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This paper focuses on the capacity of the underwater acoustic communications (UAC) channel under realistic as-
sumptions: time-varying multi-paths channel, modelled asa stochastic doubly-spread frequency-selective chan-
nel, unknown actual realization of the channel at both transmitter and receiver, constraints on both transmitted
power (rms and/or peak) and available frequency bandwidth.The exact channel capacity under such assumptions
is still unknown. Therefore, several bounds for this capacity are given and then numerically assessed for a few
typical shallow water UAC channels. Main conclusion is that, even with the above comprehensive set of demand-
ing assumptions, as far as the theoretical channel capacityis considered, transmission with higher than often now
spectral efficiency (e.g. 2 to 4 bits/sec/Hz) appears as a reasonable objective in typical time-varying underwater
acoustic communication channels, providing SNR about 15 to20 dB.

Introduction

After pionneering works in the 70’s and 80’s [1] and first as-
sessments of high bitrate phase coherent communications in
the 90’s [2], a few attractive techniques [3] are now emerg-
ing in underwater acoustic communications (UAC), espe-
cially for the difficult shallow water UAC channel. Among
these techniques, the most promising1 are likely the multi-
carriers (MC) modulations (with Orthogonal Frequency Di-
vision Multiplex (OFDM) [4, 5] as a special case), efficient
channel coding techniques such as turbo or LDPC codes,
and iterative reception algorithms such as turbo-equalization
[6,7].

The results obtained with these techniques are generally quite
promising. A few recently reported experimental results,
such as the successful transmission, with a 32-QAM mod-
ulation and turbo-equalization, in the Baltic Sea at 50 km
and 10 kbits/sec reported in [8] even appear quite amazing.
Hence, an assessment of the ultimate performance of shal-
low water UAC, by the means of computation of the Shan-
non capacity [9] appears critical to determine whether these
new techniques could actually yield a significant breakthrough
in UAC, or whether the reported results are only the con-
sequence of exceptionnally favorable environmental condi-
tions. Meanwhile, this interest is also renewed by the out-
comes of many recent works on the capacity of fading chan-
nel, [10–13], mainly motivated by the wireless [14] or ultra-
wideband (UWB) channels, but which are applicable to the
UAC channel as well.

Unlike the capacity of other channels, the capacity of the
shallow water UAC channel has been seldomly addressed.
Apart from recent publications [15] related to MIMO sys-

1Note that multiple-inputs multiple-outputs (MIMO) techniques, even
if they also appear attractive in UAC, are not addressed herewhere the focus
is laid upon single-input single-outpout (SISO) systems.

tems, we are only aware of a very few works in the UAC con-
text. Hayward et al. [16] apply a Gaussian-beam propa-
gation code to get the amplitudes and phases of the multi-
paths in a flat bottom shallow water environment (100 me-
ters depth, range up to 20 km) with an almost unlimited
available frequency band (from 100 to 106 Hz). Then, as-
suming a time-invariant frequency-selective channel, they
allocate the transmitted power across the available frequency
band in order to maximize the channel capacity (by using the
water-filling algorithm [14]). Assuming a 193 dB rePa@1
m source level, they eventually get very high theoretical bi-
trates, about 1 Mbits/sec at 1 km or 100 kbits/sec at 10 km.
More recentlty, Stojanovic et al. [17, 18] consider a simpler
propagation model (a single path whose signal-to-noise ra-
tio (SNR) at reception varies with frequency and range ac-
cording to simple models). Then, they also apply the water-
filling algorithm to maximize the channel capacity and de-
rive approximate simple relations between range, transmit-
ted power and channel capacity. Unlike [16], they do not
provide numerical values of the channel capacity, however
some values of the spectral efficiency plotted in [17] also
appear optimistic.

