Fenchel identity û

⊕ v -c, π = ι * M + (û ⊕ v -c) + ι M + (π). Since for any function h, ι * M + (h) = sup π∈M + h, π = ι {h≤0} , one sees that û ⊕ v -c, π = 0 with û ⊕ v -c ≤ 0 and π ≥ 0 which is equivalent to π ≥ 0, û ⊕ v ≤ c
everywhere and û ⊕ v = c, π-almost everywhere. As π0 = ν has a unit mass, so has the positive measure π : it is a probability measure. These formal considerations should prepare the reader to trust the subsequent rigorous statement.

Theorem 2.7. Assume that T c (ν, µ) < ∞. Any π ∈ P(X 2 ) with the prescribed marginals π 0 = ν and π 1 = µ is an optimal plan if and only if there exist two measurable functions

u, v : X → [-∞, ∞) such that u ⊕ v ≤ c, everywhere u ⊕ v = c, π-almost everywhere.
This theorem can be found in [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Thm. 5.10] with a proof which has almost nothing in common with the saddle-point strategy that has been described above.

An important instance of this result is the special case of the quadratic cost.

Corollary 2.8. Let us consider the quadratic cost c 2 (x, y) = |y -x| 2 /2 on X = R k and take two probability measures ν and µ in P 2 (X ).

(a) There exists an optimal transport plan. (b) Any π ∈ P(X 2 ) is optimal if and only if there exists a convex lower semicontinuous function φ : X → (-∞, ∞] such that the Fenchel identity φ(x) + φ * (y) = x•y holds true π-almost everywhere.

Proof. Proof of (a). Since |y -x| 2 /2 ≤ |x| 2 + |y| 2 and ν, µ ∈ P 2 , any π ∈ P(X 2 ) such that π 0 = ν and π 1 = µ satisfies X 2 c dπ ≤ X |x| 2 dν(x) + X |y| 2 dµ(y) < ∞. Therefore T (ν, µ) = W 2 2 (ν, µ) < ∞, and one concludes with Proposition 2.1. Proof of (b). In view of Lemma 2.3, one sees that an optimal dual optimizer is necessarily of the form (u cc , u c ). Theorem 2.7 tells us that π is optimal if and only there exists some function u such that u cc ⊕ u c = c, π-almost everywhere. With [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF], by considering the functions φ(x) = |x| 2 /2u c 2 c 2 (x) and ψ(y) = |y| 2 /2u c 2 (y), one also obtains φ = ψ * and ψ = φ * , which means that φ and ψ are convex conjugate to each other and in particular that φ is convex and lower semicontinuous.

By [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF], another equivalent statement for the Fenchel identity φ(x) + φ * (y) = x•y is [START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF] y ∈ ∂φ(x).

In the special case of the real line X = R, a popular coupling of ν and µ = T # ν is given by the so-called monotone rearrangement. It is defined by -∞, y]) are the distribution functions of ν and µ, and

(23) y = T (x) := F -1 µ • F ν (x), x ∈ R, where F ν (x) = ν((-∞, x]), F µ (y) = µ((
F -1 µ (u) = inf{y ∈ R; F µ (y) > u}, u ∈ [0, 1]
is the generalized inverse of F µ . When X = R, the identity [START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF] simply states that (x, y) belongs to the graph of an increasing function. Of course, this is the case of [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF]. Hence Corollary 2.8 tells us that the monotone rearrangement is an optimal transport map for the quadratic cost.

Let us go back to X = R k . If φ is Gâteaux differentiable at x, then ∂φ(x) is restricted to a single element: the gradient ∇φ(x), and ( 22) simply becomes y = ∇φ(x). Hence, if φ were differentiable everywhere, condition (b) of Corollary 2.8 would be y = ∇φ(x), π-almost everywhere. But this is too much demanding. Nevertheless, Rademacher's theorem states that a convex function on R k is differentiable Lebesgue almost everywhere on its effective domain. This allows to derive the following improvement. Theorem 2.9 (Quadratic cost on X = R k ). Let us consider the quadratic cost c 2 (x, y) = |y-x| 2 /2 on X = R k and take two probability measures ν and µ in P 2 (X ) which are absolutely continuous. Then, there exists a unique optimal plan. Moreover, π ∈ P(X 2 ) is optimal if and only if π 0 = ν, π 1 = µ and there exists a convex function φ such that

y = ∇φ(x) x = ∇φ * (y)
, π-almost everywhere.

Proof. It follows from Rademacher's theorem that, if ν is an absolutely continuous measure, φ is differentiable ν-almost everywhere. This and Corollary 2.8 prove the statement about the characterization of the optimal plans. Note that the quadratic transport is symmetric with respect to x an y, so that one obtains the same conclusion if µ is absolutely continuous; namely x = ∇φ * (y), π-almost everywhere, see [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF].

We have just proved that, under our assumptions, an optimal plan is concentrated on a functional graph. The uniqueness of the optimal plan follows directly from this. Indeed, if one has two optimal plans π 0 and π 1 , by convexity their half sum π 1/2 is still optimal. But for π 1/2 to be concentrated on a functional graph, it is necessary that π 0 and π 1 share the same graph.

For more details, one can have a look at [START_REF] Villani | Topics in Optimal Transportation[END_REF]Thm. 2.12]. The existence result has been obtained by Knott and Smith [63], while the uniqueness is due to Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and McCann [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF]. The application y = ∇φ(x) is often called the Brenier map pushing forward ν to µ.

Dual equalities and inequalities

In this section, we present Bobkov and Götze dual approach to transport-entropy inequalities [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]. More precisely, we are going to take advantage of variational formulas for the optimal transport cost and for the relative entropy to give another formulation of transportentropy inequalities. The relevant variational formula for the transport cost is given by the Kantorovich dual equality at Theorem 2.2

T c (ν, µ) = sup u dν + v dµ; u, v ∈ C b (X ), u ⊕ v ≤ c . ( 24 
)
On the other hand, the relative entropy admits the following variational representations. For all ν ∈ P(X ),

H(ν|µ) = sup u dν -log e u dµ; u ∈ C b (X ) . = sup u dν -log e u dµ; u ∈ B b (X ) (25) 
and for all ν ∈ P(X ) such that ν ≪ µ,

H(ν|µ) = sup u dν -log e u dµ; u : measurable, e u dµ < ∞, u -dν < ∞ (26) 
where u -= (-u) ∨ 0 and u dν ∈ (-∞, ∞] is well-defined for all u such that u -dν < ∞.

The identities [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF] are well-known, but the proof of ( 26) is more confidential. This is the reason why we give their detailed proofs at the Appendix, Proposition B.1.

As regards Remark 1.2, a sufficient condition for µ to satisfy H(ν|µ) = ∞ whenever ν ∈ P p is [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian-type inequalities[END_REF] e sod p (xo,x) dµ(x) < ∞ for some x o ∈ X and s o > 0. Indeed, by [START_REF] Cattiaux | A note on Talagrand transportation inequality and logarithmic Sobolev inequality[END_REF], for all ν ∈ P(X ), s o d p (x o , x) dν(x) ≤ H(ν|µ) + log e sod p (xo,x) dµ(x). On the other hand, Proposition 6.1 below tells us that ( 27) is also a necessary condition.

Since u → Λ(u) := log e u dµ is convex (use Hölder inequality to show it) and lower semicontinuous on C b (X ) (resp. B b (X )) (use Fatou's lemma), one observes that H( • |µ) (more precisely its extension to the vector space of signed bounded measures which achieves the value +∞ outside P(X )) and Λ are convex conjugate to each other:

H( • |µ) = Λ * , Λ = H( • |µ) * .
It appears that T c ( • , µ) and H( • |µ) both can be written as convex conjugates of functions on a class of functions on X . This structure will be exploited in a moment to give a dual formulation of inequalities α(T c ) ≤ H, for α belonging to the following class. Definition 3.1 (of A). The class A consists of all the functions α on [0, ∞) which are convex, increasing with α(0) = 0.

The convex conjugate of a function α ∈ A is replaced by the monotone conjugate α ⊛ defined by α ⊛ (s) = sup r≥0 {srα(r)}, s ≥ 0 where the supremum is taken on r ≥ 0 instead of r ∈ R.

Theorem 3.2. Let c be a lower semicontinuous cost function, α ∈ A and µ ∈ P(X ); the following propositions are equivalent.

(1) The probability measure µ verifies the inequality α(T c ) ≤ H.

(

) For all u, v ∈ C b (X ), such that u ⊕ v ≤ c, e su dµ ≤ e -s R v dµ+α ⊛ (s) , s ≥ 0. 2 
Moreover, the same result holds with B b (X ) instead of C b (X ).

A variant of this result can be found in the authors' paper [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] and in Villani's textbook [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Thm. 5.26]. It extends the dual characterization of transport inequalities T 1 and T 2 obtained by Bobkov and Götze in [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF].

Proof. First we extend α to the whole real line by defining α(r) = 0, for all r ≤ 0. Using Kantorovich dual equality and the fact that α is continuous and increasing on R, we see that the inequality α(T c ) ≤ H holds if and only if for all u, v ∈ C b (X ), such that u ⊕ v ≤ c, one has α u dν + v dµ ≤ H(ν|µ), ν ∈ P(X ).

Since α is convex and continuous on R, it satisfies α(r) = sup s {srα * (s)}. So the preceding condition is equivalent to the following one

s u dν -H(ν|µ) ≤ -s v dµ + α * (s), ν ∈ P(X ), s ∈ R, u ⊕ v ≤ c.
Since H( • |µ) * = Λ, optimizing over ν ∈ P(X ), we arrive at

log e su dµ ≤ -s v dµ + α * (s), s ∈ R, u ⊕ v ≤ c.
Since α * (s) = +∞ when s < 0 and α * (s) = α ⊛ (s) when s ≥ 0, this completes the proof.

Let us define, for all f, g ∈ B b (X ),

P c f (y) = sup x∈X {f (x) -c(x, y)}, y ∈ X , and 
Q c g(x) = inf y∈X {g(y) + c(x, y)}, x ∈ X .
For a given function f : X → R, P c f is the best function g : X → R (the smallest) such that f (x)g(y) ≤ c(x, y), for all x, y ∈ X . And for a given function g : X → R, Q c g is the best function f : X → R (the biggest) such that f (x)g(y) ≤ c(x, y), for all x, y ∈ X .

The following immediate corollary gives optimized forms of the dual condition (2) stated in Theorem 3.2.

Corollary 3.3. Let c be a lower semicontinuous cost function, α ∈ A and µ ∈ P(X ). The following propositions are equivalent.

(1) The probability measure µ verifies the inequality α(T c ) ≤ H.

(2) For all f ∈ C b (X ),

e sf dµ ≤ e s R Pcf dµ+α ⊛ (s) , s ≥ 0. (3) For all g ∈ C b (X ), e sQcg dµ ≤ e s R g dµ+α ⊛ (s) , s ≥ 0.
Moreover, the same result holds true with

B b (X ) instead of C b (X ).
When the cost function is a lower semicontinuous distance, we have the following. Proof of Proposition 1.9. For the sake of simplicity, let us explain the proof for n = 2. The general case is done by induction (see for instance [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF]Theorem 5]). Let us consider, for all

f ∈ B b (X ) Q c f (x) = inf y∈X {f (y) + c(x, y)}, x ∈ X and for all f ∈ B b (X × X ), Q (2) c f (x) = inf y∈X ×X {f (y 1 , y 2 ) + c(x 1 , y 1 ) + c(x 2 , y 2 )}, x ∈ X × X .
According to the dual formulation of transport-entropy inequalities (Corollary 3.3 (2)), µ verifies the inequality α(T c ) ≤ H if and only if

(28) e sQcf dµ ≤ e s R f dµ+α * (s) , s ≥ 0 for all f ∈ B b (X ).
On the other hand, µ 2 verifies the inequality 2α

T c ⊕2 2 ≤ H if and only if e sQ (2) c f dµ 2 ≤ e s R f dµ 2 +2α * (s) , s ≥ 0, holds for all f ∈ B b (X × X ). Let f ∈ B b (X × X ), Q (2) c f (x 1 , x 2 ) = inf y 1 ,y 2 ∈X {f (y 1 , y 2 ) + c(x 1 , y 1 ) + c(x 2 , y 2 )} = inf y 1 ∈X inf y 2 ∈X {f (y 1 , y 2 ) + c(x 2 , y 2 )} + c(x 1 , y 1 ) = inf y 1 ∈X {Q c (f y 1 )(x 2 ) + c(x 1 , y 1 )}
where for all

y 1 ∈ X , f y 1 (y 2 ) = f (y 1 , y 2 ), y 2 ∈ X .
So, applying [START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF] gives

X ×X e sQ (2) c f dµ 2 = e s inf y 1 ∈X {Qc(fy 1 )(x 2 )+c(y 1 ,x 1 )} dµ(x 1 ) dµ(x 2 ) ≤ e α ⊛ (s) e s R Qc(fx 1 )(x 2 ) dµ(x 1 ) dµ(x 2 ).
But,

Q c (f x 1 )(x 2 ) dµ(x 1 ) = inf y 1 ∈X {f (x 1 , y 1 ) + c(x 2 , y 1 )} dµ(x 1 ) ≤ Q c ( f )(x 2 ), with f (y 1 ) = f (x 1 , y 1 ) dµ(x 1 ).
Applying ( 28) again yields

e s R Qc(fx 1 )(x 2 ) dµ(x 1 ) dµ(x 2 ) ≤ e sQc( f )(x 2 ) dµ(x 2 ) ≤ e α ⊛ (s)+s R f (x 2 ) dµ(x 2 ) .
Since f (x 2 ) dµ(x 2 ) = f dµ 2 , this completes the proof.

To conclude this section, let us put the preceding results in an abstract general setting. Our motivation to do that is to consider transport inequalities involving other functionals J than the entropy.

Consider two convex functions on some vector space U of measurable functions on X , Θ : U → (-∞, ∞] and Υ : U → (-∞, ∞]. Their convex conjugates are defined for all ν in the space M U of all measures on X such that |u| dν < ∞, for all u ∈ U by

T (ν) = sup u∈U u dν -Θ(u) J(ν) = sup u∈U u dν -Υ(u)
Without loss of generality, one assumes that Υ is a convex and σ(U, M U )-lower semicontinuous function, so that J and Υ are convex conjugate to each other. It is assumed that U contains the constant functions, Θ(0) = Υ(0) = 0, Θ(u + a1) = Θ(u) + a and Υ(u + a1) = Υ(u) + a for all real a and all u ∈ U and that Θ and Υ are increasing. This implies that T and J are [0, ∞]-valued with their effective domain in P U := {ν ∈ P(X ); |u| dν < ∞, ∀u ∈ U}. In this setting, we have the following theorem whose proof is a straightforward adaptation of the proof of Theorem 3.2.

Theorem 3.5. Let α ∈ A and U, T, J as above. For all u ∈ U and s ≥ 0 define Υ u (s) := Υ(su) -sΘ(u). The following statements are equivalent.

(a) For all ν ∈ P U , α(T (ν)) ≤ J(ν).

(b) For all u ∈ U and s ≥ 0, Υ u (s) ≤ α ⊛ (s).

This general result will be used in Section 10 devoted to transport-information inequalities, where the functional J is the Fisher information.

Concentration for product probability measures

Transport-entropy inequalities are intrinsically linked to the concentration of measure phenomenon for product probability measures. This relation was first discovered by K. Marton in [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF]. Informally, a concentration of measure inequality quantifies how fast the probability goes to 1 when a set A is enlarged. Definition 4.1. Let X be a Hausdorff topological space and let G be its Borel σ-field. An enlargement function is a function enl :

G × [0, ∞) → G such that • For all A ∈ G, r → enl(A, r) is increasing on [0, ∞) (for the set inclusion). • For all r ≥ 0, A → enl(A, r) is increasing (for the set inclusion). • For all A ∈ G, A ⊂ enl(A, 0). • For all A ∈ G, ∪ r≥0 enl(A, r) = X .
If µ is a probability measure on X , one says that it verifies a concentration of measure inequality if there is a function

β : [0, ∞) → [0, ∞) such that β(r) → 0 when r → +∞ and such that for all A ∈ G with µ(A) ≥ 1/2 the following inequality holds µ(enl(A, r)) ≥ 1 -β(r), r ≥ 0.
There are many ways of enlarging sets. If (X , d) is a metric space, a classical way is to consider the r-neighborhood of A defined by

A r = {x ∈ X ; d(x, A) ≤ r}, r ≥ 0,
where the distance of x from A is defined by d(x, A) = inf y∈A d(x, y).

Let us recall the statement of Marton's concentration theorem whose proof was given at Theorem 1.7.

Theorem 4.2 (Marton's concentration theorem). Suppose that µ verifies the inequality

α (T d (ν, µ)) ≤ H(ν|µ), for all ν ∈ P(X ). Then for all A ⊂ X , with µ(A) ≥ 1/2, the following holds µ(A r ) ≥ 1 -e -α(r-ro) , r ≥ r o := α -1 (log 2).
We already stated at Proposition 1.9 an important tensorization result. Its statement is recalled below at Proposition 4.3. Proposition 4.3. Let c be a lower semicontinuous cost function on X and α ∈ A (see Definition 3.1). Suppose that a probability measure µ verifies the transport-entropy inequality

α(T c ) ≤ H on X , then µ n , n ≥ 1 verifies the inequality nα T c ⊕n (ν, µ n ) n ≤ H(ν|µ n ), ν ∈ P(X n ),
where c ⊕n (x, y) = n i=1 c(x i , y i ).

Other forms of non-product tensorizations have been studied (see [START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF][START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF][START_REF] Marton | Measure concentration for a class of random processes[END_REF][START_REF] Marton | Measure concentration for Euclidean distance in the case of dependent random variables[END_REF], [START_REF] Samson | Concentration of measure inequalities for Markov chains and Φ-mixing processes[END_REF] or [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF][START_REF] Wu | Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition[END_REF]) in the context of Markov chains or Gibbs measures (see Section 11).

Let us recall a first easy consequence of this tensorization property.

Corollary 4.4. Suppose that a probability measure µ on X verifies the inequality T 2 (C), then µ n verifies the inequality T 2 (C) on X n , for all positive integer n. In particular, the following dimension-free Gaussian concentration property holds: for all positive integer n and for all A ⊂ X n with µ n (A) ≥ 1/2,

µ n (A r ) ≥ 1 -exp(- 1 C (r -r o ) 2 ), r ≥ r o := log(2)
,

where A r = {x ∈ X n ; d 2 (x, A) ≤ r} and d 2 (x, y) = n i=1 d(x i , y i ) 2 1/2 . Equivalently, when µ verifies T 2 (C), µ n (f > m f + r + r o ) ≤ e -r 2 /C , r ≥ 0,
for all positive integer n and all 1-Lipschitz function f : X n → R with median m f . Proof. According to the tensorization property, µ n verifies the inequality T 2 (C) on X n equipped with the metric d 2 defined above. It follows from Jensen inequality that µ n also verifies the inequality (T d 2 ) 2 ≤ CH. Theorem 4.2 and Proposition 1.6 then give the conclusion.

Remark 4.5. So, as was already emphasized at Section 1, when µ verifies T 2 , it verifies a dimension-free Gaussian concentration inequality. Dimension-free means that the concentration inequality does not depend explicitly on n. This independence on n corresponds to an optimal behavior. Indeed, the constants in concentration inequalities cannot improve when n grows.

More generally, the following proposition explains what kind of concentration inequalities can be derived from a transport-entropy inequality. Proposition 4.6. Let µ be a probability measure on X satisfying the inequality α(T θ(d) ) ≤ H, where the function θ is convex and such that sup t>0 θ(2t)/θ(t) < +∞.

Then for all λ ∈ (0, 1), there is some constant

a λ > 0 such that inf π X ×X θ d(x, y) λ dπ(x, y) ≤ a λ α -1 (H(ν|µ)) ,
where the infimum is over the set of couplings of ν and µ.

Furthermore, the product probability measure µ n on X n , n ≥ 1 satisfies the following concentration property. For all A ⊂ X n such that µ n (A) ≥ 1/2,

µ n (enl θ (A, r)) ≥ 1 -exp -nα r -r n o (λ) nλa λ , r ≥ r n o (λ), λ ∈ (0, 1),
where

(29) enl θ (A, r) = x ∈ X n ; inf y∈A n i=1 θ(d(x i , y i )) ≤ r , and 
r n o (λ) = (1 -λ)a 1-λ nα -1 log 2 n .
The proof can be easily adapted from [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF]Proposition 3.4].

Remark 4.7.

(1) It is not difficult to check that a λ → +∞ when λ → 0.

(2) If α is linear, the right-hand side does not depend explicitly on n. In this case, the concentration inequality is dimension-free.

(3) For example, if µ verifies T 2 (C) (which corresponds to α(t) = t/C and θ(t) = t 2 ), then one can take a λ = 1 λ 2 . Defining as before A r = {x ∈ X n ; inf y∈A d 2 (x, y) ≤ r} where d 2 (x, y) = n i=1 d(x i , y i ) 2 1/2 and optimizing over λ ∈ (0, 1), yields µ n (A r ) ≥ 1 -e -1 C (r-ro) 2 , r ≥ r o = C log 2.
So we recover the dimension-free Gaussian inequality of Corollary 4.4.

