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SUMMARY

A geometrical, structural tool for treating a curved thin layer with
variable thickness is presented in the first two sections. Then developed
tools is applied in deriving particular balance laws of thermomechanics. It
is done for the case of interfacial layer with nonvanishing thickness and

for true, not excess, quantities.

1. INTRODUCTION

The surface phenomena play an essential role in the borderland between
the chemistry, physics and mechanics of fluids and solids. Mechanical
phenomena associated with fluid interface regions in equilibrium are
well-described in terms a surface tension. Since days of Young [29] the
interface between two fluids, says, a liquid and its vapour, has been
considered from the mechanical point of view as if it were a uniformly
stretched massless membrane of zero thickness.

When a system in equilibrium is composed of two or more phases, the
interface region between any two phases has a small but perceptible
contribution to the mechanical and thermodynamic behaviour of the system.
An extensive description of thermostatic behaviour of multicomponent
interfaces was established by Gibbs [9]; he used the method of dividing
surfaces. However, non-equilibrium situations are somewhat complex. Any
comprehensive theory must accommodate the possibility of transport
phenomena both within and across the interface; bulk motions may be induced
by inhomogeneities of flields and of the matter in the interfacial region
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(cf.[17]) and moreover physical adsorption and evaporation can occur there.

At this point one should underline the difference appearing between two
models based on the concept of the interface 3D layer: the first referring
to the excess quantities and the second referring to the true ones. In the
first model one introduces a dividing surface located somewhere in the
transition (interface) zone and then the bulk quantities are extrapolated
up to this surface by stipulating (cf.[1,7]) that they must satisfy the
typical 3D balance equations and the bulk constitutive relations (whatever
these may be). The main problem of this model consists in introducing
surface excess densities (quantities) to compensate the error introduced by
replacing the exact (true) quantities by the extrapolated quantities in the
transition zone.

In the second model no extrapolation is made, Iinstead two dividing
surfaces are Introduced, which make the boundary between the single phase
bulk media and the interface zone; in the latter multi-phase behaviour is
observed, in which the confined matter possesses constitutive properties
different from the surrounding bulk phases.

In both models an averaging procedure is applied in which integration
along the thickness is performed to get mean quantities defined as surface
fields. In the first model one relates those quantities to the deviations
between exact and extrapolated quantities in the layer and in the second
the mean quantities are defined as line integrals of the exact fields on
some reference (e.g. mean) surface located in between the previous two.
Here no physical meaning is ascribed to that surface: however, for
convenience one can call it the dividing surface (as in the first model).

In the present paper (as in the second approach) the Interface is
modeled as a shell-like Eulerean region composed in principle of different
material points at different time 1nstantsl.

Having, without any extrapolations, the exact integral relations for
the true surface fields in terms of the bulk quantities from the layer one
tries to make constitutive description, that takes into account the
interface and its interaction with the bulk phases as a whole, without

retaining the macroscopically-irrelevant details of its structure. The more

This is evident in the the case of phase transltion. However, the case of
adsorption may be also modeled by a material reglion with extra mass
supply sources, ef,.[21].
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detailed descr‘ipt.ion2 can be given by developing a theory in which higher
order moments of the true fields appear (cf. [4,7]).

In the phenomenological approach we are presenting the interface is
modeled as a finite slab and more detailed information about the structure
of the dividing surface is introduced by relating the interfacial
quantitlies to thelr 3D counterparts.

It is one of our aims to draw attention to the fact that In localizing
the surface phenomena to their carrier, namely to moving surfaces, we are
loosing some information necessary to this constitutive modelling. To get
this back we can explore the results of our exact derivation and the
formulae in which the interfacial quantities appearing in the interfacial
balance laws are defined in terms of the corresponding 3D quantities.

It is our hope that the present method could be applied to analyzing

shock wave structure in flulds and in solids.

2. MOVING SHELL-LIKE EULEREAN REGION IN THE CONTINUUM

Let us now assume that Lhe effect of the interface in a continuous
material system B occupying at time t In a motion x a simply-connected
region Bt in 3D space E? may be attributed to a 3D moving layer ZI of
finite thickness.

The assumpticn about the constant thickness of the layer is rather
reasonable when wvery thin layer of the lnlerfacial medium is modeled.
However, constant in time (and in surface coordinates) interfacial layer
restricts the class of physical problems successfully treated by either
model. Here-ue shall omit this assumptlon.

