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Medical case retrieval from a committee of decision
trees

GweénoEk Quellec, Mathieu Lamard, Lynda Bekri, Guy Cazugitmber, IEEE Christian Roux Fellow
member, IEEEBéatrice Cochener

Abstract—A novel content-based information retrieval frame- approaches. One existing system linearly combines a tesdcba
work, designed to cover several medical applications, is presemtén  and an image based similarity measure into a common sityilari
this paper. The presented framework allows the retrieval of posbly measure [11]; however, this approach does not apply totatedt:

incomplete medical cases consisting of several images togethertwit . . .
semantic information. It relies on a committee of decision trees, textual information. Another system lets the user resai€iBIR

decision support tools well suited to process this type of informatio. ~ S€arch to images acquired from the same localization amdtlor

In our proposed framework, images are characterized by their the same device [12]. More generally, another system letaskr
digital content. It was applied to two heterogeneous medical dat®ts restrict a CBIR search to images whose contextual infoomati
for computer aided diagnosis: a diabetic retinopathy follow-up match an SQL query specified by the user [13]; however, he/she

dataset (DRD) and a mammography screening dataset (DDSM). . . : o
Measure of precision among the top five retrieved results of 'S assumed to know which queries are relevant: it is likely no

0.788£0.137 and 0.862:0.161 was obtained on DRD and DDSM, the case if such a system is needed for diagnosis aid. As a
respectively. On DRD for instance, it increases by half the retrieal consequence, we believe heterogeneous informationvatrie

of single images. i.e. information retrieval based on both clinical des@iptand
Index Terms—information retrieval, decision trees, CBIR, CAD, digital image features — is still an open issue. A novel CBR
medical databases approach that fuses these two types of information is pteden
in this paper.

In the proposed framework, heterogeneous attributes tédligi
images, nominal and continuous variables) have to be agtgeg
EDICAL experts base their diagnoses on a mixture @nd the value of some of these attributes is possibly unknown
textbook knowledge and experience acquired throudio solve this generalized CBR problem, the use of decisiesstr
real-life clinical cases, hence the growing interest ine&cBased (DTs) is proposed [14], [15]. A novel indexing scheme based o
Reasoning (CBR) [1] for computer aided diagnosis systerhs [DTs is introduced; for improved retrieval efficiency, selddTs
CBR assumes that analogous problems have similar solutiocan be used. To that purpose, a randomized decision tregrigar
interpreting a new situation involves retrieving similaases in algorithm is applied so that several DTs can be generatedll¥i
a case database. Relevance is usually modeled via a stynilagi boosting strategy is proposed to handle unbalanced slfije
measure between a query (a new medical case analyzedThg proposed framework has another advantage: the time re-
a medical expert) and each case in a reference database. qiieed for a user (e.g. a medical expert) to query the reteren
retrieved cases are then used to help interpreting the nea cdatabase can be reduced. A procedure is proposed to update th
[1]. retrieval list as new attributes are inputted by the user.aAs
CBR was originally designed to process structured casels sg@onsequence, the user can decide to stop inputting agshfit
as regular feature vectors. However, information requibgd he/she is satisfied with the results. Moreover, each timshlee/
physicians to diagnose some pathologies are more compliexauts an attribute, a second procedure identifies the rentai
To diagnose Diabetic Retinopathy (DR) for instance, phgsg attributes likely to be the most discriminant; in other wara
analyze series of images together with — usually structured fast path towards satisfactory results is suggested.
contextual information, such as the patient age, sex andcaled The paper is organized as follows. Section Il presents deci-
history [3], [4]. Consequently, medical CBR systems shouklon trees and their advantages for heterogeneous infiammat
be able to manage both symbolic information such as cliniaatrieval. Section 1ll explains how images can be included
annotations, and numerical information such as images.eSom a decision tree. The proposed decision tree based ratriev
existing systems were designed to manage symbolic infoomatframework is presented in section IV. Section V describes th
[5]. Some others, relying on Content-Based Image Retrievakdical datasets used for evaluation. Results are giveectins
(CBIR) [6], [7], were designed to manage digital images [8], VI and we end with a discussion and conclusions in section VIl
[10]. However, there were only few attempts to merge these tw

. INTRODUCTION

- . Il. DECISION TREES
Gweénok Quellec, Guy Cazuguel and Christian Roux are with INSTITUT

TELECOM/TELECOM Bretagne, Dpt ITI, Brest, F-29200 France. A. Description
Mathieu Lamard and &atrice Cochener are with University of Bretagne o ) o
Occidentale, Brest, F-29200 France. A decision trees (DT) [14], [15] is a decision support tool

Gwénok Quellec, Mathieu Lamard, Lynda Bekri, Guy Cazuguel, Cianst relying on a set of rules dividing a population of cases into
Roux and Eeatrice Cochener are with Inserm, U650, Brest, F-29200 Eranc Each rul . . . f
lynda Bekri and @atrice Cochener are with CHU Brest, Servicd'0Mogenous groups. Each rule associates a conjunctiorstsf te

d’Ophtalmologie, Brest, F-29200 France. on some attributes with a group (for instance “if sex=mald an
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age<40 then the case belongs to group 37). In our case, attributes Population
are either images or contextual information. These rules ar Bestattroute:
organized as a tree; the structure of this tree can be irteghr

as follows (see Fig. 1):

« each non-terminal node represents a test on a single #tribu
(e.g. what is the patient sex ?) Females

« each edge represents a test outcome (e.g. male) Best attribute

« each leaf represents a cluster of cases that provided asimil SR
answer to each test (e.g. males younger than 40)

Males
Best attribute :
[ Late angiographs ] [ Age ] Age

c\uste‘r/wmrz <V¥1AO

[ Group 1 J[ Group 2 ] [ Group 3 ][ Group 4 ]

Fig. 1. Toy example of decision tree. Late angiographs are és\aptained
from one modality (late angiography - see section V-A): irstekample, these
images are clustered into 2 groups.