As we said above there are many ways of enlarging sets, and consequently there many ways to describe the concentration of measure phenomenon. In a series of papers [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF][START_REF] Talagrand | New concentration inequalities in product spaces[END_REF][START_REF] Talagrand | new look at independence[END_REF] Talagrand has deeply investigated the concentration properties of product of probability measures. In particular, he has proposed different families of enlargements which do not enter into the framework of [START_REF] Cordero-Erausquin | A Riemannian interpolation inequality à la Borell, Brascamp and Lieb[END_REF]. In particular he has obtained various concentration inequalities based on convex hull approximation or q-points control, which have found numerous applications (see [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] or [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]): deviation bounds for empirical processes, combinatoric, percolation, probability on graphs, etc.

The general framework is the following: One considers a product space X n . For all A ⊂ X n , a function ϕ A :

X n → [0, ∞) measures how far is the point x ∈ X n from the set A. The enlargement of A is then defined by enl(A, r) = {x ∈ X n ; ϕ A (x) ≤ r}, r ≥ 0.
Convex hull approximation. Define on X n the following weighted Hamming metrics:

d a (x, y) = n i=1 a i 1 x i =y i , x, y ∈ X n , where a ∈ ([0, ∞)) n is such that |a| = a 2 1 + • • • + a 2 n = 1. The function ϕ A is defined as follows: ϕ A (x) = sup |a|=1 d(x, A), x ∈ X n .
An alternative definition for ϕ A is the following. For all x ∈ X n , consider the set

U A (x) = {(1 x 1 =y 1 , . . . , 1 xn =yn ); y ∈ A},
and let V A (x) be the convex hull of U A (x). Then it can be shown that

ϕ A (x) = d(0, V A (x)),
where d is the Euclidean distance in R n .

A basic result related to convex hull approximation is the following theorem by Talagrand ([99, Theorem 4.1.1]).

Theorem 4.8. For every product probability measure P on X n , and every A ⊂ X n ,

e ϕ 2 A (x)/4 dP (x) ≤ 1 P (A)
.

In particular,

P (enl(A, r)) ≥ 1 - 1 P (A) e -r 2 /4 , r ≥ 0.
This result admits many refinements (see [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]).

In [START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF], Marton developed transport-entropy inequalities to recover some of Talagrand's results on convex hull approximation. To catch the Gaussian type concentration inequality stated in the above theorem, a natural idea would be to consider a T 2 inequality with respect to the Hamming metric. In fact, it can be shown easily that such an inequality cannot hold. Let us introduce a weaker form of the transport-entropy inequality T 2 . Let X be some polish space, and d a metric on X ; define

T 2 (Q, R) = inf π X X d(x, y) dπ y (x) 2 dR(y), Q, R ∈ P(X ),
where the infimum runs over all the coupling π of Q and R and where X → P(X ) : y → π y is a regular disintegration of π given y:

X ×X f (x, y) dπ(x, y) = X X f (x, y)dπ y (x) dR(y),
for all bounded measurable f : X × X → R.

According to Jensen inequality,

T 1 (Q, R) 2 ≤ T 2 (Q, R) ≤ T 2 (Q, R).
One will says that µ ∈ P(X ) verifies the inequality T 2 (C) if

T 2 (Q, R) ≤ CH(Q|P ) + CH(R|P ),
for all probability measures Q, R on X .

The following theorem is due to Marton.

Theorem 4.9. Every probability measure P on X , verifies the inequality T 2 (4) with respect to the Hamming metric. In other words,

T 2 (Q, R) = inf π π y {x; x i = y i } 2 dR(y) ≤ 4H(Q|P ) + 4H(R|P ),
for all probability measures Q, R on X .

A proof of this result can be found in [START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF] or in [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF].

Like T 2 , the inequality T 2 admits a dimension-free tensorization property. A variant of Marton's argument can be used to derive dimension-free concentration and recover Talagrand's concentration results for the convex hull approximation distance. We refer to [START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF] and [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF]Chp 6] for more explanations and proofs.

Control by q-points. Here the point of view is quite different: q ≥ 2 is a fixed integer and a point x ∈ X n will be close from A if it has many coordinates in common with q vectors of A. More generally, consider A 1 , . . . , A q ⊂ X n ; the function ϕ A 1 ,...,Aq is defined as follows:

ϕ A 1 ,...,Aq (x) = inf y 1 ∈A 1 ,...,y q ∈Aq Card i; x i ∈ {y 1 i , . . . , y q i } }.
Talagrand's has obtained the following result (see [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]Theorem 3.1.1] for a proof and further refinements).

Theorem 4.10. For every product probability measure P on X n , and every family A 1 , . . . , A q ⊂ X n , q ≥ 2, the following inequality holds

q ϕ A 1 ,...,Aq (x) dP (x) ≤ 1 P (A 1 ) • • • P (A q ) .
In particular, defining enl(A, r) = {x ∈ X n ; ϕ A,...,A (x) ≤ r}, one gets

P (enl(A, r)) ≥ 1 - 1 q r P (A) r , r ≥ 0.
In [START_REF] Dembo | Information inequalities and concentration of measure[END_REF], Dembo has obtained transport-entropy inequalities giving back Talagrand's results for q-points control. See also [START_REF] Dembo | Transportation approach to some concentration inequalities in product spaces[END_REF], for related inequalities.

Transport-entropy inequalities and large deviations

In [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF], Gozlan and Léonard have proposed an interpretation of transport-entropy inequalities in terms of large deviations theory. To expose this point of view, let us introduce some notation. Suppose that (X n ) n≥1 is a sequence of independent and identically distributed X valued random variables with common law µ. Define their empirical measure

L n = 1 n n i=1 δ X i ,
where δ a stands for the Dirac mass at point a ∈ X . Let C b (X ) be the set of all bounded continuous functions on X . The set of all Borel probability measures on X , denoted by P(X ), will be endowed with the weak topology, that is the smallest topology with respect to which all functionals ν → X ϕ dν with ϕ ∈ C b (X ) are continuous. If B ⊂ X , let us denote H(B|µ) = inf{H(ν|µ); ν ∈ B}. According to a famous theorem of large deviations theory (Sanov's theorem), the relative entropy functional governs the asymptotic behavior of P(L n ∈ A), A ⊂ X when n goes to ∞.

Theorem 5.1 (Sanov's theorem). For all A ⊂ P(X ) measurable with respect to the Borel σ-field,

-H(int(A)|µ) ≤ lim inf n→+∞ 1 n log P (L n ∈ A) ≤ lim sup n→+∞ 1 n log P (L n ∈ A) ≤ -H(cl(A)|µ),
where int(A) denotes the interior of A and cl(A) its closure (for the weak topology).

For a proof of Sanov's theorem, see [START_REF] Dembo | Large deviations techniques and applications[END_REF]Thm 6.2.10].

Roughly speaking, P(L n ∈ A) behaves like e -nH(A|µ) when n is large. We write the statement of this theorem:

P(L n ∈ A) ≍ n→∞ e -nH(A|µ) for short.
Let us explain the heuristics upon which rely [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] and also the articles [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF][START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]. To interpret the transport-entropy inequality α (T c ) ≤ H, let us define A t = {ν ∈ P(X ); T c (ν, µ) ≥ t}, for all t ≥ 0. Note that the transport-entropy inequality can be rewritten as α(t) ≤ H(A t |µ), t ≥ 0. But, according to Sanov's theorem,

P(T c (L n , µ) ≥ t) = P(L n ∈ A t ) ≍ n→∞ e -nH(At|µ) .
Consequently, the transport-entropy inequality α (T c ) ≤ H is intimately linked to the large deviation estimate lim sup

n→+∞ 1 n log P(T c (L n , µ) ≥ t) ≤ -α(t), t ≥ 0.
Based on this large deviation heuristics, Gozlan and Léonard have obtained in [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] the following estimates for the deviation of the empirical mean. Theorem 5.2. Let α be any function in A and assume that c(x, x) = 0, for all x. Define U ∀ exp (µ) := u : X → R, measurable, ∀s > 0, e s|u| dµ < ∞ . It is supposed that c is such that u cc and u c are measurable functions for all u ∈ U ∀ exp (µ). This is the case in particular if either c = d is a lower semicontinuous metric cost or c is continuous. Then, the following statements are equivalent.

(a) The transport-entropy inequality

α(T c (ν, µ)) ≤ H(ν|µ), holds for all ν ∈ P(X ). (b) For all function u ∈ U ∀ exp (µ), the inequality lim sup n→∞ 1 n log P X u cc dL n + X u c dµ ≥ r ≤ -α(r),
holds for all r ≥ 0. (c) For all u ∈ U ∀ exp (µ), the inequality

1 n log P X u cc dL n + X u c dµ ≥ r ≤ -α(r),
holds for all positive integer n and r ≥ 0.

Specializing to the situation where c = d, since u dd = -u d ∈ Lip(1), this means:

Corollary 5.3 (Deviation of the empirical mean). Suppose that X e sd(xo, • ) dµ < ∞ for some x o ∈ X and all s > 0. Then, the following statements are equivalent.

(a) The transport-entropy inequality

α(W 1 (ν, µ)) ≤ H(ν|µ),
holds for all ν ∈ P(X ). (b) For all u ∈ Lip(1), the inequality

lim sup n→∞ 1 n log P 1 n n i=1 u(X i ) ≥ X u dµ + r ≤ -α(r),
holds for all r ≥ 0. (c) For all u ∈ Lip(1), the inequality

1 n log P 1 n n i=1 u(X i ) ≥ X u dµ + r ≤ -α(r),
holds for all positive integer n and r ≥ 0.

Sanov's Theorem and concentration inequalities match also well together, since both give asymptotic results for probabilities of events related to an i.i.d sequence.

In [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF], Gozlan has established the following converse to Proposition 4.6: Theorem 5.4. Let µ be a probability measure on X and (r n o ) n a sequence of nonnegative numbers such that r n o /n → 0 when n → +∞. Suppose that for all integer n the product measure µ n verifies the following concentration inequality:

(30) µ n (enl θ (A, r)) ≥ 1 -exp -nα r -r n o n , r ≥ r n o ,
for all A ⊂ X n with µ n (A) ≥ 1/2, where enl θ (A, r) is defined in Proposition 4.6. Then µ satisfies the transport-entropy inequality α(T θ(d) ) ≤ H.

Together with Proposition 4.6, this result shows that the transport-entropy inequality α T θ(d) ≤ H is an equivalent formulation of the family of concentration inequalities [START_REF] Cordero-Erausquin | Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport[END_REF].

Let us emphasize a nice particular case.

Corollary 5.5. Let µ be a probability measure on X ; µ enjoys the Gaussian dimension-free concentration property if and only if µ verifies Talagrand inequality T 2 . More precisely, µ satisfies T 2 (C) if and only if there is some K > 0 such that for all integer n the inequality

µ n (A r ) ≥ 1 -Ke -r 2 /C , r ≥ 0, holds for all A ⊂ X n with µ n (A) ≥ 1/2 and where A r = {x ∈ X n ; inf y∈A d 2 (x, A) ≤ r} and d 2 (x, y) = n i=1 d(x i , y i ) 2 1/2 .
To put these results in perspective, let us recall that in recent years numerous functional inequalities and tools were introduced to describe the concentration of measure phenomenon. Besides transport-entropy inequalities, let us mention other recent approaches based on Poincaré inequalities [START_REF] Gromov | A topological application of the isoperimetric inequality[END_REF][START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF], logarithmic Sobolev inequalities [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], modified logarithmic Sobolev inequalities [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF][START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF][START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF][START_REF] Barthe | Modified logarithmic Sobolev inequalities on R[END_REF], inf-convolution inequalities [START_REF] Maurey | Some deviation inequalities[END_REF][START_REF] Lata | On the infimum convolution inequality[END_REF], Beckner-Lata la-Oleszkiewicz inequalities [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF][START_REF] Lata | Between Sobolev and Poincaré[END_REF][START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF]. . . So the interest of Theorem 5.4 is that it tells that transport-entropy inequalities are the right point of view, because they are equivalent to concentration estimates for product measures.

Proof of Corollary 5.5. Let us show that dimension-free Gaussian concentration implies Talagrand inequality (the other implication is Corollary 4.4). For every integer n, and x ∈ X n , define

L x n = n -1 n i=1 δ x i . The map x → W 2 (L x n , µ) is 1/
√ n-Lipschitz with respect to the metric d 2 . Indeed, if x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) are in X n , then the triangle inequality implies that

|W 2 (L x n , µ) -W 2 (L y n , µ)| ≤ W 2 (L x n , L y n ). According to the convexity property of T 2 ( • , • ) (see e.g [104, Theorem 4.8]), one has T 2 (L x n , L y n ) ≤ 1 n n i=1 T 2 (δ x i , δ y i ) = 1 n n i=1 d(x i , y i ) 2 = 1 n d 2 (x, y) 2 ,
which proves the claim. Now, let (X i ) i be an i.i.d sequence of law µ and let L n be its empirical measure. Let m n be the median of W 2 (L n , µ) and define

A = {x ∈ X ; W 2 (L x n , µ) ≤ m n }. Then µ n (A) ≥ 1/2 and it is easy to show that A r ⊂ {x ∈ X ; W 2 (L x n , µ) ≤ m n + r/ √ n}.
Applying the Gaussian concentration inequality to A gives

P W 2 (L n , µ) > m n + r/ √ n ≤ K exp -r 2 /C , r ≥ 0.
Equivalently, as soon as u ≥ m n , one has

P (W 2 (L n , µ) > u) ≤ K exp -n(u -m n ) 2 /C . Now, it is not difficult to show that m n → 0 when n → ∞ (see the proof of [52, Theorem 3.4]). Consequently, lim sup n→+∞ 1 n log P (W 2 (L n , µ) > u) ≤ -u 2 /C.
for all u ≥ 0.

On the other hand, according to Sanov's Theorem 5.1,

lim inf n→+∞ 1 n log P (W 2 (L n , µ) > u) ≥ -inf {H(ν|µ); ν ∈ P(X ) s.t. W 2 (ν, µ) > u} .
This together with the preceding inequality yields inf {H(ν|µ);

ν ∈ P(X ) s.t. W 2 (ν, µ) > u} ≥ u 2 /C
or in other words,

W 2 (ν, µ) 2 ≤ CH(ν|µ),
and this completes the proof.

Integral criteria

Let us begin with a basic observation concerning the integrability.

Proposition 6.1. Suppose that a probability measure µ on X verifies the inequality α(T θ(d) ) ≤ H, and let x o ∈ X ; then X exp (α • θ(εd(x, x o ))) dµ(x) is finite for all ε > 0 small enough.

Proof. If µ verifies the inequality α(T θ(d) ) ≤ H, then according to Jensen inequality, it verifies the inequality α • θ (T d ) ≤ H and according to Theorem 4.2, the inequality

µ(A r ) ≥ 1 -exp(-α • θ(r -r o )), r ≥ r o = θ -1 • α -1 (log 2),
holds for all A with µ(A) ≥ 1/2. Let m be a median of the function x → d(x, x o ) ; applying the previous inequality to

A = {x ∈ X ; d(x, x o ) ≤ m} yields µ(d(x, x o ) > m + r) = µ(X \ A r ) ≤ exp(-α • θ(r -r o )), r ≥ r o .
It follows easily that exp (α

• θ(εd(x, x o ))) dµ(x) < +∞, if ε is sufficiently small.
The theorem below shows that this integrability condition is also sufficient when the function α is supposed to be subquadratic near 0. Theorem 6.2. Let µ be a probability measure on X and define α ⊛ (s) = sup t≥0 {stα(t)}, for all s ≥ 0. If the function α is such that lim sup t→0 α(t)/t 2 < +∞ and sup{α ⊛ (t); t : α ⊛ (t) < +∞} = +∞, then the following statements are equivalent:

(1) There is some a > 0 such that α aT θ(d) (ν, µ) ≤ H(ν|µ).

(2) There is some b > 0 such that X ×X e α•θ(bd(x,y)) dµ(x)dµ(y) < +∞.

Djellout, Guillin and Wu [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] were the first ones to notice that the inequality T 1 is equivalent to the integrability condition X ×X e bd(x,y) 2 dµ(x)dµ(y) < +∞. After them, this characterization was extended to other functions α and θ by Bolley and Villani [START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF]. Theorem 6.2 is due to Gozlan [START_REF] Gozlan | Integral criteria for transportation cost inequalities[END_REF]. Let us mention that the constants a and b are related to each other in [START_REF] Gozlan | Integral criteria for transportation cost inequalities[END_REF]Theorem 1.15].

Again to avoid technical difficulties, we are going to establish a particular case of Theorem 6.2:

Proposition 6.3. If M = X ×X e b 2 d(x,y) 2 2
dµ(x)dµ(y) is finite for some b > 0, then µ verifies the following T 1 inequality:

T d (ν, µ) ≤ 1 b 1 + 2 log M 2H(ν|µ),
for all ν ∈ P(X ).

Proof. First one can suppose that b = 1 (if this is not the case, just replace the distance d by the distance bd). Let C = 2(1 + 2 log(M )); according to Corollary 3.4, it is enough to prove that

e sf dµ ≤ e s 2 C
4 , s ≥ 0 for all 1-Lipschitz function with f dµ = 0. Let X, Y be two independent variables of law µ; using Jensen inequality, the symmetry of f (X)f (Y ), the inequality (2i)! ≥ 2 i • i! and the fact that f is 1-Lipschitz, one gets

E e sf (X) ≤ E e s(f (X)-f (Y )) = +∞ i=0 s 2i E (f (X) -f (Y )) 2i (2i)! ≤ +∞ i=0 s 2i E d(X, Y ) 2i 2 i • i! = E exp s 2 d(X, Y ) 2 2 . So, for s ≤ 1, Jensen inequality gives E e sf (X) ≤ M s 2 . If s ≥ 1, then Young inequality implies E e sf ≤ E e s(f (X)-f (Y )) ≤ e s 2 2 M. So in all cases, E e sf ≤ e s 2
2 M s 2 = e s 2 C/4 which completes the proof.

Transport inequalities with uniformly convex potentials

This section is devoted to some results which have been proved by Cordero-Erausquin in [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian-type inequalities[END_REF] and Cordero-Erausquin, Gangbo and Houdré in [START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF].

Let us begin with a short overview of [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian-type inequalities[END_REF]. The state space is X = R k . Let V : R k → R be a function of class C 2 which is semiconvex, i.e. Hess x V ≥ κId for all x, for some real κ. If κ > 0, the potential V is said to be uniformly convex. Define dµ(x) := e -V (x) dx and assume that µ is a probability measure. The main result of [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian-type inequalities[END_REF] is the following Theorem 7.1. Let f, g be nonnegative compactly supported functions with f of class C 1 and f dµ = g dµ = 1. If T (x) = x + ∇θ(x) is the Brenier map pushing forward f µ to gµ (see Theorem 2.9), then

(31) H(gµ|µ) ≥ H(f µ|µ) + R k ∇f • ∇θ dµ + κ 2 R k |∇θ| 2 f dµ.
Before presenting a sketch of the proof of this result, let us make a couple of comments.

-This result is an extension of Talagrand inequality [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF].

-About the regularity of θ. As a convex function, θ is differentiable almost everywhere and it admits a Hessian in the sense of Alexandrov almost everywhere (this is the statement of Alexandrov's theorem). A function θ admits a Hessian in the sense of Alexandrov at x ∈ R k if it is differentiable at x and there exists a symmetric linear map H such that

θ(x + u) = θ(x) + ∇θ(x)•u + 1 2 Hu•u + o(|u| 2 ).
As a definition, this linear map H is the Hessian in the sense of Alexandrov of θ at x and it is denoted Hess x θ. Its trace is called the Laplacian in the sense of Alexandrov and is denoted ∆ A θ(x).

Outline of the proof. The change of variables formula leads us to the Monge-Ampère equation

f (x)e -V (x) = g(T (x))e -V (T (x)) det(Id + Hess x θ)
Taking the logarithm, we obtain log g(T (x)) = log f (x) + V (x + ∇θ(x)) -V (x)log det(Id + Hess x θ).

Our assumption on V gives us V (x + ∇θ(x)) -V (x) ≥ ∇V (x) • ∇θ(x) + κ|∇θ| 2 /2. Since log(1 + t) ≤ t, we have also log det(Id + Hess x θ) ≤ ∆ A θ(x) where ∆ A θ stands for the Alexandrov Laplacian. This implies that f µ-almost everywhere

log g(T (x)) ≥ log f (x) + ∇V (x)•∇θ(x) -∆ A θ(x) + κ|∇θ| 2 /2
and integrating

R k log g(T ) f dµ ≥ R k f log f dµ + R k [∇V •∇θ -∆ A θ] f dµ + κ 2 R k |∇θ| 2 f dµ
Integrating by parts (at this point, a rigorous proof necessitates to take account of the almost everywhere in the definition of ∆ A ), we obtain

H(gµ|µ) ≥ H(f µ|µ) + R k ∇θ•∇f dµ + κ 2 R k |∇θ| 2 f dµ
which is the desired result.

Next results are almost immediate corollaries of this theorem.

