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Abstract—Independent component analysis (ICA) is a blind separation method based on 

simple assumptions of the independence of sources and the non-Gaussianity of 

observations. An approach based on ICA is used here to extract hydrological signals 

over land and oceans from the polluting striping noise due to orbit repetitiveness and 

present in the gravity anomalies detected by the Gravity Recovery and Climate 

Experiment (GRACE) satellites. We took advantage of the availability of monthly level-

2 GRACE solutions from three official providers (i.e., CSR, JPL, and GFZ) that can be 

considered as different observations of the same phenomenon. The efficiency of the 

methodology is demonstrated on a synthetic case. Applied to one month of GRACE 

solutions, it allows for clearly separating the total water storage change from the 

meridional-oriented spurious gravity signals on the continents but not on the oceans. 

This technique gives results equivalent to the destriping method for continental water 

storage. 

 

Index Terms—Filtering technique, gravimetry from space, hydrology, independent 

component analysis (ICA). 

 

 

I. INTRODUCTION 

 

The Gravity Recovery and Climate Experiment (GRACE) geodetic mission provides a global 

mapping of the time variations of the gravity field [1]. So far, raw GRACE orbit observations 

are used to produce ten-day and monthly geoids in terms of Stokes coefficients (i.e., 

dimensionless spherical harmonics of the geopotential) up to degree 60–150. Solutions are 

corrected from atmospheric and oceanic mass variations using ad hoc reanalysis and models, 
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but these data, which represent mainly continental hydrology and ocean masses (plus other 

unmodeled phenomena), contain meridian-oriented spurious gravity signals or stripes. This 

stripping is mainly due to resonances at degree 15, 30 . . . and insufficient forward modelling 

(principally ocean tides and atmospheric and oceanic nontidal mass variations). Several 

strategies for filtering GRACE solutions have been proposed to remove these north–

southoriented features and extract useful hydrological signals on continents. They include 

classical isotropic Gaussian filter [2], various optimal filtering decorrelations of GRACE 

errors [3]–[7], and statistical constraints on the time evolution of GRACE coefficients [8] or 

from global hydrology models [9]. Nevertheless, these approaches are insufficient as the 

results still suffer from aliasing, leakage, and noise contamination. We undertake a different 

strategy. Instead of comparing the GRACE solutions from official providers [Center for Space 

Research (CSR), GeoForschungsZentrum (GFZ), and Jet Propulsion Laboratory (JPL)], we 

assume that any CSR, GFZ, and JPL solution contains joint information.We combine GRACE 

solutions from these groups and use an independent component analysis (ICA) approach to 

extract signals that are statistically independent as the mixture of space and time decorrelated 

geophysical signal and noise, without subjective a priori constraints. ICA is a fast linear 

method which has been successfully applied in different domains like separating independent 

sources from microphone records [10]. Our objective is to separate the different independent 

components (i.e., the sources according to ICA terminology), combining the level-2 GRACE 

products from CSR, GFZ, and JPL (i.e., the observations) and expecting the ICA-estimated 

components to match interpretable geophysical signals. This approach is first tested on 

simulated GRACE observations and then applied to real GRACE products. We compared our 

results with those from the empirical destriping and smoothing method [11]. 

 

II. ICA 

 

ICA is a powerful method for multivariate data analysis, particularly for blind signal 

separation, and has various practical applications, including communications, medical signal 

processing, speech signal processing, and so on [12]–[15]. A typical example of ICA is 

isolating speech signals from recordings of people talking simultaneously in a room (“cocktail 

party problem” [16]), under the assumption of no time delays or echoes. An important 

consideration is that if N sources are present, at least N observations (e.g., from microphones 

or receivers) are needed to retrieve the original source signals, with ICA remaining applicable 

for square or overdetermined problems. ICA proceeds by maximizing the statistical 



independence of the estimated components. As a first step of the method, non-Gaussianity of 

the input signals must be verified. The central limit theorem is used for measuring the 

statistical independence of the components. Typical algorithms for ICA use centering and 

whitening based on eigenvector decomposition and reduction of dimension as main 

processing steps.Whitening ensures that the input observations are equally treated before 

dimension reduction. 

