
HAL Id: hal-00515361
https://hal.science/hal-00515361v1

Preprint submitted on 6 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The jointly scheduling of hard periodic tasks with soft
aperiodic events within the Real-Time Specification for

Java (RTSJ)
Damien Masson, Serge Midonnet

To cite this version:
Damien Masson, Serge Midonnet. The jointly scheduling of hard periodic tasks with soft aperiodic
events within the Real-Time Specification for Java (RTSJ). 2010. �hal-00515361�

https://hal.science/hal-00515361v1
https://hal.archives-ouvertes.fr

The jointly scheduling of hard periodic tasks with soft
aperiodic events within the Real-Time Specification for

Java (RTSJ)

Damien Massona,b, Serge Midonneta,c

aUniversité Paris-Est, LIGM – UMR CNRS 8049, France.
bESIEE Engineering, Cité Descartes BP 99, 93162 Noisy-le-Grand Cedex, France.

cUniversité de Marne-la-vallée, 77454 Marne-la-Vallée Cedex 2, France.

Abstract

The studied problem is the jointly scheduling of hard periodic tasks with soft
aperiodic events, where the response times of soft tasks have to be as low as
possible while the warranty to meet their deadlines has to be given to hard
tasks. A lot of theoretical solutions have been proposed these past two decades
but we are interested on the implementability of these solutions under the real-
time specification for Java (RTSJ), without changing the scheduler. This led us
to adapt the existing algorithms to operate at a user land level in the system,
to propose some optimizations and counter measures in order to balance the
lost of performances and finally to set up an approximate slack stealer algo-
rithm specifically designed to take into account RTSJ restrictions. We propose
new classes to extend the RTSJ API’s to implement these mechanisms and
some minor modification suggestions to existing ones as a feed back from our
RTSJ experiences. We demonstrates the efficiency of the modified algorithms
through extensive simulations and the implementability on available RTSJ com-
pliant virtual machine by an overhead measure in real situation with the RTSJ
JamäıcaVM from Aı̈cas. We also measure the overhead on LejosRT, an RTSJ
compliant firmware for Lego Mindstorms NXT in development.

1. Introduction

Real-time system theory has historically focused on fully periodic task sys-
tems. This came from the need to have known activation model to ensure the
respect of timing constraints. Modern applications however cannot be only com-
posed of fully periodic tasks. Some part of the work, like user feed back, control,
or switch to another operating mode are aperiodic by essence. These kind of
work cannot has strict constraints, since its activation model is not known, but
the system can try to serve it as fast as possible.

This leads the community to address the problem of jointly scheduling hard
periodic tasks and soft aperiodic events. The objective is to conjointly ensure
the deadline for periodic tasks, and minimize the response times of other tasks.

Preprint submitted to Elsevier September 3, 2010

A first solution is to schedule all non-periodic tasks at a lower priority (as-
suming that the tasks are scheduled using a preemptive fixed priority policy).
This policy is known as the Background Servicing (BS). If it is very simple to
implement, it does not offer satisfying response times for non-periodic tasks,
especially if the periodic traffic is important.

To reduce these response times, the periodic task servers were introduced by
Lehoczky et al. in [1]. A periodic task server is a periodic task, for which clas-
sical response time determination and admission control methods are applicable
(with or without modifications). This particular task is in charge of servicing
the non-periodic traffic with a limited capacity.

Several types of task server can be found in the literature. They differ by the
way the capacity is managed. We can cite the Polling Server policy (PS), the
Deferrable Server policy (DS), the Priority Exchange policy (PE) first described
by Lehoczky et al. in [1] and developed in [2] and the Sporadic Server policy
(SS) presented in [3].

In [4], Lehoczky and Ramos-Thuel propose the Static Slack Stealer, an
algorithm to compute the slack: the maximal amount of time available at instant
t to execute aperiodic tasks at the highest priority without endangering the
periodic tasks.

This approach was first considered optimal in terms of minimizing the ape-
riodic tasks response times. It was proved in [5] that such an optimal schedule
cannot be obtained by a non clairvoyant algorithm.

Unfortunately, the time and memory complexities of slack stealing approach
are much too high for it to be usable. In his PhD thesis work [6], Davis

proposes a dynamic algorithm to compute the exact available slack time. Then
he demonstrates that the complexity is too high for a real implementation and
proposes two approximate slack time computation algorithms, one based on
a static approximation, SASS, and the other which is dynamic, DASS. The
dynamic approach presents the advantage to allow gain time1 to be assimilated
in the slack and then transparently reallocated for aperiodic traffic.

All these contributions make the assumption that the developer has the
hand on the scheduler, and are in substance enhanced scheduling mechanisms.
Unfortunately, the scheduler is most of the time a part of the hardware or of
the operating system.

In this work, we focus on the implementability of these mechanisms with the
Real-Time Specification for Java (RTSJ). The aim of RTSJ is to design APIs
and virtual machine specifications for the writing of real-time applications in
Java language.

The only easily supported mechanism in the RTSJ is the BS. We then focus
on the adaptation of existing algorithms to run at a user land level, since we
want to propose a solution running on actual RTSJ compliant virtual machine:
we can just rely on a preemptive fixed priority scheduler.

1if a periodic task has a worst case execution time greater than its mean execution time,
most of its executions generate reserved but unused time called gain time

2

We also designed a new approximate slack stealer specifically conceived to
take into account RTSJ implementation restrictions. Since the aim of this al-
gorithm was to have the lowest possible overhead, we called it the Minimal
Approximate Slack Stealer (MASS).

The remainder of this paper is organized as follow: Section 2 presents related
work ; Section 3 presents the task model and the assumptions ; Section 4 de-
scribes the existing algorithms ; Section 5 presents the RTSJ existing tools, the
constraints of their use, and the solutions to pass through these constraints and
implement task servers ; Section 6 focus on the slack stealer implementations
and the MASS algorithm ; Section 7 presents an unified framework to handle
aperiodic traffic in the RTSJ ; Section 8 exposes simulation and execution re-
sults to evaluate our mechanisms and Section 9 regroups some suggestions to
improve the RTSJ. Then we conclude in Section 10.

2. Context and related work

The context of this work is the jointly scheduling of hard periodic tasks with
soft aperiodic events. The deadlines of periodic tasks must be ensured while the
response times of aperiodic events may be minimized.

Our goal is not to propose new and better algorithms, but to study the
implementability of existing ones.

Our target is the RTSJ since the research effort both from academy and
industry is more and more consequent these past ten years. It looks for us as a
good vehicle to speed up the technology transfer from academy to industry.

The choice of this target limited us to fixed priority systems, although results
exists for the jointly scheduling problem in dynamic priority systems [7, 8]. The
restrictions brought to us by the use of RTSJ also led us to propose a new slack
time approximation algorithm (MASS). It’s aim was not to propose a closer
bound than existing algorithms (SASS, DASS), but to operate with a lower
time overhead.

If this algorithm was designed in the context of the mixed scheduling, slack
time approximation is an actual topic of interest in other domain, like the en-
ergy aware scheduling using modern processors able to dynamically adjust their
frequency and voltage (DVS/DFS).

3. Task Model, Assumptions and Notations

We consider a process model of a mono processor system, Φ, made up
of n periodic tasks, Π = {τ1, ..., τn} scheduled with fixed priorities. Each
τi ∈ Π is a sequence of requests for execution characterized by the tuple
τi = (ri, Ci, Ti, Di, P i), where ri is the instant of τi first release, Ci is the
worst case execution time (WCET) of the request, Ti is the task period i.e. the
amount of time between two consecutive requests, Di is the deadline of a request
relative to its release and Pi is the priority of the task, which can be arbitrary
set (the priorities are not related to periods nor deadlines).

3

Since we focus on this paper on the cases where the execution time is constant
over all requests, we will denote the WCET the cost of the request.

We restrict the study to the case Di ≤ Ti.
The highest priority is 1 and tasks are ordered according to their priority, so

τi has a higher priority than τi+1 and more generally we have: P1 < P2 < ... <
Pn.

The system also has to serve an unbounded number p of aperiodic requests,
Γ = {σ1, ..., σp}. A request σi ∈ Γ is characterized by a release date ri and by
an execution time Ci.

Finally we assume that all tasks are independent and so we do not consider
any blocking factor nor release jitter. If this work can be extended to the case
where periodic tasks can share resources and possibly to the case with jitter on
the periodic activations, it cannot be extended to the case where aperiodic share
resources (with other aperiodic tasks or with periodic tasks). We will see why
in Section 5.2.3. This work can also be extended to the case where priorities
are associated to aperiodic tasks. We will see how in Section 5.2.2.

We denote as an i-level busy period a time interval where the processor is
always occupied by tasks with priorities higher or equal to i. Reciprocally, we
denote as an i-level idle period a time interval where the processor is idle or
occupied by tasks with priorities lower than i. Generally, the running level
designates the priority of the task currently executed.

4. Existing Algorithms

The general problem of jointly scheduling hard periodic tasks and soft ape-
riodic events was widely studied through the past decades.