Corollary 7.2 (Transport inequality). If V is of class C 2
with Hess V ≥ κId and κ > 0, then the probability measure dµ(x) = e -V (x) dx satisfies the transport inequality T 2 (2/κ):

κ 2 W 2 2 (ν, µ) ≤ H(ν|µ),
for all ν ∈ P(R k ).

Outline of the proof. Plug f = 1 into (31).

This transport inequality extends Talagrand's T 2 -inequality [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF].

In [START_REF] Feyel | Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space[END_REF], Feyel and Üstünel have derived another type of extension of T 2 from the finite dimension setting to an abstract Wiener space. Their proof is based on Girsanov theorem.

Next result is the well-known Bakry-Emery criterion for the logarithmic Sobolev inequality [START_REF] Bakry | Diffusions hypercontractives[END_REF].

Corollary 7.3 (Logarithmic Sobolev inequality). If V is of class C 2 with
Hess V ≥ κId and κ > 0, then the probability measure dµ(x) = e -V (x) dx satisfies the logarithmic Sobolev inequality LS(2/κ) (see Definition 8.9 below):

H(f µ|µ) ≤ 2 κ X |∇ f | 2 dµ
for all sufficiently regular f such that f µ ∈ P(R k ).

Outline of the proof. Plugging g = 1 into (31) yields ( 32)

H(f µ|µ) ≤ - R k ∇f • ∇θ dµ - κ 2 R k |∇θ| 2 f dµ
where T (x) = x + ∇(x) is the Brenier map pushing forward f µ to µ. Since ∇θ is unknown to us, we are forced to optimize as follows

H(f µ|µ) ≤ sup ∇θ - R k ∇f • ∇θ dµ - κ 2 R k |∇θ| 2 f dµ = 2 κ I(f µ|µ),
which is the desired inequality.

The next inequality has been discovered by Otto and Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. It will be used in Section 8 for comparing transport and logarithmic Sobolev inequalities. More precisely, Otto-Villani's Theorem 8.12 states that if µ satisfies the logarithmic Sobolev inequality, then it satisfies T 2 .

Let us define the (usual) Fisher information with respect to µ by

I F (f |µ) = |∇ log f | 2 f dµ
for all positive and sufficiently smooth function f. Corollary 7.4 (HWI inequality). If V is of class C 2 with Hess V ≥ κId for some real κ, the probability measure dµ(x) = e -V (x) dx satisfies the HWI inequality

H(f µ|µ) ≤ W 2 (f µ, µ) I F (f |µ) - κ 2 W 2 2 (f µ, µ)
for all nonnegative smooth compactly supported function f with R k f dµ = 1.

Note that the HWI inequality gives back the celebrated Bakry-Emery criterion.

Outline of the proof. Start from [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF], use

W 2 2 (f µ, µ) = R k |∇θ| 2 f dµ and -∇θ • ∇f dµ = -∇θ • ∇ log f f dµ ≤ |∇θ| 2 f dµ |∇ log f | 2 f dµ 1/2 = W 2 (f µ|µ) I F (f |µ),
and here you are.

Now, let us have a look at the results of [START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF]. They extend Theorem 7.1 and its corollaries. Again, the state space is X = R k and the main ingredients are

• An entropy profile: r ∈ [0, ∞) → s(r) ∈ R; • A cost function: v ∈ R k → c(v) ∈ [0, ∞); • A potential: x ∈ R k → V (x) ∈ R.
The framework of our previous Theorem 7.1 corresponds to the entropy profile s(r) = r log rr and the quadratic transport cost c(yx) = |y -x| 2 /2.

We are only interested in probability measures dρ(x) = ρ(x) dx which are absolutely continuous and we identify ρ and its density. The free energy functional is

F (ρ) := R k [s(ρ) + ρV ](x) dx
and our reference measure µ is the steady state: the unique minimizer of F. Since s will be assumed to be strictly convex, µ is the unique solution of [START_REF] Dembo | Information inequalities and concentration of measure[END_REF] s ′ (µ) = -V, which, by ( 21) is µ = s * ′ (-V ). As s(ρ)+s * (-V ) ≥ -V ρ, see [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF], in order that F is a well-defined (-∞, ∞]-valued function, it is enough to assume that R k s * (-V )(x) dx < ∞. One also requires that R k s * ′ (-V )(x) dx = 1 so that µ is a probability density. The free energy is the sum of the entropy S(ρ) and the internal energy U (ρ) which are defined by

S(ρ) := R k s(ρ)(x) dx, U (ρ) := R k V (x)ρ(x) dx.
It is assumed that

(A s ) (a) s ∈ C 2 (0, ∞) ∩ C([0, ∞)) is strictly convex, s(0) = 0, s ′ (0) = -∞ and (b) r ∈ (0, ∞) → r d s(r -d ) is convex increasing; (A c ) c is convex, of class C 1 , even, c(0) = 0 and lim |v|→∞ c(v)/|v| = ∞; (A V ) For some real number κ, V (y) -V (x) ≥ ∇V (x)•(y -x) + κc(y -x), for all x, y.
If κ > 0, the potential V is said to be uniformly c-convex.

We see with Assumption (A V ) that the cost function c is a tool for quantifying the curvature of the potential V. Also note that if κ > 0 and c(yx) = yx p for some p in (A V ), letting y tend to x, one sees that it is necessary that p ≥ 2.

The transport cost associated with c is T c (ρ 0 , ρ 1 ). Theorem 2.9 admits an extension to the case of strictly convex transport cost c(yx) (instead of the quadratic cost). Under the assumption (A c ) on c, if the transport cost T c (ρ 0 , ρ 1 ) between two absolutely continuous probability measures ρ 0 and ρ 1 is finite, there exists a unique (generalized) Brenier map T which pushes forward ρ 0 to ρ 1 and it is represented by

T (x) = x + ∇c * (∇θ(x))
for some function θ such that θ(x) =inf y∈R k {c(yx) + η(y)} for some function η. This has been proved by Gangbo and McCann in [START_REF] Gangbo | The geometry of optimal transportation[END_REF] and T will be named later the Gangbo-McCann map.

The fundamental result of [START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF] is the following extension of Theorem 7.1.

Theorem 7.5. For any ρ 0 , ρ 1 which are compactly supported and such that T c (ρ 0 , ρ 1 ) < ∞, we have

(34) F (ρ 1 ) -F (ρ 0 ) ≥ κT c (ρ 0 , ρ 1 ) + R k (T (x) -x) • ∇[s ′ (ρ 0 ) -s ′ (µ)](x) ρ 0 (x) dx
where T is the Gangbo-McCann map which pushes forward ρ 0 to ρ 1 .

Outline of the proof. Let us first have a look at S. Thanks to the assumption (A s ) one can prove that S is displacement convex. This formally means that if T c (ρ 0 , ρ 1 ) < ∞,

S(ρ 1 ) -S(ρ 0 ) ≥ d dt S(ρ t ) |t=0
where (ρ t ) 0≤t≤1 is the displacement interpolation of ρ 0 to ρ 1 which is defined by

ρ t := [(1 -t)Id + tT ] # ρ 0 , 0 ≤ t ≤ 1
where T pushes forward ρ 0 to ρ 1 . Since ∂ρ ∂t (t, x) + ∇ • [ρ(t, x)(T (x)x)] = 0, another way of writing this convex inequality is

(35) S(ρ 1 ) -S(ρ 0 ) ≥ R k (T (x) -x) • ∇[s ′ (ρ 0 )](x) ρ 0 (x) dx.
Note that when the cost is quadratic, by Theorem 2.9 the Brenier-Gangbo-McCann map between the uniform measures ρ 0 and ρ 1 on the balls B(0, r 0 ) and B(0, r 1 ) is given by T = (r 1 /r 0 )Id so that the image ρ t = T t# ρ 0 of ρ 0 by the displacement T t = (1t)Id + tT at time 0 ≤ t ≤ 1 is the uniform measure on the ball B(0, r t ) with

r t = (1-t)r 0 +tr 1 . Therefore, t ∈ [0, 1] → S(ρ t ) = r d t s(r -d t ) is convex for all 0 < r 0 ≤ r 1 if and only if r d s(r -d ) is convex: i.e. assumption (A s -b).
It is immediate that under the assumption (A V ) we have

U (ρ 1 ) -U (ρ 0 ) ≥ R k ∇V (x)•[T (x) -x] ρ 0 (x)dx + κT c (ρ 0 , ρ 1 ).
One can also prove that this is a necessary condition for assumption (A V ) to hold true. Summing [START_REF] Dembo | Large deviations techniques and applications[END_REF] with this inequality, and taking [START_REF] Dembo | Information inequalities and concentration of measure[END_REF] into account, leads us to [START_REF] Dembo | Transportation approach to some concentration inequalities in product spaces[END_REF].

Let us define the generalized relative entropy

S(ρ|µ) := F (ρ) -F (µ) = R k [s(ρ) -s(µ) -s ′ (µ)(ρ -µ)](x) dx
on the set P ac (R k ) of all absolutely continuous probability measures on R k . It is a [0, ∞]valued convex function which admits µ as its unique minimum.

Theorem 7.6 (Transport-entropy inequality). Assume that the constant κ in assumption (A V ) is positive: κ > 0. Then, µ satisfies the following transport-entropy inequality κT c (ρ, µ) ≤ S(ρ|µ), for all ρ ∈ P ac (R k ).

Outline of the proof. If ρ and µ are compactly supported, plug ρ 0 = µ and ρ 1 = ρ into (34) to obtain the desired result. Otherwise, approximate ρ and µ by compactly supported probability measures.

Let us define the generalized relative Fisher information for all ρ ∈ P ac (R k ) by

I(ρ|µ) := R k κ c * -κ -1 ∇[s ′ (ρ) -s ′ (µ)](x) dρ(x) ∈ [0, ∞]
with I(ρ|µ) = ∞ if ∇ρ is undefined on a set with positive Lebesgue measure.

Theorem 7.7 (Entropy-information inequality). Assume that κ > 0. Then, µ satisfies the following entropy-information inequality S(ρ|µ) ≤ I(ρ|µ), for all ρ ∈ P ac (R k ).

Outline of the proof. Change c into κc so that the constant κ becomes κ = 1. If ρ and µ are compactly supported, plug ρ 0 = ρ and ρ 1 = µ into (34) to obtain

F (ρ) -F (µ) + T c (ρ, µ) ≤ R k (T (x) -x) • ∇[s ′ (µ) -s ′ (ρ)](x) dρ(x) ≤ R k c(T (x) -x) dρ(x) + R k c * ∇[s ′ (µ) -s ′ (ρ)](x) dρ(x)
where the last inequality is a consequence of Fenchel inequality [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF]. Since T is the Gangbo-McCann map between ρ and µ, we have R k c(T (x)x) dρ(x) = T c (ρ, µ). Therefore,

F (ρ) -F (µ) ≤ R k c * -∇[s ′ (ρ) -s ′ (µ)](x) dρ(x)
which is the desired result for compactly supported measures. For the general case, approximate ρ and µ by compactly supported probability measures.

A direct application of these theorems allow us to recover inequalities which were first proved by Bobkov and Ledoux in [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF].

Corollary 7.8. Let • be a norm on R k and V a convex potential. Suppose that V is uniformly p-convex with respect to • for some p ≥ 2; this means that there exists a constant κ > 0 such that for all x, y ∈ R k (36)

V (x) + V (y) -2V x + y 2 ≥ κ p y -x p .
Denote dµ(x) := e -V (x) dx (where it is understood that µ is a probability measure) and H(ρ|µ) the usual relative entropy.

(1) µ verifies the transport-entropy inequality

κT cp (ρ, µ) ≤ H(ρ|µ),
for all ρ ∈ P ac (R k ), where c p (yx) = yx p /p. (2) µ verifies the entropy-information inequality

H(f µ|µ) ≤ 1 qκ q-1 R k ∇ log f q * f dµ for all smooth nonnegative function f such that R k f dµ = 1
, where • * is the dual norm of • and 1/p + 1/q = 1.

Links with other functional inequalities

In this section, we investigate the position of transport-entropy inequalities among the relatively large class of functional inequalities (mainly of Sobolev type) appearing in the literature. We will be concerned with transport-entropy inequalities of the form T θ(d) ≤ H since inequalities of the form α T θ(d) ≤ H with a nonlinear function α are mainly described in terms of integrability conditions according to Theorem 6.2.

8.1. Links with the Property (τ ). In [START_REF] Maurey | Some deviation inequalities[END_REF], Maurey introduced the Property (τ ) which we describe now. Let c be a cost function on X . Recall that for all f ∈ B b (X ), the function

Q c f is defined by Q c f (x) := inf y {f (y) + c(x, y)}. If a probability measure µ ∈ P(X ) satisfies (τ ) e Qcf dµ e -f dµ ≤ 1,
for all f ∈ B b (X ), one says that the couple (µ, c) satisfies the Property (τ ).

The basic properties of this class of functional inequalities are summarized in the following result.

Proposition 8.1. Suppose that (µ, c) verifies the Property (τ ), then the following holds.

(1) The probability measure µ verifies the transport-entropy inequality T c ≤ H.

(2) For all positive integer n, the couple (µ n , c ⊕n ), with c ⊕n (x, y) = n i=1 c(x i , y i ), x, y ∈ X n , verifies the Property (τ ).

(3) For all positive integer n, and all Borel set A ⊂ X n with µ n (A) > 0,

µ n (enl c ⊕n (A, r)) ≥ 1 - 1 µ n (A) e -r , r ≥ 0
where

enl c ⊕n (A, r) = x ∈ X n ; inf y∈A n i=1 c(x i , y i ) ≤ r
The third point of the proposition above was the main motivation for the introduction of this class of inequalities. In [START_REF] Maurey | Some deviation inequalities[END_REF], Maurey established that the symmetric exponential probability measure dν(x) = 1 2 e -|x| dx on R satisfies the Property (τ ) with the cost function c(x, y) = a min(|x| 2 , |x|) for some constant a > 0. It enables him to recover Talagrand's concentration results for the multidimensional exponential distribution with sharp constants. Moreover, using the Prekopa-Leindler inequality (see Theorem 13.1 below), he showed that the standard Gaussian measure γ verifes the Property (τ ) with the cost function c(x, y) = Jensen inequality readily implies that this condition is weaker than the Property (τ ).

(2) The proof of this tensorization property follows the lines of the proof of Theorem 4.3. We refer to [START_REF] Maurey | Some deviation inequalities[END_REF] or [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] for a complete proof.

(3) Applying the Property (τ ) satisfied by (µ n , c ⊕n ) to the function u(x) = 0 if x ∈ A and u(x) = t, if x / ∈ A and letting t → ∞ yields the inequality:

e inf y∈A c ⊕n (x,y) dµ n (x) ≤ 1 µ n (A) ,
which immediately implies the concentration inequality.

In fact, the Property (τ ) can be viewed as a symmetric transport-entropy inequality.

Proposition 8.2. The couple (µ, c) verifies the Property (τ ) if and only if µ verifies the following inequality

T c (ν 1 , ν 2 ) ≤ H(ν 1 |µ) + H(ν 2 |µ), for all ν 1 , ν 2 ∈ P(X ).
Proof. According to the Kantorovich dual equality, see Theorem 2.2, the symmetric transportentropy inequality holds if and only if for all couple (u, v) of bounded functions such that u ⊕ v ≤ c, the inequality

u dν 1 -H(ν 1 |µ) + v dν 2 -H(ν 2 |µ) ≤ 0
holds for all ν 1 , ν 2 ∈ P(X ). Since sup ν { u dν -H(ν|µ)} = log e u dµ (this is the convex conjugate of the result of Proposition B.1), the symmetric transport-entropy inequality holds if and only if e u dµ e v dµ ≤ 1, for all couple (u, v) of bounded functions such that u ⊕ v ≤ c. One concludes by observing that for a given f ∈ B b (X ), the best function

u such that u ⊕ (-f ) ≤ c is u = Q c f.
As we have seen above, the Property (τ ) is always stronger than the transport inequality T c ≤ H. Actually, when the cost function is of the form c(x, y) = θ(d(x, y)) with a convex θ, the transport-entropy inequality and the Property (τ ) are qualitatively equivalent as shown in the following. Multiplying these two inequalities yields to e Qc(Qcf ) dµ • e Qc(-Qcf ) dµ ≤ 1.

Now, for all x, y ∈ X , one has: -f (y) + Q c f (x) ≤ θ(d(x, y)), and consequently, -f ≤ Q c (-Q c f ). On the other hand, the convexity of θ easily yields

Q c (Q c f )(x) ≤ inf y∈X f (y) + 2θ d(x, y) 2 = Q cf.
This completes the proof.

We refer to the works [START_REF] Samson | Concentration inequalities for convex functions on product spaces[END_REF][START_REF] Samson | Infimum-convolution description of concentration properties of product probability measures, with applications[END_REF] by Samson and [66] by Lata la and Wojtaszczyk for recent advances in the study of the Property (τ ). In [START_REF] Samson | Infimum-convolution description of concentration properties of product probability measures, with applications[END_REF], Samson established different variants of the Property (τ ) in order to derive sharp deviation results à la Talagrand for supremum of empirical processes. In [START_REF] Lata | On the infimum convolution inequality[END_REF], Lata la and Wojtaszczyk have considered a cost function naturally associated to a probability µ on R k . A symmetric probability measure µ is said to satisfy the inequality IC(β) for some constant β > 0 if it verifies the Property (τ ) with the cost function c(x, y) = Λ * µ

x-y β

, where Λ * µ is the Cramér transform of µ defined by

Λ * µ (x) = sup y∈R k x • y -log e u•y dµ(u) , x ∈ R k ,
For many reasons, this corresponds to an optimal choice for c. They have shown that isotropic log-concave distributions on R (mean equals zero and variance equals one) satisfy the inequality IC [START_REF] Gentil | Equation de Hamilton-Jacobi et inégalité entropiques généralisées[END_REF]. They conjectured that isotropic log-concave distributions in all dimensions verify the inequality IC(β) with a universal constant β. This conjecture is stronger than the Kannan-Lovasz-Simonovits conjecture on the Poincaré constant of isotropic log-concave distributions [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF].

8.2. Definitions of the Poincaré and logarithmic Sobolev inequalities. Let µ ∈ P(X ) be a given probability measure and (P t ) t≥0 be the semigroup on L 2 (µ) of a µ-reversible Markov process (X t ) t≥0 . The generator of (P t ) t≥0 is L and its domain on L 2 (µ) is D 2 (L). Define the Dirichlet form E(g, g) := -Lg, g µ , g ∈ D 2 (L).

Under the assumptions that

(a) (X t ) t≥0 is µ-reversible, (b) (X t ) t≥0 is µ-ergodic, E is closable in L 2 (µ) and its closure (E, D(E)) admits the domain D(E) = D 2 ( √ -L) in L 2 (µ).
Remark 8.4. About these assumptions.

(a) means that the semigroup (P t ) t≥0 is µ-symmetric.

(b) means that if f ∈ B b (X ) satisfies P t f = f, µ-a.e. for all t ≥ 0, then f is constant µ-a.e. (1) The Fisher information of f with respect to µ (and the generator L) is defined by

I µ (f ) = E( f , f ) for all f ≥ 0 such that √ f ∈ D(E).
(2) The Donsker-Varadhan information I(ν|µ) of the measure ν with respect to µ is defined by

(37) I(ν|µ) = E( √ f , √ f ) if ν = f µ ∈ P(X ), √ f ∈ D(E) +∞ otherwise
Example 8.6 (Standard situation). As a typical example, considering a probability measure µ = e -V (x) dx with V of class C 1 on a complete connected Riemannian manifold X , one takes (X t ) t≥0 to be the diffusion generated by

L = ∆ -∇V • ∇
where ∆, ∇ are respectively the Laplacian and the gradient on X . The Markov process (X t ) t≥0 is µ-reversible and the corresponding Dirichlet form is given by

E(g, g) = X |∇g| 2 dµ, g ∈ D(E) = H 1 (X , µ)
where H 1 (X , µ) is the closure with respect to the norm X (|g| 2 + |∇g| 2 ) dµ of the space of infinitely differentiable functions on X with bounded derivatives of all orders. It also matches with the space of these g L 2 (X ) such that ∇g ∈ L 2 (X → T X ; µ) in distribution.

Remark 8.7. The Fisher information in this example [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and condition of itd regularity[END_REF] I

µ (f ) = X |∇ f | 2 dµ
differs from the usual Fisher information

I F (f |µ) := R k |∇ log f | 2 f dµ
by a multiplicative factor. Indeed, we have I µ = I F /4. The reason for preferring I µ to I F in these notes is that I(•|µ) is the large deviation rate function of the occupation measure of the Markov process (X t ) t≥0 as will be seen in Section 10.

Let us introduce the 1-homogenous extension of the relative entropy H:

Ent µ (f ) := f log f dµ -f dµ log f dµ,
for all nonnegative function f . The following relation holds:

Ent µ (f ) = f dµ H f µ f dµ µ . As usual, Var µ (f ) := X f 2 dµ -( X f dµ) 2 .
Definition 8.8 (General Poincaré and logarithmic Sobolev inequalities).