As in the rererunce [15] we admit that a narrow layer Z divides the
volume phases BL and that the boundaries between Zt and both B % are
regular surfaces Et and Et , how, however, they are not in general any
more equidistant (parallel). As before we can use the parallel surface
coordinate system describing an arbitrary point in the layer Z;. If the
position of the reference surface £ is given by
(2.1) y =v(t', 1% 0]

where Ll and L2 are Gauss parameters of the surface, then an arbitrary

The other approach can be developed by Introducling twe different scales:
micro- and macro=- coordinates, the former responsible for the
structure of the layer. The tool
here [2B].

inner
of nonstandard analysis could be helpful
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point % in Zt can be represented as
2
(2.2) x = w128 LR L)

where L e [£7¢"1 is the third coordinate, measuring the distance of Lthe
point x from EL along the unit normal n. Here points of the reglon Zt nre
referred to a fixed rectangular Cartesian coordinate system.

The representation (2.2) means that the zone ZL is delineated. Two
scalar fields & and c' defined on the hypersurface S give the distance of
the boundary surfaces Ef from EL. The+thickne5?_z of the layer

(2:3) z(r,t):= & (r,t) - ¢ (r,t)
can then depend on position and time. The interfacial zone Zt is delineated
by the surfaces Zi, distant L from ZE and ﬁ?prcsented by (2.2) with flixed
L, and is delimited by the surfaces E‘ and EL given by

'r

(2.4) 4

e

= { yoeld aEery ci(r.t}n(r], rez }

+
which are not parallel to E . unless ¢ (r,t) is independent of position r.

)

Let us notice that under thc prescnt weaker assumptions the layer ﬂlw
shrink locally to a surface if C = 0. Moreover, it is now possible, to]ln
describe the situation when the lateral boundary of the whole layer is not
a ruled surface. However, to avold any singularities in the representation
of the layer in (L.Ll.Lzl coordinates the maximal thickness of the lnww?
Z:= sup {max (& b t),c"(r,t)): (r,t)e S} should be bounded from above h?E
the maximal curvature of 2 5 .’ )

The geometry of the boundary surfaces 2 will be related to that of :if
as follows. If aa , @ = 1,2, denote the natural basis vectors of elth.

surface, then due to (2.4), we get ..ﬁf
x M
* o EC' [l",t) Wy ¥l
5 e U s e 0 e R e 1) o
(2.5) = - & L” R

where a, and b are tangent (basis) vector and curvature tensor of z‘, qﬁ'f

pectively. For the components of the metric tensor we then obtain

L gy

& +
+ + % £ B 8L 0
(2.6) Byg " B 8 = aa'(is = ¥ ag * oL aLB . k

The directed surface element of either surface will be given by

+ +
(2.7) n*(r)da®:= a] ay ar'a® - (&, PIntr) -A(Z")grad & )da

where on RHS the surface element da = dL dl%. In what rbllom:
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- o *
denote the ratio da”/da by j~ ( a function of r and t). However, the second
invariant of the surface tensor (15 = Lb ), is denoted by j(L) := det [ 62

- L bﬁ] =1=-2HL + K Lz. where H and K are invariants of b, i.e. the mean
and Gauss curvatures, respectively.

The boundary surfaces Ef move With velocities which are related to the
velocity ¢ of the reference surface Zt and the rate of change of &.
Performing the time differentiation in (2.4) we obtain the following

+
velocities ¢” of displacement of Zf:

+
+ +
0 + 3
(2.8) c =¢ =ik (gradscn +bec) + 3 E~ n € = e

To finish the geometrical preparation to the next section concerning
the general balance law, write the product of jI and the normal speed of
displacement of either boundary surface Ef

IRy 5 & . +
(2.9) Jrceanain) e, e .r)[cn Y E_] + gradsc As[c:)-gradscn.

where AS[L):= 1 + L Dband b:=b - 2H1

3.BALANCE LAWS FOR A MOVING NON-MATERIAL SHELL-LIKE REGION

In a previous paper [15] it was assumed that the lateral boundary of
the whole interface (transition) region, i.e. Zt\ 2: v 2: is a ruled
surface. It turns out that this assumption can be dropped out on the global
level (since 1liquid drops do not possess ruled lateral boundaries),
kﬁ,ﬁ[pg. however, this assumption, on the local level, i.e. during the
pliiilo from global to local form of balance laws. It can be done by
assuming the integral form of the laws is valid for any sub-layer which is
a proper subset of the whole layer bounded by subsurfaces of 21 and a
lateral boundary which is a ruled surface. In such case the tna.t,ur-al
bounddn*,.?pndltlons given on the lateral boundary of ZL need to be
recalculated in an appropriate way.