The first solution to this scheduling issue consists to serve the aperiodic
traffic in background. This approach, called background scheduling, is easily set
up by the reservation of a range of the lowest priorities to serve the aperiodic
tasks, and this is sufficient to ensure that they will never interfere with the
periodic traffic.

However, if this background scheduling offers the feasibility guarantee for the
periodic tasks, it does not address the issue of the minimization of the aperiodic
tasks response times.

We can classify the algorithms which address the whole issue in two main
categories: the task servers and the slack stealers. In one hand the task servers
approach is a resource reservation: a special task responsible to handle the
aperiodic traffic is added to the feasibility analysis. On the other hand the slack
stealer approach consists in the computation and the use as soon as possible of
the unused resources of the system.

Task servers was first introduced in [1]. This paper presents the general
concept and three possible algorithms: the Polling Server (PS), the Deferrable
Server (DS) and the Priority Exchange Server (PES). All these three algorithms
rely on a special task in the system with a given priority, a given period and a
given capacity. This task is responsible for the aperiodic traffic service and its

4

interference on the other periodic tasks can be bounded independently of the
aperiodic workload.

Slack stealer algorithms was introduced in [4] and extended to hard real-time
sporadic tasks in [9]. The general idea is to compute at a time t where there is an
aperiodic pending request, for each hard real-time task, a value, called the slack.
This value corresponds to the amount of time the task can suspend its execution
without missing its deadline. Then a time interval equal to the minimum among
these values can be used to handle aperiodic traffic. The whole issue is then to
compute this slack values. The first proposed approach was based on a table
computed off line. This solution suffers to a big memory complexity issue due
to the static table storage. Moreover, it was difficult to integrate in the slack
notion several dynamic parameters, such as gain time or release jitter. So a
dynamic exact approach was proposed in [10], and a dynamic approximate one
to address the time complexity issue of the exact approach was proposed in [6].
This dynamic approximation relies on the computation of a lower bound on the
slack values and is called Dynamic Approximate Slack Stealer (DASS).

It is interesting to note that the exact slack stealer approaches was first con-
sider as optimal for the problem of the minimization of aperiodic response times
(in the context of a preemptive fixed priority scheduler) before it was proved
in [5] that such an optimal algorithm cannot be obtained without knowledge
on the aperiodic task arrival model. Indeed, the authors showed that starting
to serve an aperiodic request as earlier as possible does not necessary lead to
minimized its response time.

4.1. Polling server (PS)

A polling server is an ordinary periodic task τs, with a priority Ps, a period
Ts and a cost Cs. From a feasibility analysis point of view, it is absolutely
identical to a normal periodic task. This task has access to a queue where the
aperiodic events are enqueued when they are released. The policy gesture of
this queue (first in first out, last in first out, any other order) is independent
with the polling server general principle and does not interfere with the hard
tasks feasibility analysis.

When the server is periodically released, its capacity is set to its cost param-
eter. Then it checks the emptiness of its job queue. If the queue is not empty, it
begins to serve the jobs, consuming its capacity, until its capacity falls to zero.
If it happens that there is no more job to serve, its capacity falls instantaneously
to zero.

The principal draw back of this algorithm is that if it happens that an
aperiodic job is released just after a periodic activation of the server, say at
a time t = αTs + ǫ with α an arbitrary positive integer and if the queue was
empty at that time, the service of this job will be delayed at least to the next
activation ((α+ 1)Ts) since the server has just lost its capacity.

4.2. Deferrable Server (DS)

The DS was proposed to address this PS weakness. The DS algorithm is
quite similar to the PS one, except that it keeps its capacity even if the queue

5

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

���������������� ����

overflow
Time

DS

τ1

Figure 1: We have in this example a DS with Cs = 2, Ts = 4 and a periodic hard real-time
task τ1 with C1 = 2 and T1 = 5. If the system is analyzed as if the DS was a regular periodic
task, it is found feasible. However, we can see that if an aperiodic request is released at time
10 when the DS has kept its capacity, and another one at time 12 when the DS just retrieved
its full capacity, τ1 cannot complete its periodic request before its relative deadline.

is empty. It results from this propriety that the DS can be woke up at any
moment, and can preempt a lower priority task. If it permits to decrease the
average response times of aperiodic events served, it also violates one hypothesis
of the feasibility analysis theory which is that a periodic hard real-time task
cannot suspends itself. Consequently, the interference of the DS on the other
tasks of the system is not the same as the one from a periodic task with the
same parameters. To illustrate that, an example is presented in Figure 1.

The direct consequence is that number of systems feasible with a PS will not
be feasible with a DS set with the same parameters. The cost to pay to obtain
lower average response times for aperiodic tasks is a lower feasibility bound on
the periodic ones.

4.3. Dynamic Approximate Slack Stealer (DASS)

We describe here with details the Davis work on the dynamic slack stealing
in order to understand well the common parts and the differences with our
algorithm that we describe in Section 6.2.

4.3.1. Dynamic Slack Stealing (DSS)

One goal of this dynamic approach was to extend the slack stealing algorithm
to systems with hard sporadic tasks. In such systems, it is a strong limitation
to only consider the execution of aperiodic requests at the higher priority. So
the original DSS allows to compute the higher priority to execute the aperiodic
request and the amount of time associated. For the sake of clarity and due
to an RTSJ limitation we will present in Section 5.2, we just present here the
algorithm version where aperiodic requests are scheduled at the highest priority.

We consider an aperiodic request, Ja, released at time t. DSS is an algorithm
to schedule this request. This algorithm relies on the determination at time t and
for each priority level of the available slack time, Si(t), which is the maximum
amount of time the task τi can be delayed without missing its deadline. This

6

value is equal to the number of unused time units at priorities higher or equal
to i between t and the next τi deadline. the length of this interval is noted di(t).

Then, in order to serve Ji at the highest priority while guaranteeing the peri-
odic tasks deadlines, we need to have a positive value for all Si(t). The number
of “stolable” time units i.e. immediately available is then S(t) = min∀i Si(t).

To compute the Si(t) values, the interval between t and the next τi deadline
that we denote [t, t+di(t)) is viewed as a succession of i-level busy periods2 and
i-level idle periods3. Then, Si(t) is the sum of the i-level idle period lengths.
Equations to compute the end of a busy period starting at time t and the length
of an idle period starting at time t can be derived from the feasibility analysis
theory. These two equations are then recursively applied until the reach of the
next deadline to determine Si(t).

With this methodology, slack time has potentially to be recomputed from
scratch at any instant, which is obviously not practicable. In order to reduce the
complexity of the computation, we have to define slack time at time t′ relatively
to slack time at time t. There is two general cases to study:

None of the hard periodic tasks ends its execution in [t, t′). Then
there is three possibilities for the processor activity between t and t′: the pro-
cessor can be idle, it can be executing soft aperiodic requests (stealing slack
times) and it can be executing hard periodic tasks. For the two first possibili-
ties, the slack is reduced by (t′− t) for all priorities. However, if the processor is
executing the hard real-time task τi, then the system is idle for higher priorities
k < i, and the slack is reduced by (t− t′) only for these priorities.

One periodic hard real-time task, τi ends its execution at time

t′′ ∈ [t, t′). Then all i-level idle times present in [t, di(t)) will be also present in
[t, di(t) + Ti) = [t, di(t

′′)), which is the new interval to consider for the i-level
slack times computation. Therefore, the τi termination can only increase Si(t)
but never decrease it. Consequently, Si(t) has to be recomputed each time τi
ends a periodic activation.

So, assuming that there is a time t where the Si(t) was up to date for all
tasks, the DSS algorithm to compute S(t′′) is :

1. if none of the periodic hard real-time tasks ends in [t, t′)
(a) if the processor is idle or executing soft aperiodic requests

∀j : Sj(t
′) = Sj(t)− (t− t′) (1)

(b) if the processor is executing hard periodic task τi

∀j < i : Sj(t
′) = Sj(t)− (t− t′) (2)

2. if hard real-time task τi ends at time t′′ ∈ [t, t′), Si(t
′′) has to be computed

using the recursive analysis described at the beginning of this section. The
recurrence can be started with the previous value (Si(t

′′) = Si(t)).

2periods where the processor is servicing priorities higher or equal to i
3processor idle periods or periods where processor serves priorities lower than i

7

This algorithm is not directly usable because of the time complexity of the
recursive computation of the Si(t) to perform at each task ends. However, this
part can be replaced by the computation of a lower bound.

4.3.2. Dynamic Approximate Slack Stealer (DASS)

Since Si(t) is the sum of the i-level idle period lengths in the interval [t, t+
di(t)), Davis proposes to estimate this quantity by computing a bound on the
maximal interference the task τi can suffer in this interval. A bound on this
interference is given by the sum of the interferences from each task with a higher
priority than τi. Then Equation 3 gives the interference suffer by a task τj from
a task τi in an interval [a, b].

Iji (a, b) = ci(t) + fi(a, b)Ci + min(Ci, (b− xi(a)− fi(a, b)Ti)0) (3)

The function fi(a, b) returns the τi instance number which can begins and
completes in [a, b]. It is given by Equation 44.

fi(a, b) =

⌊

b− xi(a)

Ti

⌋

0

(4)

The function xi(t) represents the first activation of τi which follows t. Then
the interference is composed by the remaining computation time needed to com-
plete the current pending request, by a number of entire invocations given by
fi(a, b), and by a last partial request.