(1) A probability µ ∈ P(X ) is said to satisfy the Poincaré inequality with constant C if

Var µ (f ) ≤ CI µ (f 2 )
for any function f ∈ D(E).

(2) A probability µ on X is said to satisfy the logarithmic Sobolev inequality with a constant C > 0, if H(f µ|µ) ≤ CI(f µ|µ) holds for all f : X → R + . Equivalently, µ verifies this inequality if

Ent µ (f 2 ) ≤ CI µ (f 2 )
for any function f ∈ D(E).

In the special important case where L = ∆ -∇V • ∇, the Fisher information is given by [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and condition of itd regularity[END_REF] and we say that the corresponding Poincaré and logarithmic Sobolev inequalities are usual. Definition 8.9 (Usual Poincaré and logarithmic Sobolev inequalities, P(C) and LS(C)).

(1) A probability µ ∈ P(X ) is said to satisfy the (usual) Poincaré inequality with constant C, P(C) for short, if

Var µ (f ) ≤ C |∇f | 2 dµ
for any function smooth enough function f. (2) A probability µ on X is said to satisfy the (usual) logarithmic Sobolev inequality with a constant C > 0, LS(C) for short, if

(39) Ent µ (f 2 ) ≤ C |∇f | 2 dµ
for any function smooth enough function f. 

8.3.

Links with Poincaré inequalities. We noticed in Section 1 that T 2 is stronger than T 1 . The subsequent proposition enables us to make precise the gap between these two inequalities.

Proposition 8.11. Let µ be a probability measure on R k and d be the Euclidean distance ; if µ verifies the inequality T θ(d) ≤ H with a function θ(t) ≥ t 2 /C near 0 with C > 0, then µ verifies the Poincaré inequality P(C/2).

So in particular, T 2 implies Poincaré inequality with the constant C/2, while T 1 doesn't imply it. The result above was established by Otto and Villani in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. Below is a proof using the Hamilton-Jacobi semigroup.

Proof. According to Corollary 3.3, for all bounded continuous function f : R k → R, e Rf dµ ≤ e R f dµ , where Rf (x) = inf y∈R k {f (y)+θ(|x-y| 2 )}. For all t > 0, define R t f (x) = inf y∈R k {f (y)+ 1 t θ(|y -x| 2 )}. Suppose that θ(u) ≥ u 2 /C, for all 0 ≤ u ≤ r, for some r > 0. If M > 0, is such that |f (x)| ≤ M for all x ∈ R k , then it is not difficult to see that the infimum in the definition of R t f (x) is attained in the ball of center x and radius r as soon as t ≤ θ(r)/(2M ). So, for all t ≤ θ(r)/(2M ), holds for all t ≥ 0 small enough.

R t f (x) = inf |y-x|≤r {f (y) + 1 t θ(|y -x| 2 )} ≥ inf |y-x|≤r {f (y) + 1 Ct |y -x| 2 2 } ≥ Q t f (x), with Q t f (x) = inf y∈R k {f (y) +
If f is smooth enough (say of class C 2 ), then defining Q 0 f = f , the function (t, x) → Q t f (x) is solution of the Hamilton-Jacobi partial differential equation :

(41) ∂u ∂t (t, + C 4 |∇ x u| 2 (t, x) = 0, t ≥ 0, x ∈ R k u(0, x) = f, x ∈ R k
(see for example [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Theorem 22.46]).

So if f is smooth enough, it is not difficult to see that

e tQtf dµ = 1 + t f dµ + t 2 2 f 2 dµ - C 2 |∇f | 2 dµ + o(t 2 ).
So [START_REF] Donsker | Asymptotic evaluations of certain Markov process expectations for large time[END_REF] implies that Var µ (f ) ≤ C 2 |∇f | 2 dµ, which completes the proof.

8.4. Around Otto-Villani theorem. We now present the famous Otto-Villani theorem and its generalizations.

Theorem 8.12 (Otto-Villani). Let µ be a probability measure on R k . If µ verifies the logarithmic Sobolev inequality LS(C) with a constant C > 0, then it verifies the inequality then T 2 (C).

Let us mention that Otto-Villani theorem is also true on a Riemannian manifold. This result was conjectured by Bobkov and Götze in [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] and first proved by Otto and Villani in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. The proof by Otto and Villani was a rather sophisticated combination of optimal transport and partial differential equation results. It was adapted to other situations (in particular to path spaces) by Wang in [START_REF] Wang | Probability distance inequalities on Riemannian manifolds and path spaces[END_REF][START_REF] Wang | Generalized transportation-cost inequalities and applications[END_REF][START_REF] Wang | From super Poincaré to weighted log-Sobolev and entropy-cost inequalities[END_REF]. Soon after [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], Bobkov, Gentil and Ledoux have proposed in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] a much more elementary proof relying on simple computations on the Hamilton-Jacobi semigroup. This approach is at the origin of many subsequent developments (see for instance [START_REF] Gentil | Equation de Hamilton-Jacobi et inégalité entropiques généralisées[END_REF], [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF], [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF], [START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF] or [START_REF] Gozlan | A refined version of Otto and Villani theorem[END_REF]). In [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF], Gozlan gives yet another proof which is build on the characterization of dimension-free Gaussian concentration exposed in Corollary 5.5. It is very robust and works as well if R k is replaced by an (almost) arbitrary polish space (see [52, Theorems 4.9 and 4.10]).

First proof of Theorem 8.12 following [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. this proof we explain the Hamilton-Jacobi method of Bobkov, Gentil and Ledoux. Consider the semigroup Q t defined for all bounded function f by

Q t f (x) = inf y∈R k f (y) + 1 Ct |x -y| 2 , t > 0, Q 0 f = f.
If f is smooth enough, (t, x) → Q t f (x) solves the Hamilton-Jacobi equation [START_REF] Dudley | Real Analysis and Probability, volume 74 of Cambridge studies in advanced mathematics[END_REF].

According to [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF], and (41) (42)

Ent µ (e tQtf ) ≤ Ct 2 4 |∇ x Q t f | 2 (t, x)e tQtf (t,x) dµ(x) = -t 2 ∂Q t f ∂t (t,
x)e tQtf (t,x) dµ(x).

Let Z t = e tQtf (t,x) dµ(x), t ≥ 0 ; then

Z ′ t = Q t f (t, x)e tQtf (t,x) dµ(x) + t ∂Q t f ∂t (t,
x)e tQtf (t,x) dµ(x).

Consequently,

Ent µ (e tQtf ) = t Q t f (t, x)e tQtf (t,x) dµ(x)e tQtf (t,x) dµ(x) log e tQtf (t,x) dµ(x)

= tZ ′ t -Z log Z t -t 2 ∂Q t f ∂t (t, x)e tQtf (t,x) dµ(x).
This together with [START_REF] Feyel | Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space[END_REF], yields tZ ′ t -Z t log Z t ≤ 0 for all t ≥ 0. In other words, the function t → log Zt t is decreasing on (0, +∞). As a result,

log Z 1 = log e Q 1 f dµ ≤ lim t→0 log Z t t = f dµ,
which is dual version of T (C) stated in Corollary 3.3.

Second proof of Theorem 8.12 following [START_REF] Gozlan | A characterization of dimension free concentration in terms of transport inequalities[END_REF]. Now let us explain how to use concentration to prove Otto-Villani theorem. First let us recall the famous Herbst argument. Take g 1-Lipschitz function such that g dµ = 0 and apply [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF] to f = e tg/2 , with t ≥ 0; then letting Z t = e tg dµ, one gets

Z ′ t -Z t log Z t ≤ Ct 2 4 |∇g| 2 e tg dµ ≤ C 4 t 2 Z t , t > 0
where the inequality follows from the fact that g 1-Lipschitz. In other word,

d dt log Z t t ≤ C 4 , t > 0.
Since log Zt t → 0 when t → 0, integrating the inequality above yields

e tg dµ ≤ e C 4 t 2 , t > 0.
Since this holds for all centered and 1-Lipschitz function g, one concludes from Corollary 3.4 that µ verifies the inequality

T 1 (C) on (R k , | • | 2 ).
The next step is a tensorization argument. Let us recall that the logarithmic Sobolev inequality enjoys the following well known tensorization property : if µ verifies LS(C) on R k , then for all positive integer n, the product probability measure µ n satisfies LS(C) on R k n . As a consequence, the argument above shows that for all positive integer n, µ n verifies the inequality T 1 (C) on R k n , | • | 2 . According to Marton's argument (Theorem 4.2), there is some constant K > 0 such that for all positive integer n and all A ⊂ R k n , with µ n (A) ≥ 1/2, it holds

µ n (A r ) ≥ 1 -Ke -Cr 2 , r ≥ 0.
The final step is given by Corollary 5.5 : this dimension-free Gaussian concentration inequality implies T 2 (C) and this completes the proof.

Otto-Villani theorem admits the following natural extension which appears in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] and [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF]Theorem 2.10].

For all p ∈ [1, 2], define θ p (x) = x 2 if |x| ≤ 1 and 2 p x p + 1 -2 p if |x| ≥ 1.
Theorem 8.13. Suppose that a probability µ on R k verifies the following modified logarithmic Sobolev inequality

Ent µ (f 2 ) ≤ C 1 k i=1 θ * p ∂f ∂x i 1 f f 2 dµ,
for all f : R k → R smooth enough, where θ * p is the convex conjugate of θ p . Then there is a constant C 2 such that µ verifies the transport-entropy inequality

T θp(| • | 2 ) ≤ C 2 H.
The theorem above is stated in a very lazy way ; the relation between C 1 and C 2 is made clear in [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF]Theorem 2.10].

Sketch of proof.

We shall only indicate that two proofs can be made. The first one uses the following Hamilton Jacobi semigroup

Q t f (x) = inf y∈R k f (y) + t k i=1 θ p y i -x i t ,
which solves the following Hamilton-Jacobi equation

∂u ∂t (t, x) + k i=1 θ * p ∂u ∂x i (t, x) = 0, t ≥ 0, x ∈ R k u(0, x) = f, x ∈ R k
The second proof uses concentration : according to a result by Barthe The case p = 1 is particularly interesting ; namely according to a result by Bobkov and Ledoux, the modified logarithmic Sobolev inequality with the function θ 1 is equivalent to Poincaré inequality (see [START_REF] Bobkov | Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution[END_REF]Theorem 3.1] for a precise statement). Consequently, the following results holds Corollary 8.14. Let µ a probability measure on R k ; the following propositions are equivalent:

(1) The probability µ verifies Poincaré inequality for some constant C > 0;

(2) The probability µ verifies the transport-entropy inequality T c ≤ H, with a cost function of the form c(x, y) = θ 1 (a|x -y| 2 ), for some a > 0.

Moreover the constants are related as follows: (1) implies (2) with a = 1 τ √

C , where τ is some universal constant and (2) implies (1) with C = 1 2a 2 .

Again a precise result can be found in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]Corollary 5.1].

Let us recall that µ is said to satisfy a super-Poincaré inequality if there is a decreasing function

β : [1, +∞) → [0, ∞) such that f 2 dµ ≤ β(s) |∇f | 2 dµ + s |f | dµ 2 , s ≥ 1
holds true for all sufficiently smooth f . This class of functional inequalities was introduced by Wang in [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF] with applications in spectral theory. Many functional inequalities (Beckner-Lata la-Oleszkiewicz inequalities for instance [START_REF] Lata | Between Sobolev and Poincaré[END_REF][START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF]) can be represented as a super-Poincaré inequality for a specific choice of the function β. Recently efforts have been made to see which transport-entropy inequalities can be derived from super-Poincaré inequalities. We refer to Wang [ 2 I(ν|µ). Taking dν(x) = f 2 (x) dx with a smooth f yields

Ent µ (f 2 ) ≤ 4C 1 + κC 2 2 |∇f | 2 dµ,
which completes the proof.

So in the range C + 2/κ < 0, T 2 and LS are equivalent. In fact under the condition Hess V ≥ κ, a strong enough Gaussian concentration property implies the logarithmic Sobolev inequality, as shown in the following theorem by Wang [START_REF] Wang | Logarithmic Sobolev inequalities on noncompact Riemannian manifolds[END_REF].

Theorem 8.16. Let dµ(x) = e -V (x) dx, with V of class C 2 on R k and such that Hess V ≥ κId, with κ ≤ 0; if there is some C < -2/κ, such that e 1 C d 2 (xo,x) dµ(x) is finite, for some (and thus all) point x o , then µ verifies the logarithmic Sobolev inequality for some constant C.

Recently Barthe and Kolesnikov have generalized Wang's theorem to different functional inequalities and other convexity defects [START_REF] Barthe | Mass transport and variants of the logarithmic Sobolev inequality[END_REF]. Their proofs rely on Theorem 7.1. A drawback of Theorem 8.16 is that the constant C depends too heavily on the dimension k. In a series of papers [START_REF] Milman | On the role of convexity in isoperimetry, spectral gap and concentration[END_REF][START_REF] Milman | On the role of convexity in functional and isoperimetric inequalities[END_REF][START_REF] Milman | Isoperimetric and concentration inequalities -part i: Equivalence under curvature lower bound[END_REF], E. Milman has shown that under curvature conditions concentration inequalities and isoperimetric inequalities are in fact equivalent with a dimension-free control of constants. Let us state a simple corollary of Milman's results. Corollary 8.17. Let dµ(x) = e -V (x) dx, with V of class C 2 on R k and such that Hess V ≥ κId, with κ ≤ 0; if there is some C < -2/κ and M > 1, such that µ verifies the following Gaussian concentration inequality

(44) µ(A r ) ≥ 1 -M e -1 C r , r ≥ 0
for all A such that µ(A) ≥ 1/2 and with A r = {x ∈ R k ; ∃y ∈ A, |x -y| 2 ≤ r}, then µ verifies the logarithmic Sobolev inequality with a constant C depending only on C, κ and M . In particular, the constant C is independent on the dimension k of the space.

conclusion of the preceding results is that when C + 2/κ < 0, it holds

LS(C) ⇒ T 2 (C) ⇒ Gaussian concentration (44) with constant 1/C ⇒ LS( C),
and so these three inequalities are qualitatively equivalent in this range of parameters. Nevertheless, the equivalence between LS and T 2 is no longer true when Hess V is unbounded from below. In [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF], Cattiaux and Guillin were able to give an example of a probability µ on R verifying T 2 , but not LS. Cattiaux and Guillin's counterexample is discussed in Theorem 9.5 below.

8.6.

A refined version of Otto-Villani theorem. We close this section with a recent result by Gozlan, Roberto and Samson [START_REF] Gozlan | A refined version of Otto and Villani theorem[END_REF] which completes the picture showing that T (and in fact many other transport-entropy inequalities) is equivalent to a logarithmic Sobolev inequality restricted to a subclass of functions.

Let us say that a function

f R k → R is λ-semiconvex, λ ≥ 0, if the function x → f (x) + λ 2 |x| 2 is convex. If f is C 2
this is equivalent to the condition Hess f (x) ≥ -λId. Moreover, if f is λ-semiconvex, it is almost everywhere differentiable, and for all x where ∇f (x) is well defined, one has

f (y) ≥ f (x) + ∇f (x) • (y -x) - λ 2 |y -x| 2 .
for all y ∈ R k .

Theorem 8.18. Let µ be a probability measure on R k . The following propositions are equivalent:

(1) There exists C 1 > 0 such that µ verify the inequality T 2 (C 1 ).

(2) There exists C 2 > 0 such that for all 0 ≤ λ < 2 C 2 and all λ-semiconvex f : R k → R,

Ent µ (e f ) ≤ C 2 1 -λC 2 2 2 |∇f | 2 e f dµ.
The constants C 1 and C 2 are related in the following way:

(1) ⇒ (2) with C 2 = C 1 .

(2) ⇒ (1) with C 1 = 8C 2 .

More general results can be found in [START_REF] Gozlan | A refined version of Otto and Villani theorem[END_REF]Theorem 1.8]. Let us emphasize the main difference between this theorem and Proposition 8.15 : in the result above the curvature assumption is made on the functions f and not on the potential V . A nice corollary of Theorem 8.18, is the following perturbation result: ). For transport-entropy inequalities, the question of the perturbation was raised in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and remained open for a long time. The proof of Theorem 8.19 relies on the representation of T 2 as a restricted logarithmic Sobolev inequality provided by Theorem 8.18. Contrary to Sobolev type inequalities, no direct proof of Theorem 8.19 is known.

Workable sufficient conditions for transport-entropy inequalities

In this section, we review some of the known sufficient conditions on V : R k → R under which dµ = e -V dx verifies a transport-entropy inequality of the form T θ(d) ≤ H. Unlike Section 7, the potential V is not supposed to be (uniformly) convex. 9.1. Cattiaux and Guillin's restricted logarithmic Sobolev method. Let µ be a probability measure on R k such that e ε|x| 2 dµ(x) < +∞, for some ε > 0. Following Cattiaux and Guillin in [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF], let us say that µ the restricted logarithmic Sobolev inequality

rLS(C, η) if Ent µ (f 2 ) ≤ C |∇f | 2 dµ, for all smooth f : R k → R such that f 2 (x) ≤ f 2 dµ e η|xo-x| 2 + R |xo-y| 2 dµ(y) , x ∈ R k .
Using Bobkov-Gentil-Ledoux proof of Otto-Villani theorem, Cattiaux and Guillin obtained the following result (see [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF]Theorem 1.17]).

Theorem 9.1. Let µ be a probability measure on R k such that e ε|x| 2 dµ(x) < +∞, for some ε > 0. If the restricted logarithmic Sobolev inequality rLS(C, η) holds for some η < ε/2, then µ verifies the inequality T 2 ( C), for some C > 0.

The interest of this theorem is that the restricted logarithmic Sobolev inequality above is strictly weaker than the usual one. Moreover, workable sufficient conditions for the rLS can be given. Let us start with the case of the real axis.

Theorem 9.2. Let dµ(x) = e -V (x) dx be a probability measure on R with e ε|x| 2 dµ(x) < +∞ for some ε > 0. If µ is such that

A + = sup x≥0 +∞ x t 2 e -V (t) dt x 0 e V (t) dt and A -= sup x≤0 x -∞ t 2 e -V (t) dt 0 x e V (t) dt
are finite then µ verifies rLS(C, η), for some C, η > 0 and so it verifies also T 2 ( C) for some C > 0.

The finiteness of A + and A -can be determined using the following proposition (see [START_REF] Cattiaux | Talagrand's like quadratic transportation cost inequalities[END_REF]Proposition 5.5]). Proposition 9.3. Suppose that dµ(x) = e -V (x) dx be a probability measure on R with

V of class C 2 such that V ′′ (V ′ ) 2 (x) → 0 when x → ∞. If V verifies (45) sup x→±∞ x V ′ (x)
< +∞, then A + and A -are finite (and there is ε > 0 such that e ε|x| 2 dµ(x) < +∞).

The condition V ′′ (V ′ ) 2 (x) → 0 when x → ∞ is not very restrictive and appears very often in results of this type (see [2, Corollary 6.4.2 and Theorem 6.4.3] for instance). Now let us recall the following result by Bobkov and Götze (see [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]Theorem 5.3] and [2, Theorems 6.3.4 and 6.4.3]) dealing this time with the logarithmic Sobolev inequality. Theorem 9.4. Let dµ(x) = e -V (x) dx be a probability measure on R, and m a median of µ. If V is such that

D -= sup x<m x -∞ e -V (t) dt log 1 x -∞ e -V (t) dt m x e V (t) dt D + = sup x>m +∞ x e -V (t) dt log 1 +∞ x e -V (t) dt
x m e V (t) dt are finite, then µ verifies the logarithmic Sobolev inequality, and the optimal constant

C opt verifies τ 1 max(D -, D + ) ≤ C opt ≤ τ 2 max(D -, D + ),
where τ 1 and τ 2 are known universal constants.

Moreover if V is of class C 2 and verifies lim x→∞ V ′′ (V ′ ) 2 (
x) = 0, then D -and D + are finite if and only if V verifies the following conditions:

lim inf x→∞ |V ′ (x)| > 0 and lim sup x→∞ V (x) (V ′ ) 2 (x)
< +∞ Theorem 9.5 (Cattiaux-Guillin's counterexample). The probability measure dµ(x) = 1 Z e -V (x) dx defined on R with V (x) = |x| 3 + 3x 2 sin 2 x + |x| β , with Z a normalizing constant and 2 < β < 5/2 satisfies the inequality T 2 but not the logarithmic Sobolev inequality.