Main point is that all the channel capacities above, even
if interesting are not fully realistic since they neglect some
critical characteristics of the UAC channel, its random and
highly time-varying impulse response, and of the transmit-
ting devices, the often encountered peak-power and band-
width limitations. To be more explicit, on the basis of the
shallow water UAC characteristics, we believe that a model
that aims at being realistic should take the following aspects
into account:

• The channel is selective in both time and frequency.

• Each channel tap can be modelled as a Rice or Rayleigh-
fading process, with memory, that satisfies the wide-
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sense stationary uncorrelated scattered asssumptions
(WSSUS)2.

• Neither the transmitter (TX) or the receiver (RX) knows
the current realization of the channel. However, thanks
to the WSSUS assumption, we consider that both TX and
RX know the channel statistics.

• The available frequency bandwidth is limited.

• The peak power of the transmitted symbols is limited.

These capacity computations aim at determining the gap be-
tween theoretical capacity in a AWGN channel and the same
capacity with the realistic above assumptions. Meanwhile,
they also provide some reliable pieces of information about
how far the current experimental results are from the ulti-
mate theoretical performance of the shallow water UAC.

This paper is organized as follows. Section 1 is devoted to
a formal presentation of the relevant assumptions and no-
tations. Previous results related to the addressed capacity
of constrained peak-power frequency-selective channels are
recalled in Section 2. Then, upper and lower bounds for
the capacity of a doubly spread frequency-selective Ricean
channel are derived in Section 3. These bounds are finally
discussed and applied to typical shallow water UAC chan-
nels in Section 4.

1 Main assumptions and system model

Underwater acoustic channel and
WSSUS modelling

The properties of the underwater acoustic channel have been
widely investigated for several decades. With respect to the
shallow water UAC [20–22], its main characteristics are the
low propagation speed (about 1500 m/s), the increase of the
propagation losses with frequency (which results in a small
available bandwith at medium or large ranges, typically a
few kHz at 10 km), the spreading of the channel impulse re-
sponse (CIR), both in time and frequency, the lack of direct
path at medium or large range (due to the refraction of the
sound paths), the random fluctuations of the propagation de-
lays and angles of arrival due to multiple reflexions on rough
or moving interfaces (sea bottom and surface) and, finally, a
long diffuse reverberation.

A general statistical model to deal with such channels, dis-
persive both in time and frequency, is the wide sense sta-
tionnary uncorrelated scattered (WSSUS) model [23], where
the channel is modelled as a continuous-time random linear
time-varying (LTV) filter

y(t) =

∫
h(t, τ)x(t− τ) + w(t) (1)

2To be more accurate, in [19] it is shown that the shallow water channel
taps are rather trend-stationary than wide-sense stationary processes. How-
ever, only the local mean of these processes is time-varying, besides with
slow fluctuations.

and wherex(t), y(t) andw(t) are the channel input, its
output and the additive noise, respectively, andh(t, τ ) the
continuous-time channel impulse response, assumed to be
a two-dimensional stochastic process, characterized by its

mean̄h(τ)
∆
= E [h(t, τ)], its correlation functionCH(∆t, τ)

and its scattering functionSH(τ, ν) defined as

E
[[
h(t, τ) − h̄(τ)

]
·
[
h(t′, τ ′) − h̄(τ ′)

]]
(2)

∆
= CH(t− t′, τ) · δ(τ − τ ′)

SH(τ, ν)
∆
=

∫
CH(∆t, τ)e−2jπ ∆t·ν · d∆t. (3)

Note that, as in [23], the WSSUS channel is generally as-
sumed to be zero-mean, which corresponds to channel taps
distributed according to a Rayleigh distribution. However,
the generalization to a non-zero mean channel, which cor-
responds to Ricean channel taps, is straighforward. Then,
apart from the scattering function above, another criticalpa-
rameter is the Rice factor, which now depends upon the

propagation delayτ , and is defined asκ(τ)
∆
= |h̄(τ)|2

CH(0,τ) .