Many algorithms of different complexities have been developed for ICA [10]. For separating 

satellite gravity signals, we consider the FastICA algorithm, which is a computationally  

highly efficient method for performing the estimation of ICA [14]. It uses a fixed-point 

iteration scheme that has been found to be 10–100 times faster than conventional gradient 

methods for ICA [11]. 

Assuming that an observation vector y collected from N sensors is the combination of P (N ≥ 

P) independent sources represented by the source vector x, considering a linear statistical 

model, it can be written as: 

y = Mx  (1) 

where M is the mixing matrix whose elements mij ’s (1 ≤ i ≤ N, 1 ≤ j ≤ P) indicate to what 

extent the jth source contributes to the ith observation. The columns {mj} are the mixing 

vectors. 

ICA aimed at estimating the mixing matrix M and/or the corresponding realizations of the 

source vector x, only knowing the realizations of the observation vector y, under the following 

assumptions [15]. 

1) The mixing vectors are linearly independent. 

2) The sources are statistically independent. 

The original sources x’s can be simply recovered by multiplying the observed signals y’s with 

the inverse of the mixing matrix also known as the “unmixing” matrix 

x = M
−1

y  (2) 

ICA consists of three numerical steps. The first step of ICA is to center the observed vector, 

i.e., to remove its mean m = E{y}. The second step consists in whitening the vector y to 

remove any correlation between the components of the observed vector. In other words, the 

components of the white vector y have to be uncorrelated, and their variances equal unity. 

Letting C = E{yy
t
} be the correlation matrix of the input data, we define a linear transform B 

that verifies the following two conditions: 

y By   (3) 



 t P
E yy I    (4) 

where IP is the identity matrix of dimension P × P. 

This is easily accomplished by considering 

B = C
−1/2 (5) 

A reduction of the dimension of the data to the number of independent components P, 

discarding the too small eigenvalues obtained by principal component analysis, is performed 

simultaneously as the whitening.  

For the third step, an orthogonal transformation of the whitened signals is used to find the 

separated sources by rotation of the joint density. The appropriate rotation is obtained by 

maximizing the nonnormality of the marginal densities, since a linear mixture of independent 

random variables is necessarily more Gaussian than the original components. 

We apply a linear ICA through the FastICA algorithm made available at 

http://www.cis.hut.fi/projects/ica/fastica/ to unravel the independent components of the 

monthly gravity field anomaly in the level-2 GRACE products. We assumed that the GRACE 

level-2 products from CSR, GFZ, and JPL are the different observations of the same monthly 

gravity anomaly, the land hydrology and ocean mass anomalies, and the north–south stripes, 

the independent sources. 

 

III. DATA SET 

 

A. Model Outputs Used to Generate Synthetic Signal 

 

1) Land Hydrology Signal From WGHM Model: TheWater-GAP Global Hydrology Model 

(WGHM) was specifically designed to estimate river discharge for water resource 

assessments [18]. It computes 0.5° × 0.5° gridded time series of monthly runoff, snow 

depth, soil water within the root zone, ground water and surface water storage in rivers, lakes, 

and wetlands, and river discharge. Here, we used the total water storage (TWS) grid for 

March 2006 resampled at 1° to represent the continental part of the water cycle. 

 

2) OBP From ECCO Model: Ocean bottom pressure (OBP) data represent the vertically 

integrated mass of the atmosphere and ocean above a peculiar point of the seafloor. In this 

study, we use the 1° × 1° OBP grid for March 2006 from the estimating the circulation & 
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climate of the ocean (ECCO) model with data assimilation of sea surface topography from 

altimetry (ECCO-JPL). The OBP data are available at http://ecco.jpl.nasa.gov/external/. 

We remove from the TWS (OBP, respectively) grid the time average TWS (OBP, 

respectively) map between January 2003 and December 2007 to derive anomaly grids, thus 

being consistent with the processing of GRACE data over land and oceans. 

 

B. GRACE Products 

 

The GRACE mission, sponsored by NASA and DLR, has been collecting data since mid-

2002. 