A lower bound on the Si(t) value is given by the length of the interval minus
the sum of the interferences from each task with a higher or equal priority than
τi. It is recapitulated by Equation 5.

Si(t) =

di(t)− t−
∑

∀j≤i

Iij(t, di(t))

0

(5)

4.4. Conclusions

The jointly scheduling of hard periodic tasks with soft aperiodic events issues
was widely studied from a theoretical point of view.

The task server approache consists to delegate the aperiodic traffic to a
special task and to modify the feasibility analysis algorithm to integrate this
special task. The DS offers better responsiveness for aperiodic traffic, but results
in a lower feasibility bound due to its greater interference on task with a lower
priority. Other service politics exists, we can cite here the sporadic server or
the priority exchange server, but are more complicated to set up.

4the notation (x)0 means max(x, 0)

8

The slack stealer approache does not modify the analysis of the periodic
tasks, but tends to stole unused time which results from the necessity to guar-
antee the periodic tasks deadlines in the worst case. It offers the best per-
formances among the non forth-seeing algorithms since it allows to start an
aperiodic request as soon as possible at the best priority.

The common part between these two approaches is that they are strongly
linked with the scheduler, and even are in essence scheduling algorithms.

5. RTSJ Existing Tools, Constraints and Algorithmic Solutions

If the JSR-01 for a real-time specification for Java is completed, RTSJ is still
a young specification, with a lot of features missing and in progress through the
JSR-282. So on, the expert group focus his attention to issues such as cross-
platforms time facilities, real-time threads or non garbage-collected memory
areas.

Some tools are provided to model aperiodic traffic, but we will see in this
section that they do not permits to set up advanced mechanisms presented in
the last section.

5.1. Existing tools in the RTSJ

The RTSJ proposes a set of minimal requirements for a real-time Java virtual
machine (RTJVM) and a set of API to program real-time applications in Java.
Some features are mandatory, some others are not. Since our will is to propose
a portable mechanism, we only focused on mandatory features.

In real-time systems, the scheduling policy has to be a real-time policy. So
the RTSJ specifies that an RTJVM has to offer by default a preemptive fixed
priority scheduler. It allows the programmer to choose an alternative policy,
by the way of the abstract class Scheduler. However, a very few RTJVMs
implements other policies, and it is difficult to write a scheduler independent of
the JVM.

To generalize the Thread facility of regular Java programs, RTSJ proposes
the notion of schedulable object (SO) through the interface Schedulable. A SO
is an object which can be scheduled by the scheduler. A suitable context for the
execution of such an object is created using scheduling and release parameters
attached to each SO. Schedulable is so an interface with getter and setter meth-
ods to access and modify scheduling parameters (class SchedulingParameters)
and release ones (class ReleaseParameters). There is also methods to attach
the SO to a particular scheduler or to add or remove it to the feasibility analysis.

Two main concrete classes implementing this interface are proposed: Realtime-
Thread which also extends the class java.lang.Thread, and AsyncEventHandler
which is a lighter way to encapsulate code in order to execute it when some
event is released. A RealtimeThread is always associated with one and only
one thread, but AsyncEventHandlers can share a thread if a thread pool mech-
anism is implanted (this is a possibility offered by the specification but this is
not mandatory).

9

So RealtimeThreads associated with PeriodicParameters (which is a Release-
Parameters subclass) are perfect to implement hard real-time periodic tasks,
and AsyncEventHandlers seems to be the right choice to implement soft aperi-
odic ones.

However, among the solutions for a mixed scheduling of these two kind of
traffic, only the BS is implementable with this tools. It is sufficient to assign
PriorityParameters (SchedulingParameters subclass) with lower priorities
to the AsyncEventHandlers which model the aperiodic traffic. It is possible
to go further by the use of ProcessingGroupParameters (PGP). A PGP is an
object quite similar to ReleaseParameters, but shared by several SO. It allows
in particular to assign a common time budget to several SO. So it permits to
virtually set up a server at a logical level. Unfortunately, the desirable behavior
when the budget is consumed, which is to not schedule the others SOs until the
budget is replenished, is not mandatory because it relies on the capacity to mon-
itor CPU consumption of the JVM. Moreover, this behavior is underspecified
[11] and in any case does not allow to choose a particular policy for the con-
sumption of the shared budget. A contribution to extend the PGP semantic for
multiprocessors systems and to extend it in order to write task servers has been
led in [12]. However this approach relies on modifications on the specification
and is not implantable under nowadays available RTJVMs.

5.2. Goal and Restrictions

Our goal is to propose a framework to handle aperiodic traffic implementable
without modification on the RTJVM or the RTOS. It supposes to only rely on
mandatory features and to not modify the scheduler. The solutions we want to
propose also have to present a reasonable overhead, which can be integrated in
the feasibility analysis process.

Since we cannot modify the system scheduler and since the mechanisms are
by essence scheduler, we will have to simulate a scheduler within a user land
task.

Unfortunately, Java does not permits to asynchronously pause a thread
from another thread. The RTSJ brings the asynchronous transfer of control
(ATC) facility through the classes AsynchrounouslyInterruptedException

and Interruptible, but it only permits to stop a thread definitively.
The second main issue is that both server mechanisms and slack stealer ap-

proach needs to monitor CPU time consumption. Indeed, even simplest servers
like polling or deferrable needs to monitor the capacity consumption, and both
slack stealer approach and more sophisticated server policies like Priority Ex-
change [1] or Sporadic Server [3, 13] suppose to keep up to date information
about times passed to execute each priority level in order to compute data used
by the algorithm.

The only solution we found to this issue is to force the server priority, or the
priority level for aperiodic tasks executed on stolen slack time to the highest
priority available. Then, if we use for the other tasks (regular periodic hard real
time ones) a modified RealtimeThread class which perform special operations

10

when they begin and end each periodic job, we can easily trace the CPU oc-
cupation as we will explain in details in Section 5.2.1. We will see in Section
6 that the possibility to add code before and after each instance is also very
convenient to implement slack stealer algorithms.

It is a strong and inelegant restriction since it does not permit to use sev-
eral servers at the same time and it forces the use of modified RealtimeThread.
Moreover, if one add in the system a regular RealtimeThread, there is no mech-
anisms to warn him he is doing something wrong. However, a better way to
implement task servers and slack stealers only passed by modifications on the
RTSJ.

5.2.1. Server Capacity Gesture

The cost enforcement facilities of the RTSJ are not mandatory. So the only
solution to our knowledge to watch the CPU consumption of a task is to ensure
that it is not preempted, and to measure time before and after its execution. The
simplest way to forbid the preemption is to schedule it at the highest priority.
We also could use a lock shared between all the tasks in the system, but we do
not choose this solution because of the overhead of lock management.

Also, that suppose there is no task in the system with higher priority than
the RTJVM.

So the server is a real-time task with the highest priority in the system. It
has access to a structure where events are enqueued when they are released.
When it is waked up, it starts a timer with its capacity, and starts to serve one
aperiodic job. If the timer expire when it is still occupied with an event, it has
to asynchronously stop the event. If it happens what the queue is empty, the
timer is canceled and the server wait until its next activation.

There is two consequences: first the two highest priorities have to be reserved
for the mechanism. The highest for the timers, and the second highest for the
service. Second, it can happens what we start to treat an event for nothing,
because the treatment is stopped asynchronously by the timer, and then the
treatment will have to be resume from scratch at the next server activation.
Even more, it is possible that an event never can be served, whereas it could be
served in background or in a system where it is not scheduled at user land level.

Two actions can be set up to limit the side effect: take a special care to the
queue policy, and schedule a replica in background. This is the topic of the next
two subsections.

5.2.2. Waiting Queue Policy

To avoid starvation situations, the first action that we can take is to privilege
shorter tasks, and to not start a task if there is not enough capacity to complete
it. We investigated among several queue policy and conducted extensive sim-
ulations that shown that the Lowest Cost First (LCF) policy is almost always
the policy which exhibits the shorter average response times.

However, if it decreases the risk of starvation, it does not solve the issue. It
is still possible to never be able to serve a task, even if there is actually a lot of
unused CPU time slot in the system, as shown by Figure 2.

11

��
��
��
��

��
��
��
��

�������� �������� ������ ��������

���
���
���
���

��
��
��
��

������ ����

302520151050

1ut
2

1ut
2

τ1

PS 3ut 1ut3ut
20

Figure 2: In this example, the event released at time t = 8 can never be served even if the
server capacity never fall in a lower value than 2 after time t = 12

��
��
��
��

��

�������� �������� ������ ��������

���
���
���
���

��
��
��
��

���� ���� ��

������ ����

1ut
2

1ut
2

302520151050

BSτ1

PS 3ut 1ut3ut
20

Figure 3: The same example as in Figure 2 but with a duplication policy set: the event which
was never served without duplication is served in background and completes at time t = 23
; the first aperiodic event that occurs at time t = 4 is first started in background but finally
completes within the serer: the replica is asynchronously interrupted

5.2.3. Duplication in Background

The solution is to duplicate each aperiodic task and to schedule one replica
in background. The first replica to complete will be in charge to cancel the
second one. It is important to note that the replica will never compete against
each over because the replica served by the manager will always be executed
at the highest priority. However, it can happen that the background replica
begins, then is preempted by other task, and then the other replica is started
and complete its execution. Some job is then done twice, but if we do not
consider energy consumption issue, it is not a problem since this CPU time
would be wasted anyway. This is illustrated by Figure 3. Note that duplication
can only be applied if the handler does not try to enter in a critical section.