Relation between channel input and output

In the sequels, the transmitted and received signals, x(t) and
y(t), as well as the CIRh(t, τ) and the noise w(t), are as-
sumed to be sampled at the symbol rateB, whereB is also
equal to the available frequency band. It is also assumed that
the symbol rateB is such thatB ≫ νmax, whereνmax is
the Doppler spread of the channel. Therefore, the Nyquist
condition is met when sampling the channel response both
along timet and delayτ .

The transmitted symbolsX = (x0, . . . xN−1)
t are as-

sumed identically independent distributed (i.i.d.) with apeak-
power constraint expressed as

|xn|2 ≤ Ω2
x. (4)

Note that here the average powerE
[
|xn|2

] ∆
= σ2

x is not
explicitely constrained. Howeverσ2

x ≤ Ω2
x is alway true,

with equality when the input symbols are distributed on the
circle with radiusΩx.

The discrete time channel outputY = (y0, . . . yN−1)
t is

given by
Y = TH ·X +W (5)

whereW is the vector of theN noise samples, assumed
i.i.d. gaussian and zero-mean with varianceσ2

w, andTH the
N ×N random channel matrix defined as

TH
∆
=




h0,0 0 . . . . . . . . . 0
... h1,0

. ..
...

hL−1,L−1

...
. ..

. . .
...

0 hL,L−1 hL,0
. ..

...
...

. . .
. ..

...
. .. 0

0 . . . 0 hN−1,L−1 . . . hN−1,0




(6)
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andhn,k is the gain at timen of the channel tapk, for n ∈
[0, N − 1] andk ∈ [0, L − 1], andL the length of CIR.
Depending upon the context, it can also be convenient to
rewrite (5) as

Y =

L−1∑

k=1

Hk ⊙X↓ k +W (7)

whereHk (for k ∈ [0, L − 1] is theN × 1 vector of the
gains of the kth channel tap (the kth low subdiagonal of the
channel matrixTH ), X↓ k the vector obtained fromX by
shifting itsN−k first elementsk times downward, and then
padding the k upper elements with zeros. Finally the symbol
⊙ stands for the Hadamard (element-wise) product. From
the WSSUS assumption, it follows

E [Hk] = h̄k · 1N
∆
= H̄k (8)

E
{
[Hk − H̄k] · [Hl − H̄l]

+
} ∆

= CH(k) · δk,l (9)

whereh̄k andCH(k) are the mean and the covariance matrix
of the kth channel tap, respectively.

For commodity3, we denote now byσ2
h(k) the elements of

the main diagonal of the matricesCH(k) and

Ξ2
H

∆
=

∑

k

σ2
h(k) (10)

Ψ2
H

∆
=

∑

k

|h̄k|2 =

∫ 1/2

−1/2

|ψH(θ)|2 dθ (11)

whereθ is the normalized frequency(θ
∆
= (f−fcarrier)/B),

andψH(θ) the discrete Fourier transform of the mean of the
CIR ,ψH(θ) =

∑
k h̄ke

−2jπ k θ.

Note that the two above parametersΨ2
H and Ξ 2

H can be
viewed as the energies of the mean and of the random (zero-
mean) parts of the CIR of an equivalent time-varying flat
fading channel obtained by summing the contributions of
the different multipaths or channel taps.

Finally, we also denote byCH the sum over the channel taps

of the correlation matricesCH(k), CH
∆
=

∑
k CH(k), and,

by SH(θ) and ŠH(θ), the raw and the normalized spectral
density of this equivalent time-varying flat-fading channel

SH(θ) =
∑

n

[CH ]n,1 e
−2j π nθ/N (12)

ŠH(θ) = SH(θ)/ΞH
2. (13)

Assumptions for capacity assessment

As expressed in [14, 24], the definition of the capacity for
a random linear time-varying communication channel is not
as simple as for the AWGN channel. Indeed, one has to
consider how information on the channel state (CSI) is avail-
able.

3Note that, thanks to the WSSUS assumtion, the matricesCH(k) are
Toeplitz.