According to our denotation Lthe normal unit vector of Zt will point
from the ro__‘i:n #=" to "+". The surface field r.-S defined by )
i q*
(3.1) ;w:r:.’,:ﬁ.:}.:) = [[p (%, e vente), 0L, rL% )0

g
a k
with j(L,r(L »ﬂxih a=1,2, given by (2.8), will be called the surface mass
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density. Let us notice that the definition of the surface mass does not
take into account the type and the form of the 3D motion governed by the
particle velocity field v in the layer (especially 1its tangential
components), since it is not know in advance. As a conscquence wWe shall get
an extra term in the mass in the 2D continuity equation (4.2). However,
constraining the velocity field to a particular form we could define the
surface mass density in a different way appropriate to this forn.
Particular examples of 3D motions in a material zone are discussed in [16].
After choosing the moving reference surface 2‘ as a geometrical object
the remaining material structure of Zt is preserved by defining ps and
next surface densities and fluxes of physical quantities as suitable
integrals of Lhe corresponding volume ones along the thickness of Zt. e.g.
we can define for f representing a density of a bulk quantity (i.e. a 3D
density field) in the layer Zt, the corresponding surface field f° as

+

[
(3.2) 5= I JUL,e) F(reln(r), t)dL =:<j f>.

g

The geometrical surface speed field n describes how Et, and
consequently the zone Zt moves in Eg: no physical meaning, however, can be
ascribed to a tangential component of c; in the literature, however, such a
component is searched for, which is "reascnable" from a physical point of
view, thus getting a "complete" velocity field to be used in the balance of
linear momentum (cf.[8,10,18]).

In phase transition problems, for example, the material particles
constituting the interfacial matter at instant t differ from those at
another instant t'. Hence together with the field cnn, we introduce an
average velocity Ve oof particles belonging to the layer. In terms of the 3D
material (particle) velocity field v, the densities p and ps, the ’surface’
material point velocity Ve ois given by the relation for the surface
momentum density

: &
(3.3) oV = I pvjlL,r)dL,
c
together with (3.1). A continuous 2D system modeled by zt will be called
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o a >
non-material if cn B2 c'n #* Vb-n, i.e. in the mean the material points
occupying the Interface layer will not all the time stay in it. The
difference

(3.4) dn:= (c - V2):n
Is Galilean invariant and Is relevant to phase transition and adsorption
processes If it does not vanish. It can be regarded as a quantity which
needs to be determined by a constitutive equation [13).

The classical balance law for a quantity ¢ with its Galllean-invariant
flux (current) w and the source ( supply + production ) term p in the

non-material, in general, region Zlmoving with the velocity ¢, is

d
<
(3:5) T I W dv = - J(w (v - c) + w):Nda + J p dv.
Z
t 4 Zr zt
- d
where N is the outward unit normal to 62: and the derivative a%—follows the

region 2}. After partition of both volumetric and surface measures into
product measures we can get the final form of the integral balance law for
layer Zt

d
_e 5 ] g’ = =4 - . +
[Gg5 v° + vPaiv e paa + [t - yPe nds= - [ctuim) ™ cujmr*yaa + [#°aa.
z gz
s Et Zt
Here we have used ¢, lo denote the tangential part of c¢ and put ; for
the unit normal to the curve az that is both tangent and outwardly direc—

ted with respect to Et. The' welghtcd' limiting bulk-field values (ujn]
& X *
(3.8) (wjn)” := u(r + & n(r).tl(jn]'. whure w =y (v-ce)+w

is the new flux appearing undnr the surfacc integral over 3 Z and we have
used the fact that Nda = (jn)~ *da on Z Since the dcfinition of a general
surface density has been given by (3.2} we ought to define the surface flux

Hs{w} corresponding to the flux : (note the prime over s):
(3.7) Hs{¢} B o<y oo (vl gradscn) AS(L]> + <w Ag(LJ)_

The above definition together with (3.2) give at the same time the only
possible relationships between the surface quantities and their bulk