Proof. For all x > 0,

V ′ (x) = 3x 2 + 6x sin 2 x + 6x 2 cos x sin x + βx β-1 = 3x 2 (1 + cos 2x) + 6x sin 2 x + βx β-1 . and V ′′ (x) = 6x 2 cos 2x + 6x(1 + 2 sin 2x) + 6 sin 2 x + β(β -1)x β-2 .
First, observe that V ′ (x) > 0 for all x > 0 and V ′ (x) → ∞ when x → +∞. Moreover, for x large enough,

V ′′ V ′2 (x) ≤ D x 2 x 2β-2 , and 0 ≤ x V ′ ≤ D x x β-1
, for some numerical constant D > 0. Since, β > 2, it follows that V ′′ V ′2 (x) → 0, and x V ′ (x) → 0 when x → +∞. Consequently, it follows from Proposition 9.3, that µ verifies T 2 (C), for some C > 0. On the other hand, consider the sequence 5-2β , and since β < 5/2, one concludes that lim sup x→+∞ V V ′2 (x) = +∞. According to Theorem 9.4, it follows that µ does not verify the logarithmic-Sobolev inequality.

x k = π 4 +kπ, then V ′2 (x k ) = (6x k +βx β-1 k ) 2 ∼ β 2 (πk) 2β-2 and V (x k ) ∼ (kπ) 3 . So V (x k ) V ′2 (x k ) ∼ β 2 (πk)
Recently, Cattiaux, Guillin and Wu have obtained in [START_REF] Cattiaux | A note on Talagrand transportation inequality and logarithmic Sobolev inequality[END_REF] different sufficient conditions for the restricted logarithmic Sobolev inequality rLS in dimension k ≥ 1.

Theorem 9.6. Let µ be a probabilikty measure on R k with a density of the form dµ

(x) = e -V (x) dx, with V : R k → R of class C 2 . If one of the following conditions ∃a < 1, R, c > 0, such that ∀|x| > R, (1 -a)|∇V (x)| 2 -∆V (x) ≥ c|x| 2 or ∃R, c > 0, such that ∀|x| > R, x • ∇V (x) ≥ c|x| 2
is satisfied, then rLS holds.

We refer to [26, Corollary 2.1] for a proof relying on the so called Lyapunov functions method. 9.2. methods. In [START_REF] Gozlan | Characterization of Talagrand's like transportation-cost inequalities on the real line[END_REF], Gozlan recovered Cattiaux and Guillin's sufficient condition (45) for T 2 and extended it to other transport-entropy inequalities on the real axis. The proof relies on a simple contraction argument, we shall now explain it in a general setting.

Contraction of transport-entropy inequalities. In the sequel, X and Y will be polish spaces. If µ is a probability measure on X and T : X → Y is a measurable map, the image of µ under T will be denoted by T # µ; by definition, it is the probability measure on Y defined by

T # µ(A) = µ T -1 (A) , for all measurable subset A of Y .
The result below shows that if µ verifies a transport-entropy inequality on X then the image T # µ verifies verifies a transport-entropy inequality on Y with new cost function expressed in terms on T . Theorem 9.7. Let µ o be a probability measure on X and T : X → Y be a measurable bijection. If µ o satisfies the transport-entropy inequality α(T c ) ≤ H with a cost function c on X , then T # µ o satisfies the transport-entropy inequality α(T c T ) ≤ H with the cost function c T defined on Y by c T (y 1 , y

2 ) = c(T -1 y 1 , T -1 y 2 ), y 1 , y 2 ∈ Y. Proof. Let us define Q(y 1 , y 2 ) = (T -1 y 1 , T -1 y 2 ), y 1 , y 2 ∈ Y, and µ 1 = T # µ o . Let ν ∈ P(Y)
and take π ∈ Π(ν, µ 1 ), the subset of P(Y 2 ) consisting of the probability π with their marginal measures π 0 = ν and π 1 = µ 1 . Then c T (y 1 , y 2 ) dπ = c(x, y) dQ # π, so

T c T (ν, µ 1 ) = inf π∈Q # Π(ν,µ 1 )
c(x, y)dπ.

But it is easily seen that

Q # Π(ν, µ 1 = Π(T -1 # ν, µ o ). Consequently T c T (ν, µ 1 ) = T c (T -1 # ν, µ o ). Since µ o satisfies the transport-entropy inequality α(T c ) ≤ H, it holds α T c (T -1 # ν, µ o ) ≤ H(T -1 # ν|µ o ).
But it is easy to check , with Proposition B.1 and the fact that T is one-one, that

H(T -1 # ν|µ o ) = H(ν|T # µ o ). Hence α (T c T (ν, µ 1 )) ≤ H(ν|µ 1 ),
for all ν ∈ P(Y ).

Remark 9.8. This contraction property was first observed by Maurey (see [START_REF] Maurey | Some deviation inequalities[END_REF]Lemma 2]) in the context of inf-convolution inequalities. Theorem 9.7 is a simple but powerful tool to derive new transport-entropy inequalities from already known ones.

Sufficient conditions on R. Let us recall that a probability measure µ on R is said to satisfy Cheeger inequality with the constant λ 0 if

(46) |f (x) -m(f )| dµ(x) ≤ λ |f ′ (x)| dµ(x),
for all f : R → R sufficiently smooth, where m(f ) denotes a median of f under µ.

Using the contraction argument presented above, Gozlan obtained the following theorem ([50, Theorem 2]).

Theorem 9.9. Let θ : [0, ∞) → [0, ∞) be such that θ(t) = t 2 for all t ∈ [0, 1], t → θ(t)
t is increasing and sup t>0 θ(2t) θ(t) < +∞ and let µ be a probability measure on R which verifies Cheeger inequality for some λ o > 0. The following propositions are equivalent :

(1) The probability measure µ verifies the transport cost inequality T θ ≤ CH, for some C > 0.

(2) The constants K + (ε) and K -(ε) defined by

K + (ε) = sup x≥m +∞ x e εθ(u-x) dµ(u) µ[x, +∞) and K -(ε) = sup x≤m x -∞ e εθ(x-u) dµ(u) µ(-∞, x]
are finite for some ε > 0, where m denotes the median of µ.

The condition K + and K -finite is always necessary to have the transport-entropy inequality (see [START_REF] Gozlan | Characterization of Talagrand's like transportation-cost inequalities on the real line[END_REF]Corollary 15]). This condition is sufficient if Cheeger inequality holds. Cheeger inequality is slightly stronger than Poincaré inequality. On the other hand transport-entropy inequalities of the form T θ ≤ H, with a function θ as above, imply Poincaré inequality (Theorem 8.11). So Theorem 9.9 offers a characterization of transport-entropy inequalities except perhaps on the "small" set of probability measures verifying Poincaré but not Cheeger inequality.

Sketch of proof. We will only prove the sufficiency of the condition K + and K -finite. Moreover, to avoid technical difficulties, we shall only consider the case θ(t) = t 2 . Let dµ o (x) = 1 2 e -|x| dx be the two-sided exponential measure on R. According to a result by Talagrand [START_REF] Talagrand | Transportation cost for Gaussian and other product measures[END_REF] the probability µ o verifies the transport-entropy inequality

T co ≤ C o H, with the cost function c o (x, y) = min(|x -y| 2 , |x -y|), for some C o > 0.
the cumulative distribution functions of µ and µ o defined by 23), transports the probability µ o onto the probability µ :

F (x) = µ(-∞, x] and F o (x) = µ o (-∞, x], x ∈ R. The monotone rearrangement map T : R → R defined by T (x) = F -1 • F o , (
T # µ o = µ.
Consequently, by application of the contraction Theorem 9.7, the probability µ verifies the transport-cost inequality

T c T o ≤ C o H, with c T o (x -y) = c o (T -1 (x) -T -1 (y))
. So, all we have to do is to show that there is some constant a > 0 such that c o (T -1 (x)-T -1 (y)) ≥ 1 a 2 |x-y| 2 , for all x, y ∈ R. This condition is equivalent to the following

|T (x) -T (y)| ≤ a min(|x -y|, |x -y| 1/2 ), x, y ∈ R.
In other words, we have to show that T is a-Lipschitz and a-Hölder of order 1/2.

According to a result by Bobkov and Houdré, µ verifies Cheeger inequality [START_REF] Gao | Transportation-information inequalities for Gibbs measures[END_REF] with the constant λ o if and only if T is λ o -Lipschitz (see [START_REF] Bobkov | Isoperimetric constants for product probability measures[END_REF]Theorem 1.3]).

To deal with the Hölder condition, observe that if T is a-Hölder on [0, ∞) and on R -, then it is √ 2a-Hölder on R. Let us treat the case of [0, ∞), the other case being similar. The condition T is a-Hölder on [0, ∞) is equivalent to

T -1 (x + u) -T -1 (x) ≥ u 2 a 2 , x ≥ m, u ≥ 0. But a simple computation gives : T -1 (x) = -log(2(1-F (x))), for all x ≥ m. So the condition above reads (47) 1 -F (x + u) 1 -F (x) ≤ e -u 2 a 2 , x ≥ m, u ≥ 0. Since, K + (ε) = sup x≥m R +∞ x e ε(u-x) 2 dµ(u) µ[x,+∞)
is finite, an application of Markov inequality yields

1 -F (x + u) 1 -F (x) ≤ K + (ε)e -εu 2 , x ≥ m, u ≥ 0.
On the other hand the Lipschitz continuity of T can be written

1 -F (x + u) 1 -F (x) ≤ e -u λo , x ≥ m, u ≥ 0.
So, if a > 0 is chosen so that u 2 a 2 ≤ max u λo , εu 2log K + (ε) , then [START_REF] Gentil | Modified logarithmic Sobolev inequalities and transportation inequalities[END_REF] holds and this completes the proof.

The following corollary gives a concrete criterion to decide whether a probability measure on R verifies a given transport-entropy inequality. It can be deduced from Theorem 9.9 thanks to an estimation of the integrals defining K + and K -. We refer to [START_REF] Gozlan | Characterization of Talagrand's like transportation-cost inequalities on the real line[END_REF] for this technical proof.

Corollary 9.10. Let θ : [0, ∞) → [0, ∞) of class C 2 be as in Theorem 9.9 and let µ be a probability measure on R with a density of the form dµ

(x) = e -V (x) dx, with V of class C 2 . Suppose that θ ′′ θ ′2 (x) → 0 and V ′′ V ′2 (x) → 0 when x → If there is some a > 0 such that lim sup x→±∞ θ ′ (a|x|) |V ′ (m + x)| < +∞,
with m the median of µ, then µ verifies the transport-entropy inequality T θ ≤ CH, for some C > 0.

Note that this corollary generalizes Cattiaux and Guillin's condition [START_REF] Gao | Bernstein type's concentration inequalities for symmetric Markov processes[END_REF].

Poincaré inequalities for non-Euclidean metrics. Our aim is now to partially generalize to the multidimensional case the approach explained in the preceding section. The two main ingredients of the proof of Theorem 9.9 were the following :

• The fact that dµ o (x) = 1 2 e -|x| dx verifies the transport-entropy inequality T c ≤ CH with the cost function c(x, y) = min(|x -y| 2 , |x -y|). Let us define the cost function c 1 (x, y) = min(|x -y| 2 , |x -y| 2 2 ) on R k equipped with its Euclidean distance. We have seen in Corollary 8.14 that a probability measure on R k verifies the transport-entropy inequality T c 1 ≤ C 1 H for some C 1 > 0 if and only if it verifies Poincaré inequality with a constant C 2 > 0 related to C 1 .

• The fact that the application T sending µ o on µ was both Lipschitz and 1/2-Hölder.

Consequently, the application ω = T -1 which maps µ on µ o , behaves like x for small values of x and like x 2 for large values of x.

So we can combine the two ingredients above by saying that"the of µ by an application ω which resembles ± max(|x|, |x| 2 ) verifies Poincaré inequality." It appears that this gets well in higher dimension and gives a powerful way to prove transport-entropy inequalities.

Let us introduce some notation. In the sequel, ω : R → R will denote an application such that x → ω(x)/x is increasing on (0, +∞), ω(x) ≥ 0 for all x ≥ 0, and ω(-x) = -ω(x) for all x ∈ R. It will be convenient to keep the notation ω to denote the application R k → R k : (x 1 , . . . , x k ) → (ω(x 1 ), . . . , ω(x k )). We will consider the metric d ω defined on R k by

d ω (x, y) = |ω(x) -ω(y)| 2 = k i=1 |ω(x i ) -ω(y i )| 2 , x, y ∈ R k .
Theorem 9.11. Let µ be a probability measure on R k . The following statements are equivalent.

(1) The probability μ = ω # µ verifies Poincaré inequality with the constant C:

Var μ(f ) ≤ C |∇f | 2 2 dμ,
for all f : R k → R smooth enough. (2) The probability µ verifies the following weighted Poincaré inequality with the constant C > 0:

(48) Var µ (f ) ≤ C k i=1 1 ω ′ (x i ) 2 ∂f ∂x i (x) 2 dµ(x),
for all f : R k → R smooth enough. (3) The probability µ verifies the transport-entropy inequality T c ≤ H, with the cost function c(x, y) = θ 1 (ad ω (x, y)) for some a > 0, with θ 1 (t) = min(t 2 , t), t ≥ 0. More precisely,

:π 0 =ν,π 1 =µ R k ×R k min a 2 |ω(x) -ω(y)| 2 2 , a|ω(x) -ω(y)| 2 dπ(x, y) ≤ H(ν|µ), (49) inf π 
for all ν ∈ P(R k ).

The constants C and a are related in the following way: (1) implies ( 3) with a = 1 τ √ C , where τ a universal constant, and (3) implies (1) with C = 1 2a 2 .

Proof. The equivalence between (1) and ( 2) is straightforward. Let us show that (1) implies (3). Indeed, according to Corollary 8.14, μ verifies the transportentropy inequality T c ≤ H with c(x, y) = θ 1 (a|x-y| 2 ), and a = 1 τ √ C . according to the contraction Theorem 9.7, µ which is the image of μ under the map ω -1 verifies the transport-entropy inequality T c ≤ H where c(x, y) = c(ω(x), ω(y)) = θ 1 (ad ω (x, y)). The proof of the converse is similar. Definition 9.12. µ verifies [START_REF] Gentil | Equation de Hamilton-Jacobi et inégalité entropiques généralisées[END_REF], one says that the inequality P(ω, C) holds. Remark 9.13. If f : R k → R let us denote by |∇f | ω (x) the "length of the gradient" of f at point x respect to the metric d ω defined above. By definition,

|∇f | ω (x) = lim sup y→x |f (y) -f (x)| d ω (x, y) , x ∈ R k .
It is not difficult to see that µ verifies the inequality P(ω, C) if and only if it verifies the following Poincaré inequality

Var µ (f ) ≤ C |∇f | 2 ω dµ,
for all f smooth enough. So, the inequality P(ω, • is a true Poincaré inequality for the non-Euclidean metric d ω .

So according to Theorem 9.11, the Poincaré inequality ( 48) is qualitatively equivalent to the transport cost inequality [START_REF] Gozlan | Integral criteria for transportation cost inequalities[END_REF]. Those transport-entropy inequalities are rather unusual, but can be compared to more classical transport-entropy inequalities using the following proposition.

Proposition 9.14. The following inequality holds

(50) θ 1 (ad ω (x, y)) ≥ θ 1 a √ k k i=1 θ 1 • ω |x i -y i | 2 , x, y ∈ R k .
We skip the technical proof of this inequality and refer to [51, Lemma 2.6 and Proof of Proposition 4.2]. Let us emphasize an important particular case. In the sequel, ω 2 : R → R will be the function defined by ω 2 (x) = max(x, x 2 ), for all ≥ 0 and such that ω 2 (-x) = -ω 2 (x), for all x ∈ R.

Corollary 9.15. If a probability measure µ on R k verifies the inequality P(ω 2 , C) for some C > 0 then it verifies the inequality T 2 (4ω 2 (τ √ kC)), where τ some universal constant.

In other words, a sufficient condition for µ to verify T 2 is that the image of µ under the map ω 2 verifies Poincaré inequality. We do not know if this condition is also necessary.

Proof. According to Theorem 9.11, if µ verifies P(ω 2 , C) then it verifies the transport-entropy inequality T c ≤ H with the cost function c(x, y) = θ 1 (ad ω 2 (x, y)), with a = 1 τ √ C . According to [START_REF] Gozlan | Characterization of Talagrand's like transportation-cost inequalities on the real line[END_REF], one has

θ 1 (ad ω 2 (x, y)) ≥ θ 1 a √ k k i=1 θ 1 • ω 2 |x i -y i | 2 = θ 1 1 τ √ kC 4 |x -y| 2 2 , since θ 1 • ω 2 (t) = t 2
, for all t ∈ R. Observing that 1 θ 1 (1/t) = ω 2 (t), t > 0, one concludes that µ verifies the inequality T 2 (4ω 2 (τ √ kC)), which completes the proof.

Poincaré inequality has been deeply studied by many authors and several necessary or sufficient conditions are now available for this functional inequality. Using the equivalence [START_REF] Gozlan | Poincaré inequality and dimension free concentration of measure[END_REF] µ verifies P(ω, C) ⇔ ω # µ verifies P(C),

it is an easy job to convert the known criteria for Poincaré inequality into criteria for the P(ω, • ) inequality.

In dimension one, one has a necessary and sufficient condition.

Proposition 9.16. An absolutely continuous probability measure µ on R with density h > 0 satisfies the inequality P(ω, C) for some C > 0 if and only if

D - ω = sup x≤m µ(-∞, x] m x ω ′ (u) 2 h(u) du < +∞ and D + ω = sup x≥m µ[x, +∞) x m ω ′ (u) 2 h(u) du < +∞, (52) 
where m denotes the median of µ. Moreover the optimal constant C denoted by C opt verifies

max(D - ω , D + ω ) ≤ C opt ≤ 4 max(D - ω , D + ω ).
Proof. This proposition follows at once from the celebrated Muckenhoupt condition for Poincaré inequality (see [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF]). According to Muckenhoupt condition, a probability measure dν = h dx having a positive density with respect to Lebesgue measure, satisfies Poincaré inequality if and only if

D -= sup x≤m ν(-∞, x] m x 1 h(u) du < +∞ and D + = sup x≥m ν[x, +∞) x m 1 h(u) du < +∞,
and the optimal constant C opt verifies -, D + ) ≤ C opt ≤ 4 max(D -, D + ). Now, according to (51), µ satisfies P(ω, C) if and only if μ = ω # µ satisfies Poincaré inequality with the constant C. The density of μ is h

= h•ω -1 ω ′ •ω -1 .
Plugging h into Muckenhoupt conditions immediately gives us the result.

Estimating the integrals defining D -and D + by routine arguments, one can obtain the following workable sufficient conditions (see [START_REF] Gozlan | Poincaré inequality and dimension free concentration of measure[END_REF]Proposition 3.3] for a proof). Proposition 9.17. Let µ be an absolutely continuous probability measure on R with density dµ(x) = e -V (x) dx. Assume that the potential V is of class C 1 and that ω verifies the following regularity condition:

ω ′′ (x) ω ′2 (x) ----→ x→+∞ 0. If V is such that lim sup x→±∞ |ω ′ (x)| |V ′ (x)| < +∞,
then the probability measure µ verifies the inequality P(ω, C) for some C > 0.

Observe that this proposition together with the inequality (50) furnishes another proof of Corollary 9.10 and enables us to recover (as a particular instance, taking ω = ω 2 ) Cattiaux and Guillin's condition for T 2 .

In dimension it is well known that a probability dν(x) = e -W (x) dx on R k satisfies Poincaré inequality if W verifies the following condition:

lim inf |x|→+∞ 1 2 |∇W | 2 2 (x) -∆W (x) > 0.
This condition is rather classical in the functional inequality literature. The interested reader can find a nice elementary proof in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF]. Using (51) again, it is not difficult to derive a similar multidimensional condition for the inequality P(ω, • ) (see [START_REF] Gozlan | Poincaré inequality and dimension free concentration of measure[END_REF]Proposition 3.5] for a proof).

Transport-information inequalities

Instead of the transport-entropy inequality α(T c ) ≤ H, Guillin, Léonard, Wu and Yao have investigated in [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF] the following transport-information inequality

(T c I) α(T c (ν, µ)) ≤ I(ν|µ),
for all ν ∈ P(X ), where the relative entropy H(ν|µ) is replaced by the Donsker-Varadhan information I(ν|µ) of ν with respect to µ which was defined at [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF].

This section reports some results of [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF].

Background material from large deviation theory. We have seen in Section 5 that any transport-entropy inequality satisfied by a probability measure µ is connected to the large deviations of the empirical measure L n = 1 n n i=1 δ X i of the sequence (X i ) i≥1 of independent copies of µ-distributed random variables. The link between these two notions is Sanov's theorem which asserts that L n obey the large deviation principle with the relative entropy ν → H(ν|µ) as its rate function. In this section, we are going to play the same game replacing (X i ) i≥1 with an X -valued time-continuous Markov process (X t ) t≥0 with a unique invariant probability measure µ. Instead of the large deviations of L n , it is natural to consider the large deviations of the occupation measure

L t := 1 t t 0 δ Xs ds
as the length of observation t tends to infinity. The random probability measure L t describes the ratio of time the random path (X s ) 0≤s≤t has spent in each subset of X . If (X t ) t≥0 is µ-ergodic, then the ergodic theorem states that, almost surely, L t tends to µ as t tends to infinity. If in addition (X t ) t≥0 is µ-reversible, then L t obeys the large deviation principle with some rate function I( • |µ). Roughly speaking:

(53) P(L t ∈ A) ≍ t→∞ e -t inf ν∈A I(ν|µ) .
The functional ν ∈ P(X ) → I(ν|µ) ∈ [0, ∞] measures some kind of difference between ν and µ, some quantity of information that ν brings out with respect to the prior knowledge of µ. With the same strategy as in Section 5, based on similar heuristics, we are lead to a new class of transport inequalities which are called transport-information inequalities.