Here, the most general case is considered, where the actual
realization of the channel is unknown to TX and RX, but the
statistical properties of the channel are assumed to be known
to TX and RX. Then, with the above notations, the channel
capacity is given by [9]

Cp = lim
N→∞

1

N

[
sup

pX∈PX

I(X;Y )

]
(14)

whereI(Y ;X) = hE(Y ) − hE(Y |X) is the mutual infor-
mation betweenX andY , hE(X) the differential entropy
of X, and thesup is taken forpX in the setPX of the input
symbol distributions which meet the constraints (4).

2 Recall of previous works on peak-limited
doubly-spread fading channel

When dealing with frequency-selective channels, a common
practice [14] is to notice that these channels can be made
approximately equivalent to a bank of parallel narrow-band
flat-fading channels. It allows to apply in this context most
of the available results for flat-fading channels [11,12,25].

A possible approach consists in expanding the signals on a
set of Gabor functionsgk,n(t) 4. Denote byxk,n, hk,n, yk,n

andwk,n the coefficients of this expansion forx(t), h(t),
y(t) andw(t), respectively. In [13], it is argued that the
gk,n(t) are approximate eigen-functions of the channel, with
thehk,n as corresponding eigen values (i.e.

∫
h(t, τ) gk,n(t−

τ) dτ = hk,n · gk,n(t)). Henceyk,n = hk,n · xk,n + wk,n,
for all k andn, and the relation between the channel input
and output reads

Y = H⊙X + W (15)

where theKN × 1 vectorsX , H andW are defined by
stacking thexk,N , yk,N , hk,N andwk,N .

Therefore, thanks to (15), the WSSUS channel has been
transformed into a set ofNK flat-fading channels, with in-
puts and outputs in the time/frequency domain, to which it
is possible to apply all the results applicable for a flat fading
channels. After a few manipulations, this yields to the upper
and lower capacity bounds given in [13] for the Rayleigh
frequency-fading channel, and extended to the Ricean case
in [26], which are applicable in the case where the channel
is peak-limited in the time and frequency domain. Here we
just recall the upper bound.

Theorem 1: Assume that, when represented on the above
Gabor expansion, the input symbols to a time-varying Ricean
frequency-selective fading channel are i.i.d. and boundedas
|xk,n|2 ≤ Ω2

x (constraint in the time/frequency domain).
Then, the capacity of this channel is upper bounded as

CFT
upper = max

0≤α≤1

[∫
log

(
1 + α

Ω2
x (Ξ2

H + Ψ2
H(θ))

σ2
w

)
dθ

−α
∫∫ ∞

−∞

log

(
1 +

Ω2
x

σ2
w

SH(ν, τ)

B

)
dν dτ

]
(16)

4gk,n(t) defined byu(t−n∆Te) exp(−2jπk∆Fe t), where the gen-
erating functionu(t) is taken well localized both in time and frequency
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whereSH(ν, τ) is the scattering function of the channel as
defined in Section 1.

3 Doubly-spread fading channel with
peak-limited power in time

Even if interesting, the approach summarized in Section 2
applies only when the peak-power constraint is applied on a
time-frequency representation of the input signal (e.g. onthe
symbols of an OFDM modulation). In our opinion, this is
correct for the applications where the peak-power constraint
results from spectrum allocation regulations (eg. UWB or
wireless communication systems [14]). However, in the UAC con-
text, the peak-power constraint results from the transducer
technology and has to be applied in the time domain. This
is why two new bounds are given below, whose proofs are
outlined in Appendices A and B.

Theorem 2: The channel capacity of a discrete-time Ricean
WSSUS channel with i.i.d. input symbols and peak-power
constraint in the time domain is upper bounded by

C FSEL
upper = max

0≤α≤1

∫ 1/2

−1/2

log

(
1 +

αΩ2
x

σ2
w

(Ξ2
H + |ψH |2(θ))

)
dθ

− α

∫ 1/2

−1/2

log

(
1 +

Ω2
x Ξ2

H

σ2
w

ŠH(θ)

)
dθ (17)

where all quantities are as defined in Section 1.