3
The surface is p -material If cquality holds [12].
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counterparts (better to say =~ their primitives), in order for the
interfacial balance law localized on the surface Et to be compatible with,
and derivable from, the 3D law. The latter is postulated for ¥ in the
integral form (3.5). Let us notice that the surface flux Hsiw} is Galilean
invariant ( due to the Cayley-Hamilton identity ). In order to obtain the
local, differential form of the law we have to perform a localization
procedure by applying the integral law to an arbitrary subzone 2; of Zr
Here by a subzone we mean an arbitrary (shell-1like) subregion Z; of Zt < py
bounded by subsurfaces X;: of E:Lwith a subsurface Z; of Etand with a
nonvanishing lateral boundary which is a ruled surface, to which the Stokes
and Green-Gauss theorems can be applied. After calculating the time
derivative of the first integral and applying such integral law obtained to
such an arbitrary E "which is a support of an arbitrary subzone 2' of the
layer Zt' we get, modulo the continuity of the integrand

(3.8) j—‘t o+ yidiv e + dws(nsiw} - e =

= %{ﬁ(v - ¢)+ whjn)” + ({glv - c)+ u}jn)‘} -
Using the Thomas displacement derivative Sn/at (cf.[26,27]), together

with the relationship
< S s an s s
c S = =
It [ ) dlvsc divs(w CT) = > t¢ 2ch¢ 1

we arrive at

5
(3.9) = ¢° - 2He ¢- + div, Wiy = {(w:(v - )+ w}jn)
5t

({ylv = )+ u}jn)’} +p.

The constant thickness case can be simplified to

3
(3.10) —nlp-—2llca,!:+div\l{lp} [mv-c1+u]]n+p
5t

where for an arbitrary field g defined on Bt, we put

A more general case leads Lo additlonal equatlons responsible for contact

line effeclts.
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{311 [ gli= glr + cnlr), t) - glr + &'nlre), t).

The last equation is very well known in thermodynamics with surface
singularities ( ealled nlso : thermodynamics with singular surfaces, cf.
[6,10-12,18,22]1). The surface supply term ;S is given by

(3.12) p>=p° + [ h{wlv-c)-w} ]-n,

where h(ﬂi,r):ﬂ (K(r}ct - HH(r)}qt. and as previously r € £

The variable thlckness case ends with a relation simllzr to (3.10) in
uhish. however, the surface supply term ;S is different and if we denote it
by pi. then due to (2.31) and (2.32) it is equal to

g =5 = . * t %
P, = D [ h{ulv=c)+nt J:n - [ yolv +g grad_c )A_({ ) grad ¢ 1

-4 + én %
(3.13) = [ wA_(E7)grad ¢ 1-1 Sk 1-

A brief inspectlon of this term in comparison with the previous one
shows the contrlbﬁbﬁqn of a new tangential part. This can be particularly

important even In the case of the equilibrium equation for the interfacial
stress tensor.

4. PARTICULAR BALANCE LAWS

Let us conslder the particular quantities to be balanced by (3.10).
a) Mass balance equation: ¢ is equal to p, and if the mass is conserved in
the bulk medium, the flux of mass w and supply p of p (compare denotation
in (3.11)) are zero, The surface flux Hsip} is given by

(4-15) HB{p} = <p (v+L gradrc“) As[L)> = :<m(L)>,
which can be split into two parts

S s s,
W {p)=p vf tV =p vj + <p(A_(L) =j(L)1))v + Lp gradc A (L)>
n
In the obvious way this equation leads to the definition of the extra

mass flux "p' Hence the local balance equation for the mass is

s
_nh S s S8
(4.2) = tp 2Hc p '+ div (p7V]) + div W, = [ jelv-c) ]n+

g + + e
[ ealv +¢ g:ddscn)AS[C }gradsq 1-1 S% ¢ pi ],
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where from (4.1) yields the explicit form of the surface extra mass flux Hp

(4.3) Hp:: <Lpv>b - K (Lava>+ (<Lp>1s + <sz>b}grads €y

The last two terms on the RHS of (4.3) disappear in the constant
thickness case. However, the first two moments of mass (i.e. <Lp> and
<sz>] and of momentum (i.e. <Lpv> and <L2pv>] lead to nonvanishing, in
general, extra flux of the mass, and moreoverthe flux of the surface mass
is different, in general, from the density of linear momentum density [24].
b) Linear momentum balance equation: § = pv, the Cauchy stress T with minus
sign serves as the flux of linear momentum, and the body force pb is the

supply term. For the surface flux Hs{pv} we have
(4.4) Hs{pv} = <pve (v+L gradscn) AS(L)> - <T AS[L}b.
which can be split into two parts