We give now a rigorous statement of ( 53) which plays the same role as Sanov's theorem played in Section 5.

Let the Markov process (X t ) t≥0 satisfy the assumptions which have been described at Section 8.2. Recall that the Donsker-Varadhan information I(•|µ) is defined at [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF].

Theorem 10.1 (Large deviations of the occupation measure). Denoting P β ( • ) := X P x ( • ) dβ(x) for any initial probability measure β, suppose as in Remark 8.4 that ((X t ) t≥0 , P µ ) is a stationary ergodic process. In addition to these assumptions on the Markov process, suppose that the initial law β ∈ P(X ) is absolutely continuous with respect to µ and dβ/dµ is in L 2 (µ). Then, L t obeys the large deviation principle in P(X ) with the rate function I( • |µ), as t to infinity. This means that, for all Borel measurable A ⊂ P(X ),

-inf ν∈int(A) I(ν|µ) ≤ lim inf t→+∞ 1 t log P β (L t ∈ A) ≤ lim sup t→+∞ 1 t log P β (L t ∈ A) ≤ -inf ν∈cl(A) I(ν|µ)
where int(A) denotes the interior of A and cl(A) its closure (for the weak topology).

This was proved by Donsker and Varadhan [START_REF] Donsker | Asymptotic evaluations of certain Markov process expectations for large time[END_REF] under some conditions of absolute continuity and regularity of P (x, dy) but without any restriction on the initial law. The present statement has been proved by Wu [111,Corollary B.11].

The inequalities W 1 I and W 2 I. The derivation of the large deviation results for L t as t tends to infinity is intimately related to the Feynman-Kac semigroup

P u t g(x) := E x g(X t ) exp t 0 u(X s ) ds .
When u is bounded, (P u t ) is a strongly continuous semigroup of bounded operators on L 2 (µ) whose generator is given by L u g = Lg + ug, for all g ∈ D 2 (L u ) = D 2 (L).

Theorem 10.2 (Deviation of the empirical mean, [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]). Let d be a lower semicontinuous metric on the polish space X , (X t ) be a µ-reversible and ergodic Markov process on X and α a function in the class A, see Definition 3.1.

(1) The following statements are equivalent:

-∀ν ∈ P(X ),

I(ν|µ) < ∞ ⇒ X d(x o , • ) dν < ∞; -E µ exp λ o 1 0 d(x o , X t ) dt < ∞ for some λ o > 0.
(2) Under this condition, the subsequent statements are equivalent.

(a) The following inequality holds true:

(W 1 I) α(W 1 (ν, µ)) ≤ I(ν|µ),
for all ν ∈ P(X ). (b) For all Lipschitz function u on X with u Lip ≤ 1 and all λ, t ≥ 0,

P λu t L 2 (µ) ≤ exp t[λ X u dµ + α ⊛ (λ)] ;
(c) For all Lipschitz function u on X with u Lip ≤ 1, X u dµ = 0 and all λ ≥ 0, lim sup

t→∞ 1 t log E µ exp λ t 0 u(X s ) ds ≤ α ⊛ (λ);
(d) For all Lipschitz function u on X , r, t > 0 and β ∈ P(X ) such that dβ/dµ ∈ L 2 (µ),

P β 1 t t 0 u(X s ) ds ≥ X u dµ + r ≤ dβ dµ 2 exp -tα (r/ u Lip ) .
Remark 10.3. The Laplace-Varadhan principle allows us to identify the left-hand side of the inequality stated at (c), so that (c) is equivalent to: For all Lipschitz function u on X with u Lip ≤ 1, X u dµ = 0, all λ ≥ 0 and all ν ∈ P(X ),

λ X u dν -I(ν|µ) ≤ α ⊛ (λ).
The proof of statement (1) follows the proof of ( 27) once one knows that ν → I(ν|µ) and u → Υ(u) := log P u 1 L 2 (µ) = 1 t log P u t L 2 (µ) (for all t > 0) are convex conjugate to each other. The idea of the proof of the second statement is pretty much the same as in Section 5. As was already mentioned, one has to replace Sanov's theorem with Theorem 10.1. The equivalence of (a) and (c) can be obtained without appealing to large deviations, but only invoking the duality of inequalities stated at Theorem 3.5 and the fact that I and Υ are convex conjugate to each other, as was mentioned a few lines above. us turn our attention to the analogue of T 2 .

Definition 10.4. The probability measure µ ∈ P 2 (X ) satisfies the inequality

W 2 I(C) with constant C if W 2
2 (ν, µ) ≤ C 2 I(ν|µ), for all ν ∈ P(X ). Proposition 10.6 (W 2 I in relation with LS and P, [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]). In the framework of the Riemannian manifold as above, the following results hold. Proof. • Proof of (a). By Theorem 8.12, we know that LS(C) implies T 2 (C). Hence, W 2 (ν, µ) ≤ 2CH(ν|µ) ≤ 2C I(ν|µ).

• Proof of (b). The proof follows from the usual linearization procedure. Set µ ε = (1 + εg)µ for some smooth and compactly supported g with g dµ = 0, we easily get lim ε→0 I(µ ε |µ)/ε 2 = 1 4 E(g, g) and by Otto-Villani [89, p.394], there exists r such that g 2 dµ ≤ E(g, g) W 2 (µε,µ) ε + r ε W 2 2 (µ ε , µ). Using now W 2 I(C) we get

g 2 dµ ≤ C E(g, g) I(µ ε |µ) ε 2 + rC 2 ε I(µ ε |µ).
Letting ε → 0 gives the result.

• Proof of (c). It is a direct application of the HWI inequality, see Corollary 7.4.

Tensorization.

In Section 1 we have already seen how transport-entropy inequalities tensorize. We revisit tensorization, but this time we replace the relative entropy H(•|µ) with the Donsker-Varadhan I(•|µ). This will be quite similar in spirit to what as already been done in Section 1, but we are going to use alternate technical lemmas which will prepare the road to Section 11 where a Gibbs measure will replace our product measure. This approach which is partly based on Gozlan & Léonard [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] is developed in Guillin, Léonard, Wu & Yao's article [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF].

On the polish product space X (n) := n i=1 X i equipped with the product measure µ := ⊗ n i=1 µ i , consider the cost function

⊕ i c i (x, y) := n i=1 c i (x i , y i ), x, y ∈ X (n)
where for each index i, c i is lower semicontinuous on X 2 i and assume that for each 1 ≤ i ≤ n, µ i ∈ P(X i ) satisfies the transport-information inequality [START_REF] Gozlan | A refined version of Otto and Villani theorem[END_REF] 

α i (T c i (ν, µ i )) ≤ I E i (ν|µ i ), ν ∈ P(X i
where I E i (ν|µ i ) is the Donsker-Varadhan information related to some Dirichlet form (E i , D(E i )), and α i stands in the class A, see Definition 3.1. Define the global Dirichlet form ⊕ µ i E i by

D(⊕ µ i E i ) := g ∈ L 2 (µ) : g e x i
i ∈ D(E i ), for µ-a.e. x i and

X (n) n i=1 E i (g e x i i , g e x i i ) dµ(x) < +∞
where g e

x i i : x i → g e x i i (x i ) := g(x) with x i := (x 1 , • • • , x i-1 , x i+1 , • • • , x n ) considered as fixed and (55) ⊕ µ i E i (g, g) := X (n) n i=1 E i (g e x i i , g e x i i ) dµ(x), g ∈ D(⊕ µ i E i ).
Let I ⊕ i E i (ν|µ) be the Donsker-Varadhan information associated with (⊕ µ i E i , D(⊕ µ i E i )), see [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]. We denote α 1 • • • α n the inf-convolution of α 1 , . . . , α n which is defined by

α 1 • • • α n (r) = inf{α 1 (r 1 ) + • • • + α n (r n ); r 1 , . . . , r n ≥ 0, r 1 + • • • + r n = r}, r ≥ 0.
Theorem 10.7 ( [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]). Assume that for each i = 1, • • • , n, µ i satisfies the transport-entropy inequality Then, the product measure µ the following transport-entropy inequality

(56) α 1 • • • α n (T ⊕c i (ν, µ)) ≤ I ⊕ i E i (ν|µ), ν ∈ P(X (n) ).
This result is similar to Proposition 1.8. But its proof will be different. It is based on the following sub-additivity result for the transport cost of a product measure.

Let (X i ) 1≤i≤n be the canonical process on X (n) . For each i, X i = (X j ) 1≤j≤n;j =i is the without its value at index i.

Given a probability measure ν on X (n) , ν e

x i i = ν(X i ∈ •| X i = x i ) denotes the regular conditional distribution of X i knowing that X i = x i under ν and ν i = ν(X i ∈ •)
denotes the i-th marginal of ν. Proposition 10.8 ([57]). Let µ = n i=1 µ i be a product probability measure on X (n) . For all ν ∈ P(X (n) ),

T ⊕c i (ν, µ) ≤ X (n) n i=1 T c i (ν e x i i , µ i ) dν(x).
The proof of this proposition is given in the Appendix at Proposition A.2.

The following additivity property of the Fisher information will be needed. It holds true even in the dependent case. Lemma 10.9 ([57]). Let ν, µ be probability measures on X (n) such that I ⊕ i E i (ν|µ) < +∞. Then,

I ⊕ i E i (ν|µ) = X (n) n i=1 I E i (ν e x i i |µ e x i i ) dν(x).
Sketch of proof. Let f be a regular enough function. This why this is only a sketch of proof, because an approximation argument which we do not present here, is needed to obtain the result for any f in the domain D(⊕ i E i ).

Then, dν e

x i i dµ e

x i i

(x i ) = f e x i i (x i ) µ e x i i (f e x i i )
, ν-a.s. where f e x i i is the function f of x i with x i fixed. For ν-a.e. x i ,

I E i (ν e x i i |µ e x i i ) = E i   f e x i i µ e x i i (f e x i i ) , f e x i i µ e x i i (f e x i i )   = 1 µ e x i i (f e x i i ) E i ( f e x i i , f e x i i ).
Thus,

X (n) n i=1 I E i (ν e x i i |µ e x i i ) dν(x) = X (n) f (x) n i=1 1 µ e x i i (f e x i i ) E i ( f e x i i , f e x i i ) dµ(x) = X (n) n i=1 E i ( f e x i i , f e x i i ) dµ(x) = ⊕ µ i E i ( f , f ) = I ⊕ i E i (ν|µ),
which completes the sketch of the proof. This additivity is different from the super-additivity of the Fisher information for a product measure obtained by Carlen [START_REF] Carlen | Superadditivity of Fisher's information and logarithmic Sobolev inequalities[END_REF].

We are now ready to write the proof of Theorem 10.7.

Proof of Theorem 10.7. Without loss of generality we may assume that I(ν|µ) < +∞. By Proposition 10.8, Jensen inequality and the definition of

α 1 • • • α n , α 1 • • • α n (T ⊕c i (ν, µ)) ≤ α 1 • • • α n X (n) n i=1 T c i (ν e x i i , µ i ) dν(x) ≤ X (n) α 1 • • • α n n i=1 T c i (ν e x i i , µ i ) dν(x) ≤ X (n) n i=1 α i (T c i (ν e x i i , µ i )) dν(x) ≤ X (n) n i=1 I E i (ν e x i i |µ i ) dν(x).
The last quantity is equal to I ⊕E i (ν|µ), by Lemma 10.9.

As an example of application, let (X i t ) t≥0 , i = 1, • • • , n be n processes with the same transition semigroup (P t ) and the same symmetrized Dirichlet form E on L 2 (ρ), and conditionally independent once the initial configuration (

X i 0 ) i=1,••• ,n is fixed. Then X t := (X 1 t , • • • , X n t
) is a Markov process with the symmetrized Dirichlet form given by

⊕ ρ n n E(g, g) = n i=1 E(g e x i i , g e x i i ) ρ(dx 1 ) • • • ρ(dx n ).
Corollary 10.10 ( [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]).

(1) Assume that ρ satisfies the transport-information inequality α(T c ) ≤ I E on X with α in the class A. Then ρ n satisfies nα T ⊕nc (ν, ρ n ) n ≤ I ⊕nE (ν|ρ n ), ν ∈ P(X n ).

(2) Suppose in particular that ρ verifies α(T d ) ≤ I E for the metric lower semicontinuous cost d. Then, for any Borel measurable d-Lipschitz(1) function u, any initial measure β on X n with dβ/dρ n ∈ L 2 (ρ n ) and any t, r > 0, r) .

P β 1 n n i=1 1 t t 0 u(X i s ) ds ≥ ρ(u) + r ≤ dβ dρ n 2 e -ntα(
(

) If ρ satisfies W 2 I(C) : T d 2 ≤ C 2 I E , then ρ n satisfies W 2 I(C) : T ⊕nd 2 ≤ C 2 I ⊕nE . 3 
Proof. As α n (r) = nα(r/n), the first part (1) follows from Theorem 10.7. The second part (2) follows from Theorem 10.2 and the third part (3) is a direct application of (1).

Transport-information inequalities in the literature. Several integral criteria are worked out in [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF], mostly in terms of Lyapunov functions. Note also that the assumptions in [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF] are a little less restrictive than those of the present section, in particular the Markov process might not be reversible, but it is required that its Dirichlet form is closable.

For further relations between α(T ) ≤ I and other functional inequalities, one can read the paper [START_REF] Guillin | Transportation-information inequalities for markov processes (II) : relations with other functional inequalities[END_REF] by Guillin, Léonard, Wang and Wu.

In [START_REF] Gao | Bernstein type's concentration inequalities for symmetric Markov processes[END_REF], Gao, Guillin and Wu have refined the above concentration results in such a way that Bernstein inequalities are accessible. The strategy remains the same since it is based on the transport-information inequalities of Theorem 10.2, but the challenge is to express the constants in terms of asymptotic variances. Lyapunov function conditions allow to derive explicit rates.

An interesting feature with Theorem 10.2 is that it allows to treat time-continuous Markov processes with jumps. This is widely done in [START_REF] Gao | Bernstein type's concentration inequalities for symmetric Markov processes[END_REF]. But processes with jumps might not verify a Poincaré inequality even in presence of good concentration properties, for instance considering processes with strong pulling-back drifts. In such cases, even the α(T ) ≤ I strategy fails. An alternative attack of the problem of finding concentration estimates for the empirical means (of Lipschitz observables) has been performed by Wu in [START_REF] Wu | Transportation inequalities for stochastic differential equations of pure jumps[END_REF] where usual transport inequalities α(T ) ≤ H at the level of the Markov transition kernel are successfully exploited.

Gibbs measures are also investigated by Gao and Wu [START_REF] Gao | Transportation-information inequalities for Gibbs measures[END_REF] by means of transport-information inequalities. This is developed in the next Section 11.

Transport inequalities for Gibbs measures

We have seen transport inequalities with respect to a reference measure µ and how to derive transport inequalities for the product measure µ = ρ n from transport inequalities for ρ. A step away from this product measure structure, one is naturally lead to consider Markov structures. This is the case with Gibbs measures, a description of equilibrium states in statistical physics. Three natural problem encountered with Gibbs measures are:

(1) Find criteria for the uniqueness/non-uniqueness of the solutions to the Dobrushin-Lanford-Ruelle (DLR) problem associated with the local specifications (see next subsection below). This uniqueness corresponds to the absence of phase coexistence of the physical system and the unique solution is our Gibbs measure µ. (2) Obtain concentration estimates for the Gibbs measures.

(3) In case of uniqueness, estimate the speed of convergence of the Glauber dynamics (see below) towards the equilibrium µ.

A powerful tool for investigating this program is the logarithmic Sobolev inequality. This is known since the remarkable contribution in 1992 of Zegarlinski [START_REF] Zegarlinski | Dobrushin uniqueness theorem and logarithmic Sobolev inequalities[END_REF], see also the papers [START_REF] Stroock | The equivalence between the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition[END_REF][START_REF] Stroock | The logarithmic Sobolev inequality for discrete spin systems on the lattice[END_REF] by Stroock & Zegarlinski. Lecture notes on the subject have been written by Martinelli [START_REF] Martinelli | Lectures on Glauber dynamics for discrete spin models[END_REF], Royer [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours spécialisés[END_REF] and Guionnet & Zegarlinski [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF]. An alternate approach is to exchange logarithmic Sobolev inequalities with Poincaré inequality. Indeed, in some situations both these inequalities are equivalent [START_REF] Stroock | The equivalence between the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition[END_REF][START_REF] Stroock | The logarithmic Sobolev inequality for discrete spin systems on the lattice[END_REF].

Recently, another approach of this problem has been proposed which consists of replacing logarithmic Sobolev inequalities by transport inequalities. This is what this section is about. The main recent contributions in this area are due to Marton [START_REF] Marton | Measure concentration for Euclidean distance in the case of dependent random variables[END_REF], Wu [START_REF] Wu | Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition[END_REF], Gao & Wu [START_REF] Gao | Transportation-information inequalities for Gibbs measures[END_REF] and Ma, Shen, Wang & Wu [START_REF] Ma | Transportation inequalities: From Poisson to Gibbs measures[END_REF].

Gibbs measures. The configuration space is X I where X is the spin space and I is a countable set of sites, for instance a finite set with a graph structure or the lattice I = Z d . A configuration is x = (x i ) i∈I where x i ∈ X is the spin value at site i ∈ I. The spin space might be finite, for instance X = {-1, 1} as in the Ising model, or infinite, for instance = S k the k-dimensional sphere or X = R k . It is assumed that X is a polish space furnished with its Borel σ-field. Consequently, any conditional probability measure admits a regular version.

Let us introduce some notation. For any i ∈ I, x i is the restriction of the configuration x to {i} c := I \ {i}. Given ν ∈ P(X I ), one can consider the family of conditional probability laws of X i knowing X i where X = (X i ) i∈I is the canonical configuration. We denote these conditional laws:

ν e x i i := µ(X i ∈ •| X i = x i ), i ∈ I, x ∈ X I .
As different projections of the same ν, these conditional laws satisfy a collection of compatibility conditions.

The DLR problem is the following inverse problem. Consider a family of prescribed local specifications µ e x i i , i ∈ I, x ∈ X I which satisfy the appropriate collection of compatibility conditions. Does there exist some µ P(X I ) whose conditional distributions are precisely these prescribed local specifications? Is there a unique such µ? The solutions of the DLR problem are called Gibbs measures.

Glauber dynamics. It well-known that dµ(x) = Z -1 e -V (x) dx where Z is a normalizing constant, is the invariant probability measure of the Markov generator ∆ -∇V • ∇. This fact is extensively exploited in the semigroup approach of the Poincaré and logarithmic Sobolev inequalities. Indeed, these inequalities exhibit on their right-hand side the Dirichlet form E associated with this Markov generator. This differs from the WH inequalities such as T 1 or T 2 which do not give any role to any Dirichlet form: it is the main reason why we didn't encounter the semigroup approach in these notes up to now. But replacing the entropy H by the information I(•|µ), one obtains transport-information inequalities WI and the semigroups might have something to tell us.

Why should one introduce some dynamics related to a Gibbs measure? Partly because in practice the normalizing constant Z is inaccessible to computation in very high dimension, so that simulating a Markov process (X t ) t≥0 our Gibbs measure as its (unique) invariant measure during a long period of time allows us to compute estimates for average quantities. Another reason is precisely the semigroup approach which helps us deriving functional inequalities dealing with Dirichlet forms. This relevant dynamics, which is often called the Glauber dynamics, is precisely the Markov dynamics associated with the closure of the Dirichlet form which admits our Gibbs measure as its invariant measure. Now, let us describe the Glauber dynamics precisely.

Let µ be a Gibbs measure (solution of the DLR problem) with the local specifications {µ e

x i i ∈ P(X ); i ∈ I, x ∈ X I }. For each i ∈ I, x ∈ X I , consider a Dirichlet form (E e x i i , D(E e x i i ))
and define the global Dirichlet form E µ by

D(E µ ) := f ∈ L 2 (µ) : for all i ∈ I, f e x i i ∈ D(E e x i i ), for µ-a.e. x i and X I i∈I E e x i i (f e x i i , f e x i i ) dµ(x) < +∞ where f e x i i : x i → e x i i (x i ) := f (x) with x i considered as fixed and (57) E µ (f, f ) := X I i∈I E e x i i (f e x i i , f e x i i ) dµ(x), f ∈ D(E µ ).
Assume that E µ is closable. Then, the Glauber dynamics is the Markov process associated with the closure of E µ .

Example 11.1. An interesting example is given by the following extension of the standard Example 8.6. Let X be a complete connected Riemannian manifold. Consider a Gibbs measure µ solution to the DLR problem as above. For each i ∈ I and x ∈ X I , one-site Dirichlet form E e x i i is defined for any smooth enough function f on X by

E e x i i (f, f ) = X |∇f | 2 dµ e x i i
and the global Dirichlet form E µ which is defined by ( 57) is given for any smooth enough cylindrical function f on X I by

E µ (f, f ) = X I |∇ I f | 2 dµ
where ∇ I is the gradient on the product manifold X I . The corresponding Markov process is a family indexed by I of interacting diffusion processes, all of them sharing the same fixed (diffusion coefficient=2). This process on X I admits the Gibbs measure µ as an invariant measure.