5.3. Task servers in user land

We call respectively MPS and MDS the PS and DS algorithms modified in
order to be implemented in user land within the RTSJ. The differences are:

• MPS and MDS must run at the highest priority,

12

• they start a task only if there is still enough capacity in the server to
permits its termination.

6. Slack Stealers in user land

We explain in this section how the DASS algorithm can be adapted in order
to be implemented as a server running in user land. We introduce a new algo-
rithm, MASS, which is specifically conceived to run in such environment. The
MASS algorithm reduces the time complexity of the slack bound computation,
but the cost is paid with the quality of this bound.

6.1. Modified-DASS (MDASS)

The DASS algorithm formulates Si(t), the lower bound on the slack time
which can be stolen at priority i at time instant t, as the duration of the interval
[t, di(t)) minus the maximal interference caused by higher priority level tasks.
This interference can be bounded by the sum of the interference caused by each
higher priority level task took individually.

Then, Equation 3 gives us the interference of a given priority level during a
given interval. Summing the interferences from all higher priority level gives us
a bound on the total interference and as a consequence a bound on Si(t). Then
we just have to take the minimum to obtain S(t).

It has to be noted that for a given task τi, Si(t) only has to be computed
when task τi ends a periodic instance. Rest of the time, it does not change if
the running level is higher or equal to i, and it decreases when it is lower.

So, it seems that CPU time monitoring is mandatory in order to implement
DASS: first because ci(t) is used in Equation 3, second in order to decrease Si(t)
when the running level is lower than i.

CPU-Time for interference approximation. Equation 3 gives us the interference
of a task τi on another task τj in an [a, b] time interval, with i < j.

Iji (a, b) = c̄i(a) + fi(a, b)Ci +min(Ci, (b− xi(a)− fi(a, b)Ti)0)

It seems that the remaining execution time cbi(t) has to be known. In fact,
is this computation is only done when τj ends an instance, it implies that c̄i(t)
equals 0. Indeed, in the hypothesis that this value is not null, then τi should be
the executing task, not τj .

CPU-time to update Si(t). When the value of Si(t) has to be know, it is suffi-
cient to subtract to the last computed value the time consumed in the elapsed
time by all the lower priority tasks, including the processors idles time.

If the operating system does not provide these date, it is still possible to
manually watch the consumption of each task. In order to do that, a stack has
to be updated. When a task starts, it is pushed on the stack, and when it ends,
it is popped. Before pushing a task on the stack, we update the consumed time
of the task on the top of the stack.

13

It is then possible, each time that a task starts, to update the value of Si(t)
for all the task with an higher priority than the one previously executing. On
same way, at any instant t, it is possible to update the value for the tasks with
an higher priority than the one which is executing.

Conclusion. It is so possible to implement DASS in user land, to the price of
adding at before each task start an uptade in linear time of all the Si(t), and
at the end of each time, a linear time computation of the Si(t) for the ending
task. These operations has to be protect against interruption. We the actual
slack time in the system is needed, it is necessary to update all the Si(t) values
and to compute the minimum. It is also a linear time complexity operation.

However, a roughly slack time approximation can be obtained in constant
time. Since all the task are examined at the end of each instance, it is possible
to extract the minimum over the Si(t) in the same process. After that, the
worst scenario can be assumed, which is the one where the slack is continuously
consumed between the last minimum computation and the instant t. This can
be optimized if the priority level of the task with the lower Si(t) is kept. Then,
we can compare it to the priority of the executing task when the slack is needed:
if the executing task has a lower priority then the slack has decreased else the
slack has kept its value.

6.2. MASS

We propose a new algorithm, MASS, with a lower overhead on the system
than DASS. The goal is to reduce the impact on the schedulability of the system.
MASS stands for Minimal Approximate Slack Stealer. As DASS, MASS relies
only on operation added at the beginning and at the end of each periodic job.

The time complexity of the operation added at the end is still linear, but
with a lower constant. However the time complexity of added operation at the
beginning is now constant, and these operations are only needed if the system
does not provided the CPU consumption of each task.

Notations. The notations used to describe the DASS algorithm are reused here.
We note αi the aperiodic task number i. The highest priority level is 1. A

0 level activity corresponds to the system being idle.

6.2.1. Data to collect and compute

We decompose Si(t) in two parts to be able to compute its separately. First
we consider the available work at a given priority before the next deadline.
This quantity is denoted w̄i(t). Second we consider the work demand at a given
priority, denoted c̄i(t).

We then have Si(t) = w̄i(t)− c̄i(t).
Equation 6 then gives us the slack time in the system.

S(t) = min
∀i∈hrtp

Si(t) = min
∀i∈hrtp

(w̄i(t)− c̄i(t)) (6)

14

We can note that since the slack times are only computed when a periodic
job completes its instance, the c̄i(t) values only have to be correct at these
instants.

6.2.2. Data initialization

In the hypothesis of a synchronous activation of periodic tasks, the equation
7 permits to compute for each task an upper bound on the interference suffer
by τi from tasks with higher priorities.

Ii(t0) ≤
∑

∀k<i

⌈

Di

Tk

⌉

Ck (7)

This upper bound is given by the sum of interferences caused by each task
with an higher priority taken separately. We obtain a value more pessimistic
than the one obtain with Equation 3, but this will permits us to estimate more
easily the interference for the next instance. The interference counted here too
early will permits us to consider only the interference a task suffer between its
activation and its deadline.

If the first activation is not synchronous, we just have to add to the inter-
ference suffer by a task τk the cost of each task with an higher priority started
before it.

Consequently, we have when the system starts:

∀i

{

w̄i(t0) = Di − Ii(t0)
c̄i(t0) = Ci

(8)

The time complexity is quadratic but this is not an issue since we can assume
that this is done before the start of the system.

6.2.3. Data update

We note δk the duration of the processor occupation by τk within a given
interval [t1, t2]. During the interval,c̄k has decreased by δk, and for all task τk
with an higher priority than τk, w̄l has decreased by δk.

However, accurate values for w̄i and c̄i are only needed when a task completes
one instance. We show here how it is possible to maintain a lower bound on
w̄i for all task with linear time operations added at the end of each periodic
instances, and a higher bound on c̄i for all task with constant time operations
added at the end and at the begin of each periodic instances.

Special notations for the rest of this section:. We note tb the latest time where
a task has begin an instance and te the latest time where a task has end an
instance. The current time is t and we have dte = (t− te) and dtb = (t− tb).

6.2.4. Lower bound on all w̄i

We consider the hard real-time periodic task τl. τl ens an instance at time
t. The last update for all w̄i values was at time te. We so have to study the
interval [te, t]. We want to obtain for all task τk the value w̄k(t) as a function
of w̄k(te).

15

Tasks with a priority higher than the one of τl. For all tasks τk with a priority
higher than τl, we have w̄k(te) = w̄k(tb)−dte since only task with lower priority
can have execute during interval [te, t]. Indeed, if a task with an higher priority
had been executed in the interval, it should have ended its execution before τl,
since it has an higher priority.

∀k ∈ hrtp\k < l, w̄k(t) = w̄k(te)− dte

τl. τl has just ended one instance. Since the last periodic task end, the system
only can have schedule τl or some other tasks with lower priority. Consequently,
w̄l has decreased by dte. However, the considered interval for the l-level slack
time computation is increased by Tl. The w̄l value is so increased by Tl minus the
interference the task will suffer from tasks with higher priority activated between
the next τl activation, xl(te), and its next deadline dl(te). The interference
suffer before xl(te) has already been included in the current value of w̄l(te). A
procedure to obtain in constant time the interference suffered by a task between
one of its activation and its relative deadline is given in Section 6.2.7.

w̄k(t) = w̄k(te)− dte + Tk − Ik(t)

Taks with lower priority than τl. For tasks with a lower priority than τl, the
issue is more complicated. Indeed, the available work as decreased only for tasks
with higher priority than the ones effectively executed within the interval. The
solution in DASS is to update (with a linear time complexity) the w̄i at each
instance begin. We propose here to tolerate a temporary lost of precision. We
consider that the available work has decreased by dte for all task with a priority
lower than τl. Nevertheless, we also immediately add to w̄i the time consumed
within the interval, c̄l(t), since this value was considered in the interference
suffer by each τi but now the task has ended and cannot interfere anymore. The
remainder of the error will be corrected when the tasks really executed in the
interval will end there current instance (by in the increase of the available work
by their effective execution time for all task with a lower priority).