Concerning this first bound, it is worth noticing that, given
the parameterα which is determined numerically, it is the
difference of two terms:

• the first term is the capacity of a AWGN channel, with
SNR obtained by summing the energy incoming from
all multipaths. It takes into account for the whole CIR,
i.e. its mean and its random zero-mean parts.

• the second term, which is a penalty term, corresponds
to the capacity loss due to the fact that the CIR is time-
varying and unknown. This term takes into account
only for the random zero-mean part of the channel re-
sponse (for all multipaths).

Theorem 3: The capacity of a discrete-time Ricean WS-
SUS channel with i.i.d. input symbols and peak-power con-
straint in the time domain is lower bounded as

C FSEL
lower = lim

N→∞

1

N
EH

[
log det

(
IN +

1

e

Ω2
x

σ2
w

THT +
H

) ]

−
∫ 1/2

−1/2

log

[
1 +

σ2
x Ξ2

H

σ2
w

ŠH(θ)

]
dθ (18)

where all quantities are as defined in Section 1.

Note that, unlike the upper bound, this lower bound is not
fully analytic. In our best knowledge, the expectation of the
first term is still unknown. Hence, it has been numerically
assessed via a Monte-Carlo technique.

As the upper bound, this lower bound is also the difference
of two terms. The first term is now the coherent capacity of
the channel (i.e. the capacity when the CIR is available to
RX, but not to TX). Hence, the penalty term appears as the
capacity loss due to the fact that the CIR is unknown. The
second term, a penalty term, is similar to the second term
in Theorem 2, with average SNR of the zero-mean random
time-varying part of the CIR, while in Theorem 2 it depends
upon the peak SNR of this time-varying part of the CIR.

As a first application, the capacity bounds obtained with
Theorems 1-3 for four simple WSSUS channels are plot-
ted5 on Figure 1 (in bits/sec/Hz vs peak SNR in dB). The
parameters corresponding to these channels are listed in the
table below (number of path of the CIR, power profile, Rice
factors).

paths power (dB) Rice factor T3

I 3 0 -5 -5 30 10 10 50
II 3 0 -5 -5 10 5 5 50
III 3 0 -5 -5 5 0 0 50
IV 1 0 5 50

Table 1: Main parameters of channels considered on Figure
1.

The correlation of the channel taps has been assumed expo-
nentially decreasing with time, i.e. such that the elements
of the pth subdiagonal of the channel covariance matrices
CH(k) are given by[CH(k)]l,l+p = σ2

h · exp(−p log(2)
T3

),
The parameterT3 is given in the last column of table.

Main conclusion of these first plots is that, even for very de-
manding UCA channels (channels II and III), the theoretical
capacity remains far better than the bitrate of existing high
data rate modems (for instance, 2 to 3 bits/sec/Hz at 15 dB,
vs typically at most 1 bit/sec/Hz for modems).

4 Application to at sea measured
UAC channels

Figure 2 shows some examples of real channel impulse re-
sponses recorded at sea as well as their respective capacity
bounds. The first two impulse responses were recorded in
the Mediterranean sea at 6 kHz, with a 60 to 120 m depth,
and TX and RX separated by 2500 and 9000 m respectively.
The third CIR was recorded in the Atlantic ocean at 17.5
kHz with a 10 to 30 m depth. The transmission range was
approximately 2000 m.

The analysis of the figure leads to the main conclusion that,
in the operating SNR range of existing high data rate modems
(approx. 15 dB), these channels should allow us to commu-
nicate at 2 to 3 bits/sec/Hz. This means that there is still a
200 to 300% potential capacity gain compared to the per-
formance of existing SISO modems since they usually work
with a capacity of approximately 1 bit/sec/Hz. Similarily,

5For comparison with known results, the capacity of a AWGN channel
has also been plotted, even if it is not rigourously correct since abscissa is
here the peak SNR and not the averaged SNR.
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this also means that there is a 5 to 10 dB gap between what
is implemented today and the ultimate theoretical limits.