Wipvi= Ve Wip} + T .
The Galilean invariant interfacial surface stress tensor Tg can be
written as the sum of two invariant parts
S(r, t):= <TA_(L)> - <p(v - vi)elv - VA(L) >
S
i = - >
M (e )= <ply vi)e ((A(L) = J(L)I DV + Lp grad.c, A_(L)>,
or two other components contributing to T5 as S'and §°, where we put

(4.5)  S'(r,t):= - <TA_(L)>, S2(r, t):= <(v - Ve m(L)>, T = gl 3 82

Due to (4.5) the local balance equation the linear momentum will be

Sn S S S S M 3L
(4.8) 35 E; v ] - 2Hc p Ve o+ divs(vse (p v: $W) W) wipbae

[tevelv:n - cn] - T n)j] - [ pvelv +¢ gradscn]AS(C }grad ¢ 1

én
+ [ TA (g dgrad g ] - [ 57 & Pv) 1

The last three terms on the RHS of (4.8) disappear in the constant
thickness case. The above expressions for the interfacial stress tensor ‘1‘S
show that even in the cquilibrium case, when the diffusion terms S* and oy
are put equal to zero the symmetry of the tangential components of S cannot
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hold automatically. Moreover, the normal component nTg of the surface
stress tensor TS contalns a contribution from the diffusion terms unless
the tangential component Y. of the velocity field v is constant along each
segment oi the layer. In that case <fv>1 = <f>vt for an arbitrary field fr,
and Vs v; = Vf‘ Such condition has been admitted by Dell'Isola & Romano
(1987). Note that in the case of a spherical interface with non-vanishing
thickness (e.g. a soup bubble) under equilibrium conditions v - Ve = 0, the
surface stress will be

Ts =< p(1 + L/r]>15.

where r is a radius of the bubble. The term <p> we can interpret as
the classical surface tension, here the additional part <pL/r> appears,
which is normally very small, unless the thickness of the bubble is
comparable with the radius r. This will be the case of very fine bubbles.
c) Angular momentum balance equatiom: Y = x x pv. We restrict ourself only
to nonpolar continua. The master angular momentum balance law is well known
in the 3D theory; its interfacial counterpart requires, if the previous
balance law is satisfied,

(4.7) < IR TS I=O)

which 1s automatically satisfied if T is symmetric.
Before closing the discussion the equation of motions we shall write
the explicit relation for the normal and antisymmetric parts of the surface

stress tensor Ts in the natural basis { an n}. They are

Tg“ = -<JTna> + <jplv'n - cn] (va - vsu]> + <(v - V¥)n “3’
ey L% Tn?>. szw T21= ~<jL[b1(T22 a0 Tlll i (bt i bz]T12>.
S s s 2 1 2
vhere Tga:= n-Tsaa. T12:= al-T az. etc,

d) Energy balance equation: y = ple + 0.5v-v)=: pE, where e represents the
specific internal energy, the sum -vT + q serves as the flux of the total
energy, where q is the heat flux vector, the sum p(b'v + r) is the supply

term, where r represents the body heat supply density. For the surface flux
HS{pE} we have

WepE) = <E m(L)> - <(VT - QA (L)>.

If we define

pses:= (J'pe >, ;:5 e + 0.5(v - Vs)a, p5;5:= (JP[T‘ + b (v - Vs])>.
= dpetin = Wk Gom Coim vI)TIA_(L)>,

o L =
4 =) >
Wp:= <pe(AS(L} JULN VT + Lpe grad_c hS(L).

then the local energy balance equation will be

(4.8) g-‘;— [ps(es + 0.5 vs-vs)] - lecnps (e + 0.5 V°.¥v°)

+ divs(pslcs i 0‘5vs-vs}\r’: O \fs'r5 + 0.5v°.v® ")

ple + 0.5v-v)j |+ b7V [tele + 0.5v-v)(v - c) + q - v)j]-n

-

O:LO’
=2

t
- [p(e + 0.5v-v)elv +C gradrcn}as(C)gradSc] + [(VT - q)As(q)gradsc] + PSPS-

The last three terms on the RHS of (4.8) disappear in the constant
S
thickness case. The above expressions for the interfacial heat flux Q and
the supply terms psrs lead to the following relations
Qs T qs * HE' Psrs T PSP?

which mean that even the case of a nonconductor of heat at the 3D level

leads to the nonvanishing interfacial heat flux, and the vanishing heat
5°s

supply term pr at the 3D level leads to the interfacial heat supply pr

equal to <jp b-(v - ?S}>. which does not need to vanish if b is different

from zero.
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