∀k > l, w̄k(t) = w̄k(te)− dte + c̄∗l

where c̄∗l is the time consumed by τl. It is equal to Cl−(c̄l(t)−min(dte, dtb))
if the model permits variable execution times, Cl if this is not the case.

6.2.5. Update of an c̄i upper bound

To keep up to date the c̄i(t) values, it is necessary to perform computations
at each instance begin and end. The procedure is quite similar of the DASS one,
but we only update c̄l(t) where τl is the task occupying the processor, which is
done in constant time. The w̄i(t) update is delayed until the next task end.

So when a task τl begins an instance at time t, if k is the priority level of
the executing task at time t− ǫ, c̄k is decreased by min(dte, dtb).

When a task τl ends a periodic instance at time t, c̄l(t) = Cl.

16

6.2.6. Conclusion: operations to perform

When the periodic real-time task τl ends an instance:

∀k < l, w̄k(t) = w̄k(te)− dte
∀k > l, w̄k(t) = w̄k(te)− dte + c̄∗k

k = l,

{

w̄k(t) = w̄k(te)− dte + Tk − Ik(t)
c̄k(t) = Ck

(9)

These operations can be performed with a linear time complexity.

When the periodic real-time task τl begins an instance:
Let τk be the task previously executed by the processor (if it was occupied

by a periodic real-time task),

If k ∈ hrtp, c̄k(t) = c̄k(max(te, tb))−min(dte, dtb) (10)

This operation can be performed with a constant time complexity.

6.2.7. Interference approximation

We consider a periodic real-time task τj ending on periodic instance at time
t2. We know w̄j(t1), t1 being the time of the last w̄j update. We note its next
deadlin dj(t2) and the next one d+j (t2). We have dj(t2) ≥ t2 and d+j (t2) =
dj(t2) + Tj . We know that between t1 and t2 the work available at priority
j has decreased by dt = t2 − t1. At time t2, it increases by Tj minus Ij(t2),
the interference suffers by τj from tasks with higher priority activated between
dj(t2) and d+j (t2). Indeed, the interference suffers from tasks activated before
dj(t2) has already been taken into account during w̄j(t1) computation.

The two following equation permits us to find an upper bound on this inter-
ference:

Ij(t) ≤
∑

k<j

Ijk(t) (11)

Iji (t) ≤ Nbaji (t).Ci (12)

where Iji (t) is the interference from τi on τj and Nbaji (t) the number of taui

activation between dj(t) and d+j (t).
The first one derive from the fact that the interference suffered from the set

of tasks with an higher priority is bound by the sum of each interference taken
separately. The second says us that the interference from a task is bound by its
number of activations multiply by its worst case execution cost.

We will show that Nbaji (t), and so Iji (t), can only take two different values
if we study an interval of fixed length (Tj in MASS algorithm). Moreover, we
can compute this two values off-line and choose the correct one on-line with a
constant time complexity operation.

17

τi

τj

Ti

Tj Tj

qTi r u (k − 1)Ti v

Figure 4: Number of activations – notations

6.2.8. Possible values for Nba
j
i(t)

Let q and r be the quotient and the remainder in the euclidean division of
Tj by Ti. We have Tj = qTi + r. For each tauj activation, we note u the time

interval before the next τi activation, k = Nbaji (t) the number of τi activations
before the next τj activation and v the number such that v = Tj − (k−1)Ti−u.
We have Tj = u+ (k − 1)Ti + v, u < Ti and v < Ti.

Figure 4 summarizes this notations.

Theoreme 1. There is only two different possible values for k which are q + 1
and q.

k > q − 1.
suppose k ≤ q − 1,
k ≤ q − 1 ⇒ k − 1 ≤ q − 2 ⇒
u+ (k − 1)Ti + v < Ti + (q − 2)Ti + Ti

since u < Ti and v < Ti.
So, since we have u+ (k − 1)Ti + v = Tj , we have Tj < qTi.
which is in contradiction with Tj = qTi + r, r ≥ 0.

k < q + 2.
suppose k ≥ q + 2,
k ≥ q + 2 ⇒ k − 1 ≥ q + 1 ⇒
u+ (k − 1)Ti + v ≥ u+ (q + 1)Ti + v ⇒
Tj ≥ (q+1)Ti, since u ≥ 0 et v ≥ 0. which is in contradiction with Tj = qTi+r,
q ≥ 1 and r < Ti.

6.2.9. Choosing the correct value for Nba
j
i(t)

The number of τi activations within the interval [dj(t), d
+
j (t)] is equal to q

or q + 1. We will show that a simple comparison between u and r is sufficient
to decide.

18

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

������

��
��
��
��

���� ������ ���� ������ ���� ������

�
�
�
�

�
�
�
�

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����

��������������������������
����
����
����

����
����
����

�
�
�

�
�
�����������������������

�
�
�
�

�
�
�
�

����

�
�
�

�
�
�

�
�
�

�
�
�

Tj Tj

r

Ti

Tj

u2 > r

q = 2

u1 < r

Ti Ti

t1 t2

Nba
j

i (t1) = 3 Nba
j

i (t2) = 2

τi

τj

Figure 5: Number of activations – example

Theoreme 2.

u ≤ r ⇒ k = q + 1 (13)

u > r ⇒ k = q (14)

Equation 13.
k = q + 1 ⇒ k − 1 = q ⇒
u+ (k − 1)Ti + v = qTi + u+ v ⇒
u+ v = r ⇒
u ≤ r since u ≥ 0 and v ≥ 0.

Equation 14.
k = q ⇒
u+ (k − 1)Ti + v = (q − 1)Ti + u+ v ⇒
u+ v − Ti = r ⇒
u > r since v < Ti.

Figure 5 illustrates this theorem. To determine Iji (t), it is sufficient to com-
pare u and r. Note that r can be computed before the start of the periodic
tasks. To obtain u, we have to subtract xj(t) to xi(xj(t)) : xj(t) is known and
xi(xj(t)) can be obtained by a division and a multiplication (xi(t) = ⌈t/Ti⌉Ti).
If the time complexity is the same that the one to obtain the exact interference
(Equation 3), the number of operations is much less important.

19

Period Cost Deadline
τ1 3 1 3
τ2 5 2 5
τ3 15 2 14

(a) System data

�����
�����
�����
�����

�������
�������
�������
�������

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

0 2 4 6 8 10 12 14

DASS:

MASS:

1

1 2

5ut 6ut 2utτ2

τ3

τ1

3 1 2 5

3

w3(t)
c3(t) 2

S3(t)

(b) Task execution whithout aperiodic job

Figure 6: Slack time computation at priority level 3 with DASS and MASS

6.3. DASS and MASS Comparative Example

We propose here a numerical example to better understand the differences
between DASS and MASS.

The studied system is composed of three tasks. The task parameters and
the normal execution of the system when there is no aperiodic event to deal
with are given by Figure 6.

We focus on the computation of slack time for the priority level 3.

With DASS. At time instant 0, S3(0) is equal to τ3 deadline from which we
subtract its cost and the interference of τ1 and τ2 in the time interval [0, 14].
We have S3(0) = 14−5∗1−3∗2−2 = 1. It is th number of unused times slot at
priority level 3 in this interval when the system does not accept any aperiodic
job. The value does not evolute until time instant 9 since only task with a lesser
or equal priority are executed. It has to be noted that at time instants 3 ans 5,
it is necessary to subtract 2 tu to S1(t) and 1 tu to S1(t) and S2(t). What’s why
the time complexity of start-task computation are in linear time complexity.

At time instant 9, τ3 ends the execution of its first instance. The time
interval considered for the computation of S3(t) is now [t, 29] and not [t, 14].
The duration of this interval at time instant t = 9 is 20 tu. We subtract from
this value the interference of 4 activations of τ2, of 7 activation of τ1 and of 1
activation of τ3. We have so S3(9) = 20 − 8 − 7 − 2 = 3. S3(9) is recomputed

20

from scratch without used an information already available : there is 1 unused
time unit before time instant 14.

With MASS. The w̄3(0) value is equal to the τ3 deadline from which we subtract
the interferences of τ1 and τ2 on the interval [0, 14]. We so have w̄3(0) =
14−6−5 = 3. Since c̄3(0) = 2, it gives us S3(0) = 1, ie the same value obtained
with DASS.

At time instants 1 and 3, tasks τ1 and τ3 end an instance. w̄3(t) is then
decreased by the elapsed time, but immediately incremented by the cost of
ending tasks, and so is constant until time instant 7.

This is not the case for c̄3(t), which is updated at time instant 5. Indeed, τ2
starts then an instance, and the previously executing task, τ3 is updated. We
have w̄3(5) = 3 and c̄3(5) = 1, which gives us S3(5) = 2. This value is incorrect
and is greater the correct one (S3(5) = 1). However this error has no effect
since slack times are not evaluated when a task ends its execution. The next
evaluation will occure at time instant 7.

At this time, w̄3 and w̄2 are decreased by 3 tu, because its corresponds to
the elapsed time since the last end of a periodic task, and increased by the cost
of τ1, ie only 1 tu. We so have S3(7) = 3 − 3 + 1 − 1 = 0, which a lesser value
than the one obtained with DASS.