Dimension-free tensorization property. It is well known that the Poincaré inequality P implies an exponentially fast L 2 -convergence as t tends to infinity of the law of X t to the invariant measure µ. a logarithmic Sobolev inequality LS implies a stronger convergence in entropy. Moreover, both P and LS enjoy a dimension-free tensorization property which is of fundamental importance when working in an infinite dimensional setting. This dimension-free tensorization property is also shared by T 2 = W 2 H, see Corollary 4.4, and by W 2 I, see Corollary 10.10-(3). Now, suppose that each one-site specification µ e x i i , for any i ∈ I and any x ∈ X I , satisfies a functional inequality with the dimension-free tensorization property. One can reasonably expect that, provided that the constants C e x i i in these inequalities enjoy some uniformity property in i and x, any Gibbs measure built with the local specifications µ e x i i also shares some non-trivial functional inequality (in the same family of inequalities). This is what Zegarlinski [START_REF] Zegarlinski | Dobrushin uniqueness theorem and logarithmic Sobolev inequalities[END_REF] discovered with bounded spin systems and LS. On the other hand, this inequality (say P or LS) satisfied by the Gibbs measures µ an exponentially fast convergence as t tends to infinity of the global Glauber dynamics to µ. By standard arguments, one can prove that this implies the uniqueness of the invariant measure and therefore, the uniqueness of the solution of the DLR problem.

In conclusion, some uniformity property in i and x of the inequality constants C e x i i is a sufficient condition for the uniqueness of the DLR problem and an exponentially fast convergence of the Glauber dynamics.

Recently, Marton [START_REF] Marton | Measure concentration for Euclidean distance in the case of dependent random variables[END_REF] and Wu [START_REF] Wu | Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition[END_REF] considered the "dimension-free" transport-entropy inequality T 2 and Gao & Wu [START_REF] Gao | Transportation-information inequalities for Gibbs measures[END_REF] the "dimension-free" transport-information inequality W 2 I in the setting of Gibbs measures. Dobrushin coefficients. Let d be a lower semicontinuous metric on X and let P p (X ) be the set of all Borel probability measures ρ on X such that X d p (ξ o , ξ) dρ(ξ) < ∞ with p ≥ 1. Assume that for each site i ∈ I and each boundary condition x i the specification µ e x i i is in P p (X ). For any i, j ∈ I, the Dobrushin interaction W p -coefficient is defined by

c p (i, j) := sup x,y; x=y off j W p µ e x i i , µ e y i i d(x j , y j )
where W p is the Wasserstein metric of order p on P p (X ) which is built on the metric d. Let c p = (c p (i, j)) i,j∈I denote the corresponding matrix which is seen as an endomorphism of ℓ p (I). Its operator norm is denoted by c p p .

Dobrushin [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and condition of itd regularity[END_REF][START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF] obtained a criterion for the uniqueness of the Gibbs measure (cf. Question (1) above) in terms of the coefficients c 1 (i, j) with p = 1. It is

sup j∈I i∈I c 1 (i, j) < 1.
This quantity is c 1 1 so that Dobrushin's condition expresses that c 1 is contractive on ℓ 1 (I) and the uniqueness follows from a fixed point theorem, see Föllmer's lecture notes [START_REF] Föllmer | Random fields and diffusion processes[END_REF] for this well-advised proof.

Wasserstein metrics on P(X I ). Let p ≥ 1 be fixed. The metric on X I is (58)

d p,I (x, y) := i∈I d p (x i , y i ) 1/p , x, y ∈ X I
and the Wasserstein metric W p,I on P(X I ) is built upon d p,I . One sees that it corresponds to the tensor cost d p p,I = ⊕ i∈I d p i with an obvious notation. Gao and Wu [START_REF] Gao | Transportation-information inequalities for Gibbs measures[END_REF] have proved the following tensorization result for the Wasserstein distance between Gibbs measures. Proposition 11.2. Assume that µ e x i i ∈ P p (X ) for all i ∈ I and x ∈ X I and also suppose that c p p < 1. Then, µ ∈ P p (X I ) and for all ν ∈ P p (X I ),

W p p,I (ν, µ) ≤ (1 -c p p ) -1 X I i∈I W p p (ν e x i i , µ e x i i ) dν(x).
Sketch of proof. As a first step, let us follow exactly the beginning of the proof of Proposition A.2 in the Appendix. Keeping the notation of Proposition A.2, we have

(59) E i∈I d p (U i , V i ) = W p p,I (ν, µ).
and we arrive at (67) which, with

c i = d p , is Ed p (U i , V i ) ≤ Ed p ( U i , V i ) = EW p p ν e U i i , µ e V i i
.

As in Marton's paper [START_REF] Marton | Measure concentration for Euclidean distance in the case of dependent random variables[END_REF], we can use the triangular inequality for W p and the definition of c p to obtain for all i ∈ I,

W p ν e U i i , µ e V i i ≤ W p ν e U i i , µ e U i i + j∈I, j =i c p (i, j)d(U j , V j ).
Putting both last inequalities together, we see that

(60) Ed p (U i , V i ) ≤ E   W p ν e U i i , µ e U i i + j∈I, j =i c p (i, j)d(U j , V j )   p
, for all i ∈ I, and summing them over all the sites i gives us

E i∈I d p (U i , V i ) ≤ E i∈I   W p ν e U i i , µ e U i i + j∈I, j =i c p (i, j)d(U j , V j )   p . Consider the norm A := (E i∈I |A i | p ) 1/p the random vector A = (A i ) i∈I . With A i = d(U i , V i ) and B i = W p ν e U i i , µ e U i i
, this inequality is simply

A ≤ c p A + B ,
since c p (i, i) = 0 for all i ∈ I. This implies that (1c p p ) A ≤ B with (59), is the announced result.

Similarly to the first step of the proof of Proposition A.2, this proof contains a measurability bug and one has to correct it exactly as in the complete proof of Proposition A.2.

Recall that the global Dirichlet form E µ is defined at [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]. The corresponding Donsker-Varadhan information is defined by

I E µ (ν|µ) = E µ ( √ f , √ f ) if ν = f µ ∈ P(X I ), f ∈ D(E µ ) +∞ otherwise.
Similarly, we define for each i ∈ I and x ∈ X I ,

I E e x i i (ρ|µ e x i i ) = E e x i i ( √ g, √ g) if ρ = gµ e x i i ∈ P(X ), g ∈ D(E e x i i ) +∞ otherwise.
We are now ready to present a result of tensorization of one-site W 2 I inequalities in the setting of Gibbs measures. Theorem 11.3 ([46]). Assume that for each site i ∈ I and any configuration x ∈ X I the local specifications are in P 2 (X ) and satisfy the following one-site W 2 I inequality

W 2 2 (ρ, µ e x i i ) ≤ C 2 I E e x i i (ρ|µ e x i i ), ρ ∈ P 2 (X ),
the constant C being uniform in i and x.

It is also assumed that the Dobrushin W 2 -coefficients satisfy c 2 2 < 1.

Then, any Gibbs measure µ is in P 2 (X I ) and satisfies the following W 2 I inequality:

W 2 2,I (ν, µ) ≤ C 2 1 -c 2 2 I E µ (ν|µ), ν ∈ 2 (X I ).
Proof. By Proposition 11.2, we have for all ν ∈ P 2 (X I )

W 2 2,I (ν, µ) ≤ (1 -c 2 2 ) -1 X I i∈I W 2 2 (ν e x i i , µ e x i i ) dν(x).
Since the local specifications satisfy a uniform inequality W 2 I, we obtain

W 2 2,I (ν, µ) ≤ C 2 1 -c 2 2 X I i∈I I E e x i i (ν e x i i |µ e x i i ) dν(x) = C 2 1 -c 2 2 I E µ (ν|µ)
where the last equality is Lemma 10.9.

We decided to restrict our attention to the case p = 2 because of its free-dimension property, but a similar result still holds with p > 1 the additional requirement that I is a finite set.

As a direct consequence, under the assumptions of Theorem 11.3, µ satisfies a fortiori the

W 1 I equality W 2 1,I (ν, µ) ≤ C 2 1 -c 2 2 I E µ (ν|µ), ν ∈ P 1 (X I ).
Therefore, we can derive from Theorem 10.2 the following deviation estimate for the Glauber dynamics.

Corollary 11.4 (Deviation of the Glauber dynamics). Suppose that µ is the unique Gibbs measure (for instance if c 1 1 < 1) and that the assumptions of Theorem 11.3 are satisfied. Then, the Glauber dynamics (X t ) t≥0 verifies the following deviation inequality. For all d 1,I -Lipschitz function u on X I (see [START_REF] Guionnet | Large random matrices: lectures on macroscopic asymptotics[END_REF] for the definition of d 1,I ), for all r, t > 0 and all β ∈ P(X I ) such that dβ/dµ ∈ L 2 (µ),

P β 1 t t 0 u(X s ) ds ≥ X I u dµ + r ≤ dβ dµ 2 exp - 1 -c 2 2 C 2 u 2 Lip tr 2 .
12. Free transport inequalities

The semicircular law is the probability distribution σ on R defined by

dσ(x) = 1 2π 4 -x 2 1I [-2,2] (x) dx.
This distribution plays a fundamental role in the asymptotic theory of Wigner random matrices.

Definition 12.1 (Wigner matrices). Let N be a positive integer; a (complex) N × N Wigner matrix M is an Hermitian random matrix such that the entries M (i, j) with i < j are i.i.d C-valued random variables with E[M (i, j)] = 0 and E[|M (i, j)| 2 ] = 1 and such that the diagonal entries M (i, i) are i.i.d centered real random variables independent of the offdiagonal entries and having finite variance. When the entries of M Gaussian random variables and E[M (1, 1) 2 ] = 1, M is referred to as the Gaussian Unitary Ensemble (GUE).

Let us recall the famous Wigner theorem (see e.g [START_REF] Anderson | An Introduction to Random Matrices[END_REF] or [START_REF] Guionnet | Large random matrices: lectures on macroscopic asymptotics[END_REF] for a proof).

Theorem 12.2 (Wigner theorem). Let (M N ) N ≥0 be a sequence of complex Wigner matrices such that max N ≥0 (E[M N (1, 1) 2 ]) < +∞ and let L N be the empirical distribution of

X N := 1 √ N M N , that is to say L N = 1 N N i=1 δ λ N i , where λ N 1 ≤ λ N 2 ≤ . . . ≤ λ N N are the (real) eigenvalues of X N .
Then the sequence of random probability measures L N converges almost surely to the semicircular law (for the weak topology).

In [START_REF] Biane | A free probability analogue of the Wasserstein metric on the trace-state space[END_REF], Biane and Voiculescu have obtained the following transport inequality for the semicircular distribution σ (61)

T 2 (ν, σ) ≤ 2 Σ(ν|σ), which holds for all ν ∈ P(R) with compact support (see [START_REF] Biane | A free probability analogue of the Wasserstein metric on the trace-state space[END_REF]Theorem 2.8]). The functional appearing in the left-hand side of ( 61) is the relative free entropy defined as follows:

Σ(ν|σ) = E(ν) -E(σ),
where

E(ν) = x 2 2 dν(x) - log(|x -y|) dν(x)dν(y).
The relative free entropy Σ( • |σ) is a natural candidate to replace the relative entropy H( • |σ), because it governs the large deviations of L N when M N is drawn from the GUE, as was shown by Ben Arous and Guionnet in [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF]. More precisely, we have the following: for every open (resp. closed) subset O (resp. F ) of P(R), lim inf

N →∞ 1 N 2 log P (L N ∈ O) ≥ -inf{ Σ(ν|σ); ν ∈ O}, lim sup N →∞ 1 N 2 log P (L N ∈ F ) ≤ -inf{ Σ(ν|σ); ν ∈ F }.
Different approaches were considered to prove [START_REF] Horn | Topics in matrix analysis[END_REF] and to generalize it to other compactly supported probability measures. The original proof by Biane and Voiculescu was inspired by [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. Then Hiai, Petz and Ueda [START_REF] Hiai | Free transportation cost inequalities via random matrix approximation[END_REF] proposed a simpler proof relying on Ben Arous and Guionnet large deviation principle. Later Ledoux gave alternative arguments based on a free analogue of the Brunn-Minkowski inequality. Recently, Ledoux and Popescu [START_REF] Popescu | Talagrand inequality for the semicircular law and energy of the eigenvalues of beta ensembles[END_REF][START_REF] Ledoux | Mass transportation proofs of free functional inequalities, and free Poincaré inequalities[END_REF] proposed yet another approach using optimal transport tools. Here, we will sketch the proof of Hiai, Petz and Ueda.

We need to introduce some supplementary material. Define H N as the set of Hermitian N × N matrices. We will identify H N with the space R N 2 using the map H ∈ H N → ((H(i, i)) i , (Re(H(i, j))) i<j , (Im(H(i, j))) i<j ) .

The Lebesgue measure dH on H N is

dH := N i=1 dH i,i i<j d (Re(H i,j )) i<j d (Im(H i,j )) .
For all continuous function Q : R → R, let us define the probability measure P N,Q on H N by ( 63)

f dP N,Q := 1 Z N (Q) f (H)e -N Tr(Q(H)) dH
for all bounded and measurable f : H N → R, where Q(H) is defined using the basic functional calculus, and Tr is the trace operator. In particular, when M N is drawn from the GUE, then it is easy to check that the law of

X N = N -1/2 M N is P N,x 2 /2 .
The following theorem is due to Ben Arous and Guionnet.

Theorem 12.3. Assume that Q : R → R is a continuous function such that

(64) lim inf |x|→∞ Q(x) log |x| > 2,
and for all N ≥ 1 consider a random matrix X N,Q distributed according to P N,Q . Let λ N 1 ≤ . . . ≤ λ N N be the ordered eigenvalues of X N,Q and define

L N = 1 N N i=1 δ λ N i ∈ P(R).
The sequence of random measures (L N ) N ≥1 obeys a large deviation principle, in P(R) equipped with the weak topology, with speed N 2 and the good rate function I Q defined by

I Q (ν) = E Q (ν) -inf ν E Q (ν), ν ∈ P(R)
where Moreover, the functional I Q admits a unique minimizer denoted by µ Q . The probability measure µ Q is compactly supported and is characterized by the following two conditions: there is a constant C Q ∈ R such that Q(x) ≥ 2 log |x -y| dµ Q (y) + C Q , for all x ∈ R and Q(x) = 2 log |x -y| dµ Q (y) + C Q , for all x ∈ Supp(µ Q ).

E Q (ν) = Q(x)
Finally, the asymptotic behavior of the normalizing constant Z N (Q) in (63) is given by: lim

N →∞ 1 N 2 log Z N (Q) = -E Q (µ Q ) = -inf ν E Q (ν).
Remark 12.4. Let us make a few comments on this theorem.

(1) When Q(x) = x 2 /2, then µ Q is the semicircular law σ.

(2) For a general Q, one has the identity

I Q (ν) = E Q (ν)-E Q (µ Q ).
So, to be coherent with the notation given at the beginning of this section, we will denote I Q (ν) = Σ(ν|µ Q ) in the sequel. (3) As a by-product of the large deviation principle, we can conclude that the sequence of random measures L N converges almost surely to µ Q (for the weak topology). When Q(x) = x 2 /2, this provides a proof of Wigner theorem in the particular case of the GUE.

Now we can prove the transport inequality [START_REF] Horn | Topics in matrix analysis[END_REF].

Proof of (61). We will prove the inequality (61) only in the case where ν is a probability measure with support included in [-A; A], A > 0 and such that the function S ν (x) := 2 log |x -y| dν(y) is finite and continuous over R. The general case is then obtained by approximation (see [START_REF] Hiai | Free transportation cost inequalities via random matrix approximation[END_REF] for explanations).

First step. To prove that T 2 (ν, σ) ≤ 2 Σ(ν|σ), the first idea is to use Theorem 12.3 to provide a matrix approximation of ν σ.

Let Q ν : R → R be a continuous function such that Q ν = S ν on [-A, A], Q ν ≥ S ν and Q ν (x) = x 2 2 when |x| is large. Let X N,ν , N ≥ 1 be a sequence of random matrices distributed according to the probability P N,ν associated to Q ν in (63) (we shall write in the sequel P N,ν instead of P N,Qν ). The characterization of the equilibrium measure µ Qν easily implies that µ Qν = ν. So, the random empirical measures L N,ν of X N,ν follows the large deviation principle with the good rate function Σ( • |ν). In particular, L N,ν converges almost surely to ν (for the weak topology). Let us consider the probability measure ν N defined for all bounded measurable function f by

f dν N := E f dL N,ν .
The almost sure convergence of L N,ν to ν easily implies that ν N converges to ν for the weak topology. We do the same construction with Q σ (x) = x 2 /2 yielding a sequence σ N converging to σ (note that in this case, the sequences X N,σ and P N,σ correspond to the GUE rescaled by a factor √ N ).

Second step. Now we compare the Wasserstein distance between ν N and σ N to the one between P N,ν and P N,σ . To define the latter, we equip H N with the Frobenius norm defined as follows:

A -B 2 F = N i=1 N j=1
|A(i, j) -B(i, j)| 2 .

By definition, if P 1 , P 2 are probability measures on H N , then

T 2 (P 1 , P 2 ) := inf E X -Y 2 F ,
where the infimum is over all the couples N × N random matrices (X, Y ) such that X distributed according to P 1 and Y according to P 2 . According to the classical Hoffman-Wielandt inequality (see e.g [START_REF] Horn | Topics in matrix analysis[END_REF]), if A, B ∈ H N then,

N i=1 |λ i (A) -λ i (B)| 2 ≤ A -B 2 F ,
where λ 1 (A) ≤ λ 2 (A) ≤ . . . ≤ λ N (A) (resp. λ 1 (B) ≤ λ 2 (B) ≤ . . . ≤ λ N (B)) are the eigenvalues of A (resp. B) in increasing order. So, if (X N,ν , X N,σ ) is an optimal coupling between P N,ν and P N,σ , we have

T 2 (P N,ν , P N,σ ) = E[ X N,ν -X N,σ 2 
F ] ≥ E N i=1 |λ i (X N,ν ) -λ i (X N,σ )| 2 = N E |x -y| 2 dR N ,
where R N is the random probability measure on R × R defined by

R N := 1 N N i=1
δ (λ i (X N,ν ),λ i (X N ,σ)) .

It is clear that π N := E[R N ] has marginals ν N and σ N . Hence, applying Fubini theorem in the above inequality yields T (P N,ν , P N,σ ) ≥ N T 2 (ν N , σ N ).

Third step. If we identify the space H N to the space R N 2 using the map defined in (62), then P N,σ is a product of Gaussian measures:

P N,σ = N (0, 1/N ) N ⊗ N (0, 1/(2N )) N (N -1)/2 ⊗ N (0, 1/(2N )) N (N -1)/2 .

factor verifies Talagrand inequality T 2 (with the constant 2/N or 1/N ). Therefore, using the dimension-free tensorization property of T 2 , it is easy to check that P N,σ verifies the transport inequality T c ≤ 2N Fourth step. The last step is devoted to the computation of the limit of N -2 H (P N,ν |P N,σ ) when N goes to ∞. We have

H (P N,ν |P N,σ ) N 2 = 1 N 2 log Z N (Q σ ) - 1 N 2 log Z N (Q ν ) + 1 N Tr Q ν (A) - 1 2 A N,ν = 1 N 2 log Z N (Q σ ) - 1 N 2 log Z N (Q ν ) + Q ν (x) - x 2 2 dν N (x)
Using Theorem 12.3 and the convergence of ν N to ν, it is not difficult to see that the righthand side tends to Σ(ν|σ) when N goes to ∞ (observe that the function x → Q ν (x)x 2 /2 is continuous and has a compact support). Since T 2 is lower semicontinuous (this is a direct consequence of the Kantorovich dual equality, see Theorem 2.2), T 2 (ν, σ) ≤ lim inf N →∞ T 2 (ν N , σ N ), which completes the proof.

Remark 12.5.

(1) It is possible to adapt the preceding proof to show that probability measures µ Q with Q ′′ ≥ ρ, with ρ > 0 verify the transport inequality T 2 (ν, µ Q ) ≤ 2 ρ Σ(ν|µ Q ), for all ν ∈ P(R), see [START_REF] Hiai | Free transportation cost inequalities via random matrix approximation[END_REF].

(2) The random matrix approximation method can be applied to obtain a free analogue of the logarithmic Sobolev inequality, see [START_REF] Biane | Logarithmic Sobolev inequalities, matrix models and free entropy[END_REF]. It has been shown by Ledoux in [START_REF] Ledoux | A (one-dimensional) free Brunn-Minkowski inequality[END_REF] that a free analogue of Otto-Villani theorem holds. Ledoux and Popescu have also obtained in [START_REF] Ledoux | Mass transportation proofs of free functional inequalities, and free Poincaré inequalities[END_REF] a free HWI inequality.