1) Raw level-2 products: The level-2 raw data consist of monthly estimates of geopotential 

coefficients adjusted for each 30-day period from raw along-track GRACE measurements by 

different research groups (i.e., CSR, GFZ, and JPL). These coefficients are developed up to 

60◦ (or a spatial resolution of 333 km) and corrected for oceanic and atmospheric effects [1], 

[19] to obtain residual global grids of ocean and land signals corrupted by a strong noise. 

These data are available at ftp://podaac.jpl.nasa.gov/grace/. 

2) The monthly raw solutions (RL04) from CSR, GFZ, and JPL were destriped and smoothed 

by Chambers [11] for hydrological purposes. These three data sets are available for several 

averaging radii (0, 300, and 500 km on the continents and 300, 500, and 750 km on the 

oceans) at ftp://podaac.jpl.nasa.gov/tellus/grace/monthly. 

 

IV. RESULTS 

 

A. Simulated GRACE Data 

 

In order to validate the ICA method for separation of signals in GRACE products, we make a 

synthetic data set by adding different levels of noise to reference observations and inverting 

the results. March 2006 was chosen because continental water mass amplitudes were 

particularly strong and thus recognizable (i.e., ∼600 mm of equivalent water thickness (EWT) 

over the Amazon basin). 

We generated a simulated GRACE observation by adding three complementary components: 

land hydrology, ocean, and noise signals. The land hydrology component comes from the 

TWS, expressed in terms of EWT, of the WGHM model. We used OBP from the ECCO 
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model to simulate the ocean mass anomaly. To be consistent with the spatial resolution of 

GRACE, TWS and OBP signals were filtered with a 200–300-km Gaussian low-pass filter. 

The noise added in our simulations was obtained as the difference between level-1 and level-2 

land water solutions from CNES/GRGS [20] over the same monthly time period and 

normalized from 10% to 100% of the maximum of the synthetic ocean and land signals. 

To generate three synthetic sets of observations, similar to the GRACE products from CSR, 

GFZ, and JPL, for instance, as input for the ICA method, we multiply the noise signal by 0.9, 

1, and 1.1 before adding the land hydrology and ocean components. The simulated GRACE 

observations present a clearly non-Gaussian histogram. Each input grid is converted in a 

vector of 64 800 (= 360 × 180 grid points) values sorted according to their geographical 

coordinates for both land and oceans. Hence, we can apply the ICA method to these simulated 

GRACE observations. 

We performed the ICA for levels of noise from 10% to 100%. These levels are defined as the 

ratio between the maximum of amplitude of the noise and the maximum of amplitude of the 

simulated GRACE signal. We present the results for a level of noise of 100% (Fig. 1, top). 

The FastICA method allows for successfully isolating the hydrological signal over land and 

ocean from the noise whatever the level of noise. The results of the ICA can be seen in the 

middle and bottom panels of Fig. 1. The synthetic GRACE input is corrupted by a strong 

noise whose maxima are of the same intensity as those of the hydrological signal. After 

applying the ICA method, two clearly separated modes appear: the hydrological signal and 

noise. The synthetic data correspond to an overdetermined case, that is to say, a case where 

the number of observations y is greater than the number of sources x. Both spatial patterns 

and maximum intensity are well separated. Numerical comparisons between the synthetic 

hydrological signal and its estimate by the ICA method are presented in Table I for increasing 

levels of noise. These differences logically increase with the noise. In all cases, the mean bias 

amplitude is lower than 0.5 mm of EWT and slightly negative. The maximum rms is lower 

than 3 mm of EWT, and the maximum difference reaches 35.5 mm, that is to say, 0.5% (6%, 

respectively) for a reference hydrological signal amplitude of 600 mm. 

This preliminary test of using ICA for separating synthetic signals is successful, as the 

structures of the hydrological models are fully recovered with realistic amplitudes. 