At time 8, τ2 also ends a periodic execution. w̄3(8) is so decreased by 1 tu
and increased by 2 tu. We so have S3(8) = 1+ 2− 1− 1 = 1, which is the same
value than the one obtained with DASS.

Finally, at time 9, τ3 ends an instance. The interference it suffers within time
interval [9, 15] from τ1 and τ2 is already integrated to w̄3, since the interference
has been bounded with the activations number multiplied by the cost, and
since the next τ1 or τ2 activation is not before time 15. The value of w̄3 is then
increased by one period (29−14 = 15) since we now consider the next deadline,
and decreased by the interference of τ1 and τ2 in the time interval [15, 30]. We
have S3(9) = (2 + 15− 6− 5)− 2 = 3.

Remarks on the interference computation. In this example, the interference
computation of τ1 and τ2 on τ3 is not hard because when the τ3 deadline is
reached all the begin instances are ended. The interference caused by a task is
a multiple of its activation number.

If it was not the case, DASS should compute the exact interference, that
is why the constant in the needed computation is high. With MASS, only an
upper bound is used. This approximation permits to only consider the tasks
activation at time instant grater than or equal to the deadline.

6.4. Discussion on the differences

With the DASS algorithm, it is some times possible to obtain a more accu-
rate bound. However we see that the gap is between the two bounds (the one
obtained with DASS and the one obtained with MASS) is fill in each time a
periodic task ends an execution. At this expense, the bound is obtained with
a much lesser greedy algorithm. Since the overhead of the algorithm has to

21

be included in the worst case execution time of each periodic task, it result in
a lower schedulability bound for systems using DASS than for systems using
MASS. It is so precisely when a more accurate bound should be necessary that
DASS could lead to make the system non feasible while it could had been with
MASS.

7. Framework to write a server

Task server policies only differ by the way they use and replenish their ca-
pacity. In every case, they can be implemented as an hard real time task which
access to a soft real time task queue. Then this task takes the first soft task
and runs it until the server capacity is consumed.

We identified three implementation issues: the server has to monitor the
CPU consumption of served tasks in order to keep up to date its capacity, it
has to be able to suspend the served task when the capacity fall to zero, and it
has to be able to wake up when the next capacity replenishment instant occurs.

7.1. How does it work

We saw that an event can be implemented with RTSJ using the AsyncEvent
class (AE). Its treatment can be implemented with the AsyncEventHandler

class (AEH). Several events can been associated to a unique treatment, and
several treatments can been associated to a unique event. This is a many to
many relation. The schedulable object is the treatment, not the event itself.

Based on this model, we propose the class ManageableAsyncEventHandler
(MAEH) to represent a treatment that can be handled by a server. This class
does not implement the Schedulable interface, since the code its encapsulate is
not destinate to be scheduled directly by the RTJVM, but within a server. Then
we also propose an subclass to AsyncEvent we call ManageableAsyncEvent
(MAE). This kind of event still can be associated to regular AEH, but can also
be associated to MAEH.

The server itself is implemented with the new class AbstractUserLand-

TaskServer which implements Schedulable. This abstract class contains the
methods for the queue gesture.

When the fire() method is called on an MAE, the AEH bounded to it are
activated with their respective priorities, and its MAEH are enqueued on the
queues of the server they are attached to.

The BS duplication can be done with the event triggering. The MAEH
encapsulate four private objects:

• an Interruptible which is the code of the treatment;

• an AsynchousInterruptedException to interrupt the duplication if the
event can be served within the server;

• a AsyncEvent in order to trigger the duplication;

22

• an AsyncEventHandler associated to the lowest system priority which use
the asynchronous interrupted exception to call the run() method of the
interruptible object.

We also add a boolean to permits the activation or the deactivation of this
mechanism. When an MAEH is added to a server queue, the fire() method
of the AE is called. This activate the AEH with the low priority. This AEH
use the method doInterruptible() of the exception to execute the code of the
Interruptible. If this method ends correctly, the MAEH is dequeued from the
server. A public method permits to trigger the exception from the server if it is
this last which success to treat the MAEH at first.

To resume, we propose the following classes to model a server, an event and
its handlers:

ManageableAsyncEvent. This class inherits from AE. We add a list of MAEH
objects and we overrun the addHandler(AsyncEventHandler h) method in or-
der to permits the add of MAEH. Finally we overrun the fire() method to
make it add the MAEH to the queue of the associated server.

ManageableAsyncEventHandler. This class contains an Interuptible field. It
also has a reference on the server to which the handler is attached. When an
MAE bounded to it is fired, its reference is added in the server queue, and if
the duplication BS is activated, an AEH is activated with the system lowest
priority.

AbstractUserLandTaskServer. This is an abstract implementation to provide
the queue gesture methods.

7.2. How to write a PS

The PS is a periodic task. It starts each instances with its full capacity
and can begin to serve the event enqueued. If the queue is empty, it looses its
remaining capacity.

It so can be implemented with a class UserLandPollingTaskServer. Since
there is no multiple inheritance with Java, this class cannot inherit from Realtime-

Thread. However, we can use a private field to store a reference on a Realtime-
Thread. All the non implemented method of the class AbstractTaskServer can
be delegated to the instance referenced by this field.

7.3. How to write a DS

The DS can be integrated to the feasibility analysis, but is not properly a
periodic task. Its capacity is restored periodically, but it can be activated at
any time if it still has capacity.

Its implementation is quite similar to the PS one, except that the Schedulable
object encapsulated could no more be a RealtimeThread, but should be an
Async Event Handler. This handler is bounded to a special AsyncEvent fired

23

by a PeriodicTimer for its periodic capacity replenishment. This special event
is also fired each time an aperiodic task is added in the server queue.

Another particularity of the DS is that it can have at a given time t a
capacity greater that its periodically refreshed capacity. Indeed, if it remains
x time unit of capacity, then xtu before the periodic replenishment, the server
disposes of x+Cs tu of capacity. If a task is enqueued with a cost greater than
the server capacity, it should be necessary to wake up the server x tu before the
replenishment of its capacity. Again, this can be done with a Timer which fired
the special event.

8. Performances evaluation

8.1. Simulations

The validation of the effectiveness of our slack estimation is the first pur-
pose of our simulations. Despite the simplicity of our algorithm induced by the
wanted low overhead, we expect results comparable to an exact slack compu-
tation based algorithm. The targeted performance metric is the mean response
time of the aperiodic requests.

To achieve this goal, we simulate the same systems with aperiodic tasks
served according to our slack estimation and with the same aperiodic tasks
(same release times and same costs) served according to the approximation of
DASS and with an exact computation of the available slack.

The second expecting result is the validation of the userland exploitation of
slack time. The other available algorithms that does not need to customize the
scheduler are the Background Scheduling (BS) the modified PS (MPS) and the
modified DS (MDS). So we compare the result obtained with these algorithm
and the slack stealers approaches.

Finally, we also want to determine the best queue policy through our simu-
lations.

8.1.1. Methodology

We measure the mean response time of soft tasks with different aperiodic
and periodic loads.

First, we generate groups of periodic task sets with utilization levels of 30,
50, 70 and 90%. The results presented in this section are averages over a group
of ten task sets. For the same periodic utilization, we repeat generations over
a wide range of periodic task set composition, from systems composed by 2
periodic tasks up to systems composed by 100 periodic tasks.

The periods are randomly generated with an exponential distribution in the
range [40-2560] time units. Then the costs are randomly generated with an uni-
form distribution in the range [1-period] In order to test systems with deadlines
less than periods, we randomly generate deadlines with an exponential distri-
bution in the range [cost-period]. Priorities are assigned assuming a deadline
monotonic policy.

24

Non feasible systems are rejected, the utilization is computed and systems
with an utilization level differing by less than 1% from that required are kept.

For the polling server, we have to find the best period Ts and capacity Cs

couple. We try to maximize the system load U composed by the periodic load
UT and the server load US .

U = UT + US

U =
∑ Ci

Ti

+
Cs

Ts

A feasible system load being bounded by 1, we have Equation 15.

Cs

Ts

≤ 1−
∑ Ci

Ti

(15)

To find a lower bound Cmin
s of Cs, we first set the period to 2560 (the

maximal period). We then search the maximal value for Cs in [1, 16] in order
to keep a feasible system. This maximal value is our lower bound on Cs.

Then we seek the lower possible Ts value in [Cmin
s /(1−

∑

Ci/Ti), 2560]. For
each Ts value tested, we try decreasing values of Cs in [Cmin

s , Ts(1−
∑

Ci/Ti)].
Note that it is possible to find a capacity lower than the maximal aperiodic

tasks cost. In such cases, since we have to schedule the aperiodic tasks in one
shot, we have no solution but to background scheduling the tasks with a cost
greater than the server capacity.

For the deferrable server, the methodology is similar, except that since the
server has a bandwidth preservation behavior, we do not try to minimize the
period and we can search the maximal Cs value in [1, 2560].

Finally, we generate groups of ten aperiodic task sets with a range of utiliza-
tion levels (plotted on the x-axis in the following graphs). Costs are randomly
generated with an exponential distribution in the range [1-16] and arrival times
are generated with an uniform distribution in the range [1-100000]. Our simu-
lations end when all soft tasks have been served.