13. Optimal transport is a tool for proving other functional inequalities

We already saw in Section 7 that the logarithmic Sobolev inequality can be derived by means of the quadratic optimal transport. It has been discovered by Barthe, Cordero-Erausquin, McCann, Nazaret and Villani, among others, that this is also true for other well-known functional inequalities such as Prékopa-Leindler, Brascamp-Lieb and Sobolev inequalities, see [START_REF] Barthe | Inégalités fonctionnelles et géométriques obtenues par transport de mesures[END_REF][START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF][START_REF] Cordero-Erausquin | A Riemannian interpolation inequality à la Borell, Brascamp and Lieb[END_REF][START_REF] Cordero-Erausquin | Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport[END_REF][START_REF] Cordero-Erausquin | A mass-transportation approach to sharp Sobolev inequalities and Gagliardo-Nirenberg inequalities[END_REF][START_REF] Mccann | A convexity theory for interacting gases and equilibrium crystals[END_REF].

In this section, we do an excursion a step away from transport inequalities and visit Brunn-Minkowski and Prékopa-Leindler inequalities. We are going to sketch their proofs. Our main tool will be the Brenier map which was described at Theorem 2.9. For a concise and enlightening discussion on this topic, it is worth reading Villani's exposition in [START_REF] Villani | Topics in Optimal Transportation[END_REF]Ch. 6].

The Prékopa-Leindler inequality. It is a functional version of Brunn-Minkowski inequality which has been proved several times and named after the papers by Prékopa [START_REF] Prékopa | On logarithmic concave measures and functions[END_REF] and Leindler [START_REF] Leindler | On a certain converse of Hölder's inequality[END_REF].

Theorem 13.1 (Prékopa-Leindler inequality). Let f, g, h be three nonnegative integrable functions on R k and 0 ≤ λ ≤ 1 be such that for all x, y ∈ R k , h((1λ)x + λy) ≥ f (x) 1-λ g(y) λ .

Then,

R k h(x) dx ≥ R k f (x) dx 1-λ R k g(x) dx λ .
The next proof comes from Barthe's PhD thesis [START_REF] Barthe | Inégalités fonctionnelles et géométriques obtenues par transport de mesures[END_REF].

Proof. Without loss of generality, assume that f, g and h are probability densities. Pick another probability density p on R k , for instance the indicator function of the unit cube [0, 1] d . By Theorem 2.9, there exist two Brenier maps ∇Φ 1 and ∇Φ 2 which transport p onto f and p onto g, Since Φ 1 is a convex function, it admits an Alexandrov Hessian (defined almost everywhere) ∇ 2

A φ 1 which is nonnegative definite. Similarly, for Φ 2 and ∇ 2 A φ 2 . The change of variable formula leads us to the Monge-Ampère equations f (∇φ 1 (x)) det(∇ where inequality (i) follows from the claim below, inequality (ii) uses the assumption on f, g and h and the equality (iii) is a direct consequence of the above Monge-Ampère equations.

Claim. The function S ∈ S + → log det(S) ∈ [-∞, ∞) is a concave function on the convex cone S + of nonnegative definite symmetric matrices.

The decisive trick of this proof is to take advantage of the concavity of log det, once it is noticed that the Hessian of the convex function φ, which gives rise to the Brenier map ∇φ, belongs to S + .

As a corollary, one obtains the celebrated Brunn-Minkowski inequality. . It remains to optimize in λ.

Appendix A. Tensorization of transport costs

During the proof of the tensorization property of transport-entropy inequalities at Propo-1.8, we made use of the following tensorization property of transport costs. A detailed of this property in the literature being unknown to the authors, we find it useful to present it here.

Proposition A.1. We assume that the cost functions c 1 and c 2 are lower semicontinous on the products of polish spaces X 1 × Y 1 and X 2 × Y 2 , respectively. Then, for all ν ∈ P(Y 1 × Y 2 ), µ 1 ∈ P(X 1 ) and µ 2 ∈ P(X 2 ), we have

(65) T c 1 ⊕c 2 (ν, µ 1 ⊗ µ 2 ) ≤ T c 1 (ν 1 , µ 1 ) + Y 1 T c 2 (ν y 1 2 , µ 2 ) dν 1 (y 1 )
where ν disintegrates as follows: dν(y 1 , y 2 ) = dν 1 (y 1 )dν y 1 2 (y 2 ).

Proof. One first faces a nightmare of notation. It might be helpful to introduce random variables and see π ∈ P(X × Y) = P(X 1 × X 2 × Y 1 × Y 2 ) as the law of (X 1 , X 2 , Y 1 , Y 2 ). One denotes π 1 = L(X 1 , Y 1 ), π x 1 ,y 1 Let us denote Π(ν, µ) the set of all π ∈ P(X × Y) such that π X = ν and π Y = µ, Π 1 (ν 1 , µ 1 ) the set of all η ∈ P(X 1 × Y 1 ) such that η X 1 = ν 1 and η Y 1 = µ 1 and Π 2 (ν 2 , µ 2 ) the set of all η ∈ P(X 2 × Y 2 ) such that η X 2 = ν 2 and η Y 2 = µ 2 .

We only consider couplings π such that under the law π

• L(X 1 , X 2 ) = ν, • L(Y 1 , Y 2 ) = µ,
• Y 1 and X 2 are independent conditionally on X 1 and • X 1 and Y 2 are independent conditionally on Y 1 .

By the definition of the optimal cost, optimizing over this collection of couplings leads us to

T c (ν, µ) ≤ inf π 1 ,π ⋄ 2 c 1 ⊕ c 2 (x 1 , y 1 , x 2 , y 2 ) dπ 1 (x 1 , y 1 )dπ x 1 ,y 1 2 (x 2 , y 2 )
where the infimum is taken over all π 1 ∈ Π 1 (ν 1 , µ 1 ) and all Markov kernels π ⋄ 2 = (π x 1 ,y 1

2

; x 1 ∈ X 1 , y 1 ∈ Y 1 ) such that π x 1 ,y 1 2 ∈ Π 2 (ν x 1 X 2 , µ y 1 Y 2 ) for π 1 -almost every (x 1 , y 1 ). As µ is a tensor Proposition A.2. Let µ = n i=1 µ i be a product probability measure on X (n) . For all ν ∈ P(X (n) ),

T ⊕c i (ν, µ) ≤ X (n) n i=1 T c i (ν e x i i , µ i ) dν(x).
Proof. • A first sketch. Let (W i ) 1≤i≤n = (U i , V i ) 1≤i≤n be a sequence of random variables taking their values in n i=1 X 2 i which is defined on some probability space (Ω, P) so that it realizes T ⊕c i (ν, µ). This means that the law of U = (U i ) 1≤i≤n is ν, the law of V = (V i ) 1≤i≤n is µ and E i c i (U i , V ) = T ⊕c i (ν, µ).

Let i be a fixed index. There exists a couple of random variables W i := ( U i , V i ) such that its conditional law given ( U i , V i ) = W i := (W j ) j =i is a coupling of ν e U i i and µ e V i i , and P-a.s.,

E[c i ( U i , V i )| W i ] = T c i ν e U i i , µ e V i i
. This implies [START_REF] Lata | On the infimum convolution inequality[END_REF] Ec

i ( U i , V i ) = ET c i ν e U i i , µ e V i i .
Clearly, ( U i , U i ( i , V i ) is a coupling of (ν, µ). The optimality of W gives us E j c j (U j , V j ) ≤ E j =i c j (U j , V j ) + c i ( U i , V i ) which boils down to (67)

Ec i (U i , V i ) ≤ Ec i ( U i , V i ) = ET c i ν e U i i , µ e V i i
where the equality is [START_REF] Lata | On the infimum convolution inequality[END_REF]. Summing over all the indices i, see that

T ⊕c i (ν, µ) = E n i=1 c i (U i , V i ) ≤ E n i=1 T c i ν e U i i , µ e V i i
.

As µ is a product measure, we have µ e V i i = µ i , P-almost surely and we obtain

T ⊕c i (ν, µ) ≤ X (n) n i=1
T c i (ν e

x i i , µ i ) dν(x)
which is the announced result.

• Completion of the proof. This first part is an incomplete proof, since one faces a measurability problem when constructing the conditional optimal coupling W i := ( U i , V i ). This measurability is needed to take the expectation in [START_REF] Lata | On the infimum convolution inequality[END_REF]. More precisely, it is true that for each value w i of W i , exists a coupling W i ( wi ) of ν e u i i and µ e v i i . But the dependence in w i must be Borel measurable for W i = W i ( W i ) to be a random variable. One way to circumvent this problem is to proceed as in Proposition A.1. The important features of this proof are:

(1) The Markov kernels ν e u i i and µ e v i i are built with conditional independence properties as in Proposition A.1's proof. More precisely • V i and U i are independent conditionally on U i and • U i and V i are independent conditionally on V i . These kernels admit measurable versions since the state space is polish.

Corollary 3 . 4 .

 34 Let d be a lower semicontinuous distance, α ∈ A and µ ∈ P(X ). The following propositions are equivalent. (1) The probability measure µ verifies the inequality α(T d ) ≤ H. (2) For all 1-Lipschitz function f , e sf dµ ≤ e s R f dµ+α ⊛ (s) , s ≥ 0. Corollary 3.3 enables us to give an alternative proof of the tensorization property given at Proposition 1.9.

1 4

 1 |x -y| 2 . The constant 1/4 is sharp. Proof. (1) According to the dual formulation of transport-entropy inequalities, see Corollary 3.3, µ verifies the inequality T c ≤ H if and only if e Qcf dµ • e - R f dµ ≤ 1 for all f ∈ B b (X ).

Proposition 8 . 3 .

 83 Let µ be a probability measure on X and θ : [0, ∞) → [0, ∞) be a convex function such that θ(0) = 0. If µ verifies the transport-entropy inequality T c ≤ H, then the couple (µ, c), with c(x, y) = 2θ d(x,y) 2 verifies the Property (τ ). Proof. According to the dual formulation of the transport inequality T c ≤ H, one has e Qcf dµ • e - R f dµ ≤ 1 Applying this inequality with ±Q c f instead of f , one gets e Qc(Qcf ) dµ • e - R Qcf dµ ≤ 1 and e Qc(-Qcf ) dµ • e R Qcf dµ ≤ 1.

Definition 8 . 5 (

 85 Fisher information and Donsker-Varadhan information).

Remark 8 . 10 (

 810 Spectral gap). The Poincaré inequality P(C) can be made precise by means of the Dirichlet form E : Var µ (f ) ≤ C E(f, f ), f ∈ D 2 (L) for some finite C ≥ The best constant C in the above Poincaré inequality is the inverse of the spectral gap of L.

  and Roberto [10, Theorem 27], the modified logarithmic Sobolev inequality implies dimension-free concentration for the enlargement enl θp (A, r) = {x ∈ R k n ; inf y∈A n i=1 θ p (|x -y| 2 ) ≤ r} and according to Theorem 5.4, this concentration property implies the transport-entropy inequality T θp(|•| 2 ) ≤ CH, for some C > 0.

Theorem 8 . 19 .

 819 Let µ be a probability measure on R k and consider dμ(x) = e ϕ(x) dx, where ϕ : R k → R is bounded. If µ verifies T 2 (C), then μ verifies T 2 (8e Osc(ϕ) C), where Osc(ϕ) = sup ϕinf ϕ. Many functional inequalities of Sobolev type enjoy the same bounded perturbation property (without the factor For the Poincaré inequality or the logarithmic Sobolev inequality, proof (due to Holley and Stroock) is almost straightforward (see e.g [2, Theorems 3.4.1 and 3.4.3]

Theorem 10 . 5 ( 2 tL 2 2 tL 2

 1052222 W 2 I,[START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]). The statements below are equivalent. (a) The probability measure µ ∈ P(X ) verifies W 2 I(C). (b) For any v ∈ B b (X ), P Qv C (µ) ≤ e t C 2 µ(v) , for all t ≥ 0 where Qv(x) = inf y∈X {v(y) + d 2 (x, y)}. (c) For any u ∈ B b (X ), P u C (µ) ≤ e t C 2 µ(Su) , for all t ≥ 0 where Su(y) = sup x∈X {u(y)d 2 (x, y)}.

  (a) LS(C) implies W 2 I(C). (b) W 2 I(C) implies (c) Assume that Ric + HessV ≥ κId with κ ∈ R. If Cκ ≤ 2, Then, W 2 I(C) implies LS(2C -C 2 κ/2).Note that W 2 I(C) with Cκ ≤ 2 is possible. This follows from Part (a) and the Bakry-Emery criterion in the case κ > 0, see Corollary 7.3.

1 N 2 1 N 2

 1212 dν(x)log |x -y| dν(x)dν(y), ν ∈ P(R).In other words, for all open (resp. closed) O (resp. F ) of P(R), it holds lim infN →∞ log P (L N ∈ O) ≥ -inf{I Q (ν); ν ∈ O}, log P (L N ∈ F ) ≤ -inf{I Q (ν); ν ∈ F }.

- 1 H 2 N 2 H

 122 on H N , where the cost function c is defined byc(A, B) := N i=1 |A(i, i) -B(i, i)| 2 + 2 i<j |A(i, j) -B(i, j)| 2 = A -B 2 F .As a conclusion, for all N ≥ 1, the inequality T 2 (P N,ν , P N,σ ) ≤ 2N -1 H (P N,ν |P N,σ ) holds.Using Step 2, we get T 2 (ν N , σ N ) ≤ (P N,ν |P N,σ ) , N ≥ 1.

2 A φ 1 h ( 1 -f

 211 (x)) = 1, g(∇φ 2 (x)) det(∇ 2 A φ 2 (x)) = 1 for almost all x ∈ [0, 1] d . Defining φ = (1λ)φ 1 + λφ 2 , one obtains λ)∇φ 1 (x) + λ∇φ 2 (x) det(∇ 2 A φ 1 (x)) (∇φ 1 (x)) 1-λ g(∇φ 2 (x)) λ det(∇ 2 A φ 1 (x))

Corollary 13 . 2 (

 132 Brunn-Minkowski inequality). For all A, B compact subsets of R k ,vol 1/d (A + B) ≥ vol 1/d (A) + vol 1/d (B)wherevol 1/d (A) := A dx 1/d and A + B := {a + b; a ∈ A, b ∈ B}.Proof. For any 0 ≤ λ ≤ 1, the functions f = 1 A , g = 1 B and h = 1 [(1-λ)A+λB] satisfy Theorem 13.1's assumptions. Therefore, we have h≥ ( f ) 1-λ ( g) λ which is vol((1λ)A + λB) ≥ vol(A) 1-λ vol(B) λ . It follows that vol(A + B) = vol((1λ) A 1-λ + λ B λ ) ≥ vol( A 1-λ ) 1-λ vol( B λ ) λ which is equivalent to vol 1/d (A + B) ≥ vol 1/d (A)

2 L(X 2 , Y 2

 222 |X 1 = x 1 , Y 1 = y 1 ), π x 1 ,y 1

X 2 =

 2 L(X 2 |X 1 = x 1 , Y 1 = y 1 ), π x 1 ,y 1

Y 2 =

 2 L(Y 2 |X 1 = x 1 , Y 1 = y 1 ), π X = L(X 1 , X 2 ), π Y = L(Y 1, Y 2 and so on.

  the trick of Lemma 2.3 doesn't improve anything.Remark 2.4. (Measurability of u c ). This issue is often neglected in the literature. The aim of this remark is to indicate a general result which solves this difficult problem. If c is continuous, u c and u cc are upper semicontinuous, and therefore they are Borel measurable.

	In the general case where c is lower semicontinuous, it can be shown that some measurable
	version of u c exists. More precisely, Beiglböck and Schachermayer have proved recently in [12,
	Lemmas 3.7, 3.8] that, even if c is only supposed to be Borel measurable, for each probability
	measure µ ∈ P(X ), there exists a [-∞, ∞)-valued Borel measurable function ũc such that ũc ≤ u c everywhere and ũc = u c , µ-almost everywhere. This is precisely what is needed for the purpose of defining the integral u c dµ.

  109, Theorem 1.1] (in a Riemannian setting) and Gozlan[START_REF] Gozlan | Poincaré inequality and dimension free concentration of measure[END_REF] Theorem 5.4] for these very general extensions of Otto-Villani theorem. 8.5. T 2 and LS under curvature assumptions. In[START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], Otto and Villani proved that the logarithmic Sobolev inequality was sometimes implied by the inequality T 2 . The key argument for this converse is the so called HWI inequality (see[START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] Theorem 3] or Corollary

[START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF]

.4 of the present paper) which is recalled below. If µ is an absolutely continuous probability measure with a density of the form dµ(x) = e -V (x) dx, with V of class C 2 on R k and such that Hess V ≥ κId, with κ ∈ R, then for all probability measure ν on R k having a smooth density with respect to µ,

(43) H(ν|µ) ≤ 2W 2 (ν, µ) I(ν|µ) -κ 2 W 2 2 (ν, µ),

where I(•|µ) is the Donsker-Varadhan information.

Proposition 8.15. Let dµ(x) = e -V (x) dx, with V of class C 2 on R k and such that Hess V ≥ κId, with κ ≤ 0; if µ verifies the inequality T 2 (C), with C < -2/κ, then it verifies the inequality LS 4C (1+κC/2) 2 In particular, when V is convex then µ verifies LS(4C).

Proof. Applying

[START_REF] Föllmer | Random fields and diffusion processes[END_REF] 

together with the assumed T 2 (C) inequality, yields H(ν|µ) ≤ 2 CH(ν|µ) I(ν|µ) -κC 2 H(ν|µ), for all ν. Thus, if 1 + κC 2 > 0, one has H(ν|µ) ≤ 4C (1+ κC 2 )

product: µ = µ 1 ⊗ µ 2 , we have µ y 1 Y 2 = µ 2 , π 1 -a.e. so that π x 1 ,y 1 2 ∈ Π 2 (ν x 1 X 2 , µ 2 ) for π 1 -almost every (x 1 , y 1 ). We obtain

which is the desired result. Equality (a) is not that obvious. First of all, one is allowed to commute inf π ⋄ 2 and X 1 ×Y 1 since π ⋄ 2 lives in a rich enough family for being able optimize separately for each (x 1 , y 1 ). But also, one check that after commuting, the integrand inf

) is measurable as a function of (x 1 , y 1 ). But for each fixed (x 1 , y 1 ), this integrand is the optimal transport cost T c 2 (ν x 1 X 2 , µ 2 ) (this is the content of equality (b)). Now, with the Kantorovich dual equality [START_REF] Biane | A free probability analogue of the Wasserstein metric on the trace-state space[END_REF], one sees that T c is lower semicontinuous function as the supremum of a family of continuous functions. A fortiori, T c 2 is measurable on P(X 2 ) × P(Y 2 ) and (x 1 , y 1 ) → T c 2 (ν x 1 X 2 , µ 2 ) is also measurable as a composition of measurable functions (use the polish assumption for the existence of measurable Markov kernels). This completes the proof of the proposition.

Let us have a look at another tensorization result which appears in [START_REF] Guillin | Transportation-information inequalities for Markov processes[END_REF]. On the polish product space X (n) := n i=1 X i , consider the cost function

where for each index i, c i is lower semicontinuous on X 2 i . Let (X i ) 1≤i≤n be the canonical process on X (n) = n i=1 X i . For each i, X i = (X j ) 1≤j≤n;j =i is the configuration without its value at index i. Given a probability measure ν on X (n) , ν e

denotes the regular conditional distribution of X i knowing that X i = x i under ν and

denotes the i-th marginal of ν.

(2) The measurability is not required at the level of the optimal coupling but only through the optimal cost. This leads us to [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. We omit the details of the proof which is a variation on Proposition A.1's proof with another "nightmare of notation".

Proposition A.2 differs from Marton's original result [START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF] which requires an ordering of the indices.

Appendix B. Variational representations of the relative entropy

At Section 3, we took great advantage of the variational representations of T c and the relative entropy. Here, we give a proof of the variational representation formulae (25) (26) of the relative entropy.

Proposition B.1. For all ν ∈ P(X ),

and for all ν ∈ P(X ) such that ν ≪ µ,

where u -= (-u) ∨ 0 and u dν ∈ (-∞, ∞] is well-defined for all u such that u -dν < ∞.

Proof. Once we have [START_REF] Ledoux | A (one-dimensional) free Brunn-Minkowski inequality[END_REF], [START_REF] Ledoux | The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs[END_REF] follows by standard approximation arguments. The proof of (69) relies on Fenchel inequality for the convex function h(t) = t log tt + 1:

st ≤ (t log tt + 1) + (e s -1) for all s ∈ [-∞, ∞), t ∈ [0, ∞), with the conventions 0 log 0 = 0, e -∞ = 0 and -∞ × 0 = 0 which are legitimated by limiting procedures. The equality is attained when t = e s .

Taking s = u(x), t = dν dµ (x) and integrating with respect to µ leads us to u dν ≤ H(ν|µ) + (e u -1) dµ, whose terms are meaningful with values in (-∞, ∞], provided that u -dν < ∞. Formally, the case of equality corresponds to dν dµ = e u . With the monotone convergence theorem, one sees that it is approached by the sequence u n = log( dν dµ ∨ e -n ), as n to infinity. This gives us H(ν|µ) = sup u dν -(e u -1) dµ; u : e u dµ < ∞, inf u > -∞ , which in turn implies that This completes the proof of (69).