 

B. Real GRACE Data 

 



We now apply the ICA method to the real GRACE data for separating useful hydrological 

signals from uncorrelated noise for a given monthly period. We consider three 1° global grids 

corresponding to the CSR, GFZ, and JPL level-2 GRACE solutions for March 2006 as three 

independent observations of the Earth’s gravity field variations. Our starting assumption is 

that the level-2 GRACE solution is a linear combination of different spatially independent 

gravity sources, as long as this resulting mixing does not have a pure Gaussian distribution. 

Unfortunately, the histogram of the raw GRACE solutions is purely Gaussian as noisy stripes 

dominate the observation. 

We preprocessed the level-2 GRACE solutions using Gaussian filters with different radius 

from 300 to 900 km. When the GRACE solutions are Gaussian filtered with averaging radii 

ranging from 300 to 500 km, the distributions of the observations are sufficiently non-

Gaussian to allow the use of the ICA method. For averaging radii lower than 300 km (or 

greater than 500 km), the signal is dominated by the north–south stripes (respectively, the 

smoothing of the GRACE solutions is too important); thus, the corresponding histogram is 

Gaussian. As a consequence, the ICA method is unable to isolate the hydrological signal over 

land and oceans from noise in these cases. 

We applied FastICA to Gaussian prefiltered GRACE solutions for averaging radii of 300, 

400, and 500 km. As ICA is linear, the ICA-based CSR, GFZ, and JPL solutions only differ 

from a scaling factor for each specific component. The ICA-filtered CSR, GFZ, and JPL 

solutions are obtained by multiplying the jth independent component with the jth mixing vector 

(1). As the last two modes exhibit similar histograms corresponding to the north–south 

stripes, we present their sum in Fig. 2. The distribution of each independent component is 

clearly separated.We chose to present in Fig. 3 the independent the Gaussian-filtered using a 

radius of 400 km level-2 GFZ solution and the independent components corresponding to 

ICAfiltered GFZ solutions. The first component is clearly related to continental hydrology 

with variations in the range of +450/− 300 mm (350/ − 200 mm, 300/ − 150 mm) of EWT 

for an averaging radius of 300 km (respectively, 400 and 500 km) and to ocean signals with 

variations in the range of ±230 mm (±180 mm, ±150 mm) of EWT for an averaging radius of 

300 km (respectively, 400 and 500 km; see Table II). The larger water mass anomalies are 

observed in the Amazon, Congo, and Ganges basins over land, and in the Mediterranean Sea 

and the Gulf of Carpentaria by northern Australia over ocean (Fig. 3, middle). Components 2 

and 3 (we present their sum in Fig. 3, right bottom) correspond to the north–south stripes, i.e., 

resonances in the satellite’s orbits. They are smaller by a factor of three or four (Table II). 



 

C. Comparisons With Destriped and Smoothed GRACE Data 

 

The first component has been compared to the destriped and smoothed level-2 GRACE data 

processed by Chambers [11] for each data center. The results of this comparison are presented 

in Table III over land and oceans for radii of 300 and 500 km. A good agreement between the 

ICA estimates and the destriped and smoothed GRACE data is observed over the continents 

and increases with the averaging radius. 

This result is consistent with the fact that the dynamics of the noise in the prefiltered 

observations logically decreases as the averaging radius increases. Table II presents the main 

characteristics of the ICA estimates for 300-, 400-, and 500-km cases and compares them to 

the characteristics of the destriped and smoothed solutions. For a 300-km averaging radius, 

the ICA estimates present a stronger signal and the same variability as destriped and 

smoothed solutions, whereas for an averaging radius of 500 km, signal amplitudes are similar, 

but the ICAbased solutions exhibit a lower variability. For an averaging radius of 400 km, the 

ICA estimates are very similar to the destriped and smoothed products at 500 km (same level 

of variability, correlation of 0.9) but exhibit a stronger signal. 

Over the oceans, the agreement between the ICA estimates and the destriped and smoothed 

products is lower (Table III). This is mainly due to the fact that the GRACE signal over the 

oceans is generally weaker than the land signals by factors of two or three, both on seasonal 

and interannual time scales and also because the mean monthly ocean model was not added 

back. Moreover, as the signal over the oceans is very different from one GRACE raw product 

to another, the ICA approach is unable to well separate the geophysical signal from the north–

south stripes. 