8.1.2. Real-time Simulator

We use a Java program which can simulate the execution of an event-based
real-time system and display a temporal diagram of the simulated execution.

This tool is distributed under the General Public License GNU (GPL), and
can be found on the following web page: http://igm.univ-mlv.fr/~masson/
RTSS

8.1.3. Results

25

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 35 40 45 50 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

MASS - 30% periodic utilization (Average over all compositions)

MASS - FIFO
MASS - LIFO
MASS - LCF

MASS - FIFO&BS
MASS - LIFO&BS
MASS - LCF&BS

ESS - LCF&BS

F
ig
u
re

7
:
M
A
S
S
,
3
0
%

lo
a
d

 5

 10

 15

 20

 25

 30

 35

 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

MASS - 50% periodic utilization (Average over all compositions)

MASS - FIFO
MASS - LIFO
MASS - LCF

MASS - FIFO&BS
MASS - LIFO&BS
MASS - LCF&BS

ESS - LCF&BS

F
ig
u
re

8
:
M
A
S
S
,
5
0
%

lo
a
d

 0

 50

 100

 150

 200

 250

 300

 350

 73 76 79 82 85 88 91 94

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

MASS - 70% periodic utilization (Average over all compositions)

MASS - FIFO
MASS - LIFO
MASS - LCF

MASS - FIFO&BS
MASS - LIFO&BS
MASS - LCF&BS

ESS - LCF&BS

F
ig
u
re

9
:
M
A
S
S
,
7
0
%

lo
a
d

 0

 50000

 100000

 150000

 200000

 250000

 91 93 95 97 99

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

MASS - 90% periodic utilization (Average over all compositions)

MASS - FIFO
MASS - LIFO
MASS - LCF

MASS - FIFO&BS
MASS - LIFO&BS
MASS - LCF&BS

ESS - LCF&BS

F
ig
u
re

1
0
:
M
A
S
S
,
9
0
%

lo
a
d

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 35 40 45 50 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

BEST - 30% periodic utilization (Average over all compositions)

MASS LCF&BS
DASS LCF&BS

ESS LCF
MPS LCF&BS
MDS LCF&BS

MBS LCF
BS FIFO

F
ig
u
re

1
1
:
B
est

p
o
licies,

3
0
%

lo
a
d

 0

 50

 100

 150

 200

 250

 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

BEST - 50% periodic utilization (Average over all compositions)

MASS LCF&BS
DASS LCF&BS

ESS LCF
MPS LCF&BS
MDS LCF&BS

MBS LCF
BS FIFO

F
ig
u
re

1
2
:
B
est

p
o
licies,

5
0
%

lo
a
d

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 73 76 79 82 85 88 91 94

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

BEST - 70% periodic utilization (Average over all compositions)

MASS LCF&BS
DASS LCF&BS

ESS LCF
MPS LCF&BS
MDS LCF&BS

MBS LCF
BS FIFO

F
ig
u
re

1
3
:
B
est

p
o
licies,

7
0
%

lo
a
d

 0

 200

 400

 600

 800

 1000

 1200

 1400

 91 93 95 97 99

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

BEST - 90% periodic utilization (Average over all compositions)

MASS LCF&BS
DASS LCF&BS

ESS LCF
MPS LCF&BS
MDS LCF&BS

MBS LCF
BS FIFO

F
ig
u
re

1
4
:
B
est

p
o
licies,

9
0
%

lo
a
d

27

Figures 7 to 14 present our simulations results. On these figures, ESS,
DASS and MASS refer to our slack stealer modified algorithm associated re-
spectively with an exact computation of the available slack time, the slack time
approximation given by DASS and our approximation of the available slack
time. MPS and MDS designate the modified polling server and deferrable
server. Finally BS designates the background scheduling associated with a
FIFO queue policy and MBS a modified background server which cannot be-
gins a task if a previously started task has not completed. The notation X&BS
refers to the policy X with a BS duplication.

Figures 7 to 10 show the MASS results for all periodic composition systems.
We notice that our algorithm performs much better than BS for all policies if
the periodic load is low (see Figure 7 and 8). However, when the periodic load
increases, the BS duplication became unavoidable. With the extreme 90% load
(Figure 10), the non BS-duplicated curves are not viewable on the same graph
than the other and are completely out performed by the BS. This phenomena
was expected and was the reason of the duplication introduction: when the load
is too high, there is never enough slack to serve a request in one shot.

The second thing to note is that the queue policy which offers the best results
is the LCF one. Due to space limitations and clarity purpose, we cannot put all
our results in this paper, but this trend is confirmed by simulations on MPS,
MDS, DASS and ESS. This is for sure amplified by the one shot execution
limitation. The shorter a task is, the greater is the probability to have quickly
enough slack to schedule it completely.

Figures 11 to 14 present the results of the best queue policy for each al-
gorithm (MPS, MDS, MASS, DASS and ESS). For ESS, since the time
complexity is dependent on the number of task, the results do not include sys-
tems composed of more than 40 periodic tasks. For all load conditions, servers
bring real improvement comparing to BS. The MDS offers better performances
than the MPS. Then, MASS performs better than the servers, DASS better
than MASS and ESS better than DASS. For systems with periodic loads of
30% and 50%, results obtained with MASS, DASS and ESS are quite similar.
Considering the differences between the time complexities of these algorithms
(constant, linear and pseudo polynomial), this is a very satisfying result. How-
ever MASS performances degrade when periodic load increases. Nevertheless
MASS remains the best userland-implementable algorithm even for systems
with a periodic load of 90%.

Moreover, these simulations do not take into account the time overhead of
the implementations. These systems where DASS performs much better than
MASS are precisely the ones where the lower overhead of MASS could plays an
important role: if DASS theoretically can schedule better these systems, it can
in practice make them unscheduleable.

8.1.4. Conclusions

Our simulations showed that the BS duplication is essential.
Due to space limitation, we do not put the result here, but simulations also

demonstrate that MPS and MDS are as good as regular PS and DS. In some

28

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 2 4 6 8 10 12 14 16 18 20 22 24

tim
e

(n
an

os
ec

on
ds

)

Number of periodic tasks

Overhead measurement for MASS and DASS

MASS - before task begin
DASS - before task begin

MASS - after task end
DASS - after task end

MASS - sum
DASS - sum

Figure 15: Comparative overheads of MASS and DASS

situations, we even obtain better results with modified policy than with regular
ones. The explanation is that the modifications result in delaying some costly
events, so shorter events which occur later can be immediately served, which
result in shorter response times.

Until important load condition, MASS remains competitive against DASS.
Performances degrades only when systems are very overloaded. However, the
simulations does not take into account the time overhead in the system feasibility
analysis. Due to a lower overhead, MASS gives a higher schedulability bound,
which as to be balanced with the theoretically possible results.

8.2. Executions

8.2.1. On JamaicaVm

The DASS and MASS implantations that we propose only differ by the added
code at the beginning and at the end of each instance of each periodic task.

We so have measured the time passed to execute this code with the two
algorithms. To perform these measures, we used the jamaica virtual machine
on a real-time linux free kernel 2.6.9 no an 1,22 GHz Intel(R) Pentium(R).

Since the time complexity of added code is constant or linear in the number of
tasks, we have performed the measures with a number of tasks varying between
2 and 25.

29

Each task executes five instances. The period of each task is randomly
generated in the interval [5, 10] and its cost in the interval [2, Ti]. The first
generated task has the lowest RTSJ priority (11), the second 12 and so on.

Figure 15 presents the obtained results. The cumulated time passed in the
two methods is more important for DASS. The time passed in the added codes
increase with the number of tasks and so the difference between the times ob-
tained with the two algorithms.

Even for a low number of task (2), these costs are measurable and so have to
be integrated in the feasibility analysis. We can see that until 10 tasks, the time
passed in the added cost at the end of the instances is more important for DASS
than for MASS. However this change when there is more tasks. This is due to
the fact that the code added for DASS includes more instructions for each loop
passage. Even if the two algorithms have the same complexity, MASS has to
loop on all the task whereas DASS only consider tasks with higher priorities.

The total overheads in time for each instance is more important with DASS
than with MASS. So the feasibility bound of a system will be lower with DASS
than with MASS. So even if it does not perform at well at DASS, MASS can be
used with more systems than DASS. This justify the use of MASS against DASS
on systems with a high periodic load, even is theoretical simulation tends to show
that DASS outperforms MASS. Indeed these kind of systems are precisely the
ones where adding a two large overhead lead to affect the feasibility.

8.2.2. On lejosRT

Figure 16: System overheads with DASS and MASS depending on task number

LejosRT is an open source project forked from Lejos, which is an alternative
firmware for the Lego Mindstorm NXT brick. We implement DASS and MASS
on LejosRT, and perform some overhead measure.

We consider a program with n real-time threads with the same release pa-
rameters (period and deadline) but with n different priorities. Moreover we
shift start times in order to start first the thread with the lowest priority and
last the one with the highest priority. That permits to maximize the number

30

of preemptions. The period of the thread with the lowest priority is set shorter
than the other one in order to have this thread preempted twice be each other
ones. We measure the needed time to execute two instances for each thread.
The system load is then maximal (100%).