Note that despite the difference between the three CIR’s, the
boundC FSEL

upper is almost the same for all channels. This can
be explained by the strong Ricean nature of these channels.
In the examples, most of the energy of the channels is con-
veyed by a few paths with a very high Rice factor (between
40 to 700). Consequently, the penalty term ofC FSEL

upper does
not impact much the overall bound.

In addition, as expected the boundCTF
upper is lower than

C FSEL
upper since both dimensions (time and frequency) are con-

strained. Moreover, this bound varies quite significantly
from a channel to another. This comes from its penalty term
that considers both the time and frequency selectivity of the
random components of the channel whereasC FSEL

upper only
considers the time selectivity of these components and is
therefore looser.

Conclusions

Upper and lower bounds for the capacity of a peak limited
doubly-spread frequency selective communication channel
have been given. This channel, even if still a theoretical
model of the true is likely a far better model than the AWGN
channel usually taken for assessment of the UAC channel ca-
pacity. Conclusion is that, even with this model, there is stil
a possible bitrate improvement with respect to the existing
high data rate modems.

Appendix A: Proof of Theorem 2

The proof is derived from the proof given in [11] with more
general constraint on the transmitted power, but only for the
time-varying Rayleigh flat-fading channel. It is detailed in
[26]. Here, we just outine it.

A first step is to notice that, in (14), the termhE(Y ) can
be upper bounded by the differential entropy of a complex
gaussian vector̃Y with same covariance matrix as vectorY
(see [9]). Hence,hE(Y ) ≤ log π e + log det ΓY , where
ΓY is the covariance matrix ofY . In other respects, con-
ditionally to the input symbolsX, the channel outputY is
(exactly) complex gaussian, with covarianceΓY |X . Hence
hE(Y |X) = log π e + log det ΓY |X . Finally, it turns out
that

C ≤ sup
pX∈PX

lim
N→∞

1

N

[
log det ΓY − EX log det ΓY |X

]
.

(19)

The second step for the proof is to compute the two co-
variance matricesΓY andΓY |X and then to substitute their
log det into (19). The corresponding lengthy computations,
detailed in [26], yield to

lim
N→∞

1

N
log det ΓY = log σ2

w

+

∫ 1/2

−1/2

log

[
1 +

σ2
x

σ2
w

(
Ξ2

H + ‖ψH(θ
)
‖2)

]
dθ (20)

and

lim
N→∞

1

N
log det ΓY |X = lim

N→∞
log σ2

w

+
1

N
log

[
IN +

Ω2
x

σ2
w

CH ⊙XX+)

]
. (21)

where all quantities are as defined in Section 1. Hence

C ≤
∫ 1/2

−1/2

log

[
1 +

σ2
x

σ2
w

(
Ξ2

H + ‖ψH(θ
)
‖2)

]
dθ

− lim
N→∞

1

N
EX

[
log

[
IN +

1

σ2
w

CH ⊙XX+)

]]
. (22)

Finally the third step consists in lower bounding the second
term of (22) as

lim
N→∞

1

N
EX

[
log det[IN +

1

σ2
w

CH ⊙XX+]

]

= lim
N→∞

1

N

∫

X

log det[IN +
1

σ2
w

CH ⊙XX+] pX(X) dX

≥ lim
N→∞

1

N

[
inf

pX∈PX

log det[IN + 1
σ2

w

CH ⊙XX+]

‖X‖2

]
E‖X‖2

= σ2
x lim

N→∞

[
inf

PX∈PX

log det[ IN + 1
σ2

w

CH ⊙XX+]

‖X‖2

]

≥ σ2
x

Ω2
x

∫ 1/2

−1/2

log

(
1 +

Ω2
x

σ2
w

SH(θ)

)
dθ (23)

where the last inequality follows from [13, lemma 11, pp.
383] and, as in Section 1,SH(θ) is the spectral density of
the equivalent flat-fading channel.