 

V. CONCLUSION 

 

Our study is the first attempt to destripe satellite gravity information using an ICA-based 

strategy, only taking the statistical properties of the observations into account and without any 

extra information. After having been successfully tested on synthetic noisy data (rms error 

lower than 0.5% for a maximum amplitude of noise equal to the maximum of the continental 

hydrology signal), ICA has been applied to separate the statistically independent components 

of the Earth’s gravity field by combining monthly level-2 land water solutions processed by 

the three official providers of GRACE products (CSR, GFZ, and JPL). The main component 



corresponds to the water mass anomaly on continents and oceans. The second and third ICA 

estimates are pure noise of less amplitude, to be cancelled from the GRACE signals for 

geophysical interpretation. On real GRACE data, this approach requires the use of a 

preprocessing filter to verify the assumption of non-Gaussianity of the observations. 

This method gives equivalent results as the destriping method on the continents and even less 

smoothed results. On the oceans, as the signal is weaker and the input is quite different, ICA 

is unable to extract correctly the geophysical signal from the noise. Our study demonstrates 

the ability of ICA to discriminate efficiently geophysical components from the total measured 

gravity field, as continental hydrology change, and even in the presence of important 

uncorrelated noise. In the future, this efficient linear technique offers an interesting alternative 

to classical filtering, for example, it would be considered for cleaning an entire time series of 

GRACE geoids from polluting noise. 
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TABLES 

 

TABLE I: COMPARISON BETWEEN THE RESULTS OF THE ICA METHOD AND THE 

SYNTHETIC DATA FOR INCREASING LEVELS OF NOISE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise level (%) 20 30 40 50 60 70 80 90 100 

Mean Bias (mm) -0.1 -0.13 -0.17 -0.2 -0.24 -0.28 -0.31 -0.35 -0.38 

RMS (mm) 1.54 1.64 1.78 1.95 2.13 2.33 2.54 2.76 2.98 

Maximum 

Difference (mm) 9.46 10.92 14.44 17.95 21.46 24.97 28.49 32.00 35.51 

 



TABLE II:  CHARACTERISTICS OF THE FIRST MODE OF THE ICA ESTIMATES FOR 

AVERAGING RADII OF 300, 400, AND 500 km AND DESTRIPED AND SMOOTHED 

PRODUCTS AT 300 AND 500 km. 

 

 

 

 

TABLE III: COMPARISON BETWEEN ICA ESTIMATES AND DESTRIPED AND 

SMOOTHED GRACE DATA OVER LAND AND OCEANS FOR AVERAGING RADII OF 

300 AND 500 KM. 

 

 

 ICA filtered estimates Destriped and smoothed products 

 300 km 400 km 500 km 300 km 500 km 

 CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL 

Amplitude max (mm) 444 408 427 356 339 326 300 289 275 403 359 344 320 294 278 

Std (mm) 61 56 59 52 50 48 47 46 43 61 61 59 53 53 50 

 Land Ocean 

 300 km 500 km 300 km 500 km 

 CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL 

RMS (mm) 37.6 37.5 37.3 21.1 22.4 20.0 40.5 39.8 39.9 20.5 22.6 20.7 

Correlation 0.8 0.8 0.8 0.9 0.9 0.9 0.4 0.4 0.4 0.6 0.5 0.5 



FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  The synthetic GRACE signal for a level of noise of 

100% (top); 1
st
 ICA component corresponding to the land 

and ocean signals (middle), 2
nd

 ICA component 

corresponding to the North-South stripes (bottom). Units are 

mm of EWT. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Normalized histograms of the GRACE water storage 

from filtered with a Gaussian filter of 400 km of radius for 

March 2006 and of the corresponding ICA-estimated 

independent components. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  GRACE water storage from GFZ filtered with a 

Gaussian filter of 400 km of radius for March 2006 (top); 1
st
 

ICA component corresponding to land hydrology and ocean 

mass (middle); the sum of the 2
nd

 and 3
rd

 corresponding to 

the North-South stripes (bottom). Units are mm of EWT. 
  