Figure 16 presents the results obtained for a range of thread number from
2 to 25. Each test was performed several times and the values reported in
Y axis are the average differences between the time execution of the program
on LejosRT without any slack computation and with the concerned algorithm
(respectively DASS and MASS). On the X axis is reported the number of thread.

We can note that the MASS overhead is always lower than the DASS one.
This is the expected result, that this experiment confirmed on real implementa-
tions. Moreover, the more thread we have, the higher the measured difference
is.

9. Feed back and Suggestions to Improve the RTSJ

We present in this Section three proposition to improve the RTSJ. The first
is the measurement of CPU time consumption, which is a primordial issue. The
second is linked to our algorithms, but can be serve in a lot of domain: its
an easiest and integrated way to automatically trigger code execution at the
beginning and at the end of periodic tasks. The last one is a remark on the
integration of the feasibility analysis within the RTSJ.

9.1. temps cpu

A method that returns the current time consumption of a task is missing,
but is the point seven of the JSR 282 :

7. Add a method to Schedulable and ProcessingGroupParameters,
that will return the elapsed CPU time for that schedulable object (if
the implementation supports CPU time)

This feature depends on the ability of the underlying operating system to
provide this information. However, we have seen that we can obtain this infor-
mation at user land level by adding operations at the begin and the end of each
real-time tasks. Indeed, a stack can be maintained with the previous executing
task on the top, and its cost refreshed at each context switches.

So this mechanism could be integrated in the RealtimeThread class, with a
setter to enable/disable it.

9.2. Adding code before and after periodic instances

We have seen that this feature can be use to obtain the CPU time consump-
tion even if the underlying operating system does not propose this feature, and
to implement some advance mechanisms such as DASS or MASS.

The added execution time cost then can be take into account within the
feasibility analysis process. This implies that class Scheduler has acces to this
execution time.

31

Moreover, some treatment are only usable if all task actually participate. If
there is in the system one task that do not cooperate to the user land CPU
time consumption monitoring, for example, the value maintain by the mech-
anism is wrong. It also sometime necessary to make these code sections non
preemptible to ensure the correctness of the mechanism. Finally, it could be
useful to generalize the process to any kind of context switches.

For all these reason, it seems appropriate to delegate these code sections
execution to the class Scheduler, with the addition of the following method:

• void addContextSwitchHandler(

AsyncEventHandler handler, boolean beforeSchedulable,

boolean afterSchedulable, boolean afterEachContextSwitch);

9.3. Feasibility Analysis

Les méthodes permettant de réaliser l’analyse de faisabilité sont toutes situées
dans les classe Scheduler et RealtimeThread. En fait, les méthodes de RealtimeThread
sont des raccourcis faisant appel à celles de Scheduler. Par conséquent, pour
changer l’algorithme d’analyse de faisabilité utilisé, par exemple pour prendre
en considération le cas de l’utilisation d’un serveur ajournable, il faut surcharger
l’ordonnanceur.

All the methods concerning the feasibility analysis are in the class Scheduler
and RealtimeThread. More precisely, the methods in RealtimeThread are
convenient methods to call back the one in Scheduler. Consequently, in order
to change the way the system is analyzed (eg to take into account the presence
of a DS) one have to change the scheduler.

This is not justified. Indeed, one can want to analyze the system in a dif-
ferent way without changing its behavior. Fonction of the kind of targetted
applications, a simple load test can be sufficient. One can also request the
assurance of k deadline met on m instances ((m, k)firm model [14]).

Of course, it remains possible to extend the scheduler class and to only
overload the feasibility analysis methods. However, it is not satisfying in an
object oriented design point of view.

We propose the creation of an interface FeasibilityAnalysis. Then the
FA related methods in Scheduler can simply be delegated to an instance of
FeasibilityAnalysis. Associated new methods in Scheduler can be added:
setFeasiblityAnalysis(FeasibilityAnalysis fa) and getFeasiblityAnalysis(
FeasibilityAnalysis fa).

We can then propose at least two subinterfaces: NecessaryTest and Sufficient-
Test.

10. Conclusions

We studied the jointly scheduling of hard periodic tasks with soft aperiodic
events problem, where the response times of soft tasks have to be as low as
possible while the warranty to meet their deadlines has to be given to hard
tasks.

32

We presented the state of the art and discussed the implementability of
proposed solutions under the real-time specification for Java (RTSJ), without
changing the scheduler.

This led us to adapt existing algorithms to operate at a user land level in the
system: the algorithm MPS and MDS and showed how to implement DASS.

We proposed some optimizations and counter measures in order to balance
the lost of performances: the intelligent gesture of the waiting task queue and
the BS duplication.

Finally we set up an approximate slack stealer algorithm specifically designed
to take into account RTSJ restrictions: MASS.

We proposed new classes to extend the RTSJ API’s to implement these
mechanisms and some minor modification suggestions to existing ones as a feed
back from our RTSJ experiences.

We demonstrated the efficiency of the modified algorithms through exten-
sive simulations and their implementability on available RTSJ compliant virtual
machine by an overhead measure in real situation with the RTSJ JamäıcaVM
from Aı̈cas. We also measured the overhead on LejosRT, an RTSJ compliant
firmware for Lego Mindstorms NXT in development.

If MASS was set up in order to address the mixed scheduling problem, slack
time analysis is useful in another domains, like the scheduling using Dynamic
Frequency/Voltage Scaling (DFS/DVS) abilities of modern CPUs. The use of
MASS against DASS or another existing algorithms should be studied in future
work.

References

[1] J. P. Lehoczky, L. Sha, J. K. Strosnider, Enhanced Aperiodic Responsive-
ness in Hard Real-Time Environments, in: Proceedings of the Real-Time
Systems Symposium, IEEE Computer Society, San jose, California, ISBN
0-8186-0815-3, 110–123, 1987.

[2] B. Sprunt, J. P. Lehoczky, L. Sha, Exploiting unused periodic time for ape-
riodic service using the extended priority exchange algorithm, in: Proceed-
ings of the Real-Time Systems Symposium, Huntsville, AL, USA, 251–258,
1988.

[3] B. Sprunt, L. Sha, J. P. Lehoczky, Aperiodic Task Scheduling for Hard Real-
Time Systems, Real-Time Systems: The International Journal of Time-
Critical Computing Systems 1 (1989) 27–60.

[4] J. P. Lehoczky, S. Ramos-Thuel, An optimal algorithm for scheduling soft-
aperiodic tasks fixed priority preemptive systems, in: proceedings of the
13th IEEE Real-Time Systems Symposium, Phoenix, Arizona, 110–123,
1992.

[5] T.-S. Tia, J. W.-S. Liu, M. Shankar, Algorithms and optimality of schedul-
ing soft aperiodic requests in fixed-priority preemptive systems, Real-Time

33

Systems: The International Journal of Time-Critical Computing Systems
10 (1) (1996) 23–43, ISSN 0922-6443, doi:\bibinfo{doi}{http://dx.doi.org/
10.1007/BF00357882}.

[6] R. I. Davis, On Exploiting Spare Capacity in Hard Real-Time Systems,
Ph.D. thesis, University of York, 1995.

[7] H. Chetto, M. Chetto, Some results of the Earliest Deadline Scheduling
algorithm, IEEE Transactions on Software Engineering 15 (10).

[8] M. Silly-Chetto, The EDL Server for Scheduling Periodic and Soft Aperi-
odic Tasks with Resource Constraints, The Journal of Real-Time Systems
17 Kluwer Academic Publishers.

[9] S. Ramos-Thuel, J. P. Lehoczky, On-line scheduling of hard deadline ape-
riodic tasks in fixed-priority systems, in: Proceedings of the 14th IEEE
Real-Time Systems Symposium (RTSS ’93), 1993.

[10] R. I. Davis, K. Tindell, A. Burns, Scheduling Slack Time in Fixed Priority
Pre-emptive Systems, in: Proceedings of the 14th IEEE Real-Time Systems
Symposium (RTSS ’93), 222–231, 1993.

[11] A. Burns, A. Wellings, Processing Group Parameters in the Real-Time
Specification for Java, in: On the Move to Meaningfull Internet Systems
2003: Workshop on Java Technologies for Real-Time and Embedded Sys-
tems, vol. LNCS 2889, Springer, 360–370, URL http://www.cs.york.ac.

uk/rts/cgi-bin/bibtex/bibtex.pl?key=R:Burns:2003g, 2003.

[12] A. Wellings, M. Kim, Processing Group Parameters in the Real-Time Spec-
ification for Java, in: proceedings of JTRES 2008, 2008.

[13] B. Sprunt, Aperiodic Task Scheduling for Real-Time Systems, Ph.D. the-
sis, Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, 1990.

[14] P. Ramanathan, M. Hamdaoui, A Dynamic Priority Assignment Technique
for Streams with (m, k)-Firm Deadlines, IEEE Trans. Comput. 44 (12)
(1995) 1443–1451, ISSN 0018-9340, doi:\bibinfo{doi}{http://dx.doi.org/
10.1109/12.477249}.

34