Then, Theorem 2 finally follows from substitution of (23)
into (22) and a few manipulations.

Appendix B: Proof of Theorem 3

The starting point for the proof of Theorem 3 is a well known
[11,25] information theoretic inequality:

I(Y ;X) ≥ I(Y ;X|TH) − I(Y ; TH |X). (24)

Let’s now notice that the computation of the second term of
(24), I(Y ; TH |X) = hE(Y |TH) − hE(Y |TH), is straight-
forward since

• conditionally toX, Y is distributed according to a
complex gaussian distribution with covarianceσ2

wIN+
σ2

xCH ,

• conditionally toX andTH , Y is complex gaussian
with covariance matrixσ2

w IN .
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It yieldsI(Y ;H|X) = log det(IN +
σ2

x

σ2
w

CH) and, therefore,
the channel capacity can be lower bounded as

Cp ≥ 1

N
I(Y ;X|TH) − lim

N→∞

1

N
log det

[
IN +

σ2
x

σ2
h

CH

]
.

(25)

The computation of the first term is not as easy. However,
this term can be lower bounded thanks to a generalization of
the entropy power inequality [9].

Lemma (Zamir [27]): For anyN × 1 random vectorU with
independent components(u0 · · ·uN−1) and for any deter-
ministicM × N matrixA, we havehE(A · U) ≥ hE(A ·
Ũ), whereŨ aN × 1 is a random vector with independent
gaussian components,(ũ0 · · · ũN−1), such thathE(ũk) =
hE(uk).

Note that this lemma applies only for real matrixA and vec-
tor U . Hence, before applying it to (5), we start by splitting
the channel matrixTH , and the vectorsX andW , into their
real and imaginary parts[TH ]R [TH ]I ,X R,X I , etc. Then,
we set

A =

(
[T 0

H ]R −[T 0
H ]I I 0

[T 0
H ]I [T 0

H ]R 0 I

)
(26)

Y =

(
YR

YI

)
and U =




XR

XI

WR

WI


 (27)

This allows us to rewrite the channel input-output Equation
(5) as

Y = A · U (28)

Assume now that the input symbolsxn are taken mutually
independent, with real and imaginary parts both uniformy
distributed on[−Ωx/

√
2,Ωx/

√
2]6. The differential entropy

of these real and imaginary parts islog(Ωx

√
2). This is

also the differential entropy of a real gaussian distribution
with varianceΩx/

√
π e. Let’s now denote bŷU a complex

gaussian vector whose components are mutually indepen-
dent, with variancesΩx

√
2 for itsN first components, and

σ2
w for its last component. The differential entropy ofÛ is

equal to the differential entropy ofU and the lemma applies.
Then, using the fact that the entropy of the complex gaussian
vector, is the sum of the entropies of its real and imaginary
parts, it turns out

(Y ;X|TH) = hE(Y |TH) − hE(Y |X, TH)

= hE(A · U|TH) −N log(πeσ2
w)

≥ hE(A · Û |TH) −N log(πeσ2
w)

≥ EH

[
AEX,W (Û · Û+) ·A+

]

= EH

[
log det

(
IN +

2Ω2
x

π e σ2
w

THT +
H

)]
(29)

Theorem 3 follows by dividing (29) byN , substituting the
result into (24), taking the limitN → ∞ and, finally, sub-
stracting the penalty term given by (25).

6Note that this is required sincexn ≤ Ωx.
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(a) Channel I
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(b) Channel II
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(c) Channel III
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(d) Channel IV

Figure 1: Capacity bounds for simple ideal channels
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(a) Mediterranean channel (range 2500 m)
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(b) Mediterranean channel (range 2500 m)

(c) Mediterranean channel (range 9000 m)
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(d) Mediterranean channel (range 9000 m)

(e) Atlantic channel
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(f) Atlantic channel

Figure 2: Capacity of at-sea measured channels