[ Group 1 ][ Group 2 ] [ Group 3 ][ Group 4 ]

DTs were first designed to segment a population of nominal
attribute vectors (each test outcome corresponds to abudétr Fig. 2. Illustration of the learning process. At each stegraup of medical
value or group of Values)_ Quinlan [17] extended them to comgases is divided into subgroups, according to the value efribst discriminant
tinuous attributes (training cases are grouped by ateibatue 2ttribute within that group.
ranges). More generally, DTs can process any attributeorsg |

as we can provide a way to cluster cases with respect to that L .
attribute. Since each test is performed on a single at&jDi's proposed method, the discriminant power of a test is medsure

are well suited to process heterogeneous cases. .by the Shannon entropy gafii obtained when dividing a node

o . jnto its child nodes,,, n=1..N (c4.5 algorithm [14], see equation
DTs are generally used as classifiers: an unlabeled casestis tl{))
associated to a group, and then it is assigned to the mosteinéq ' N o 0
class in that group. In the presented application, we wosé u G = (Zn=1 1 ) -1 (1)

DTs as classifiers; we will use them to define a similarity meas Im=— ZCC:l Den 108 e, 1= 0..N

between two cases. . . .
wherep,,, is the percentage of cases assigned to cldesnode

vn, ¢ = 1..C, IV is the entropy in node, (before it is split) and
B. Learning I™ is the entropy in thex!" child nodev,, n = 1..N. Entropy

To build a DT in an automatic fashion, we search for the mogtéasures the homogeneity of each node with respect to class
discriminant attributes and divide the population into loger label. If no test can improve the entropy enough or if popatat
nous groups according to the value of those attributes (gpe F iS to0 small,l is not divided.

2). This process is supervised and then requires classiisesc The learning algorithm can manage missing information: we
In the medical datasets we considered, the disease selesy describe herein the mechanism provided by c4.5 algorithh [1

was used as a class label. Before learning the tree, theetiat®y/PPOse that the value of an attribytetested at a nodey, is.
has to be divided into three subsets: missing for a case. Then this case is assigned to each @hild

f vo with a weightw(eq,, ), 0 < w(ep,) < 1, whereeq,, denotes
30 g edge fromy, to v,,. w(ep,) is the percentage of casesus,
whose value forf is known, assigned to,, (see Fig. 3). In other
» a validation setV, used to assess the performance of th\gords,w(e()n) approximates the prior probability for a casem
o0 belong tov,,. Consequently, at the end of the learning process,

DT with different parameter settings, h learnin : ioaned t hleaf 1 — 1. M with
o atest sefl’, used to assess the final performance of the D“nr‘:"C _earning cas& 1S assighed 1o eac eaf, j = 1.M,

using the optimal parameter setting a vv_elghtq_uij such thatzjj\i1 wi; = 1 (w;;=0 or1 if each tested
. attribute is known for;, 0 < w;; < 1 otherwise).
Note that cases assigned ¥oand 7" are not used to learn the
DT, andT is not used to tune the system at all.

At the beginning of the learning process, the tree consists o
a single node containing the whole learning getThen each  To include images in a DT, the principle of Content-Based
leaf [ of the growing tree is recursively divided. In that purposémage Retrieval (CBIR) is applied [7]. CBIR involves 1) iliiig
the most discriminant attributg among the populatio®® C L  a feature vector characterizing each image — this featureore
assigned to leaf is searched forP is then divided into new is referred to as signature —, and 2) defining a distance measur
child nodes, one for each possible answer to the tegt. dn the between two signatures. In the proposed framework, images a

o a learning setl, actually used to learn the DT (at the en
of the learning process, each case in this set is assigne
the leaves of the tree),

IIl. | NCLUDING IMAGES IN A DECISION TREE
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Kullback-Leibler divergence is not symmetric, which is a re
quirement of clustering algorithms. A symmetric versiontloé
divergence,Ds, is used instead (see equation (5)).

Ds(p(X;01)||p(X;62)) = 5
(D(p(X:0) | p(X:02))+ D(p(X:02) | p(X:01)) (5)

Fig. 3. Managing missing information. If the tested attribist@inavailable for S . . . .
some medical case (?), this case is assigned to all subgrotips wieight equal By injecting equation (2) n (5)’ we obtain the expressmrlhd‘

to the prior probability to be assigned to that subgroup. distance measure between two wavelet coefficient disioibsit
(see equation (6), the expression in the asymmetrical sagedn
in .
characterized by their wavelet transform [18]. Then, meagu 121}
the distance between two images comes down to measuring the ~ P3(P(X; a[}’ﬁl)”p(X? 0‘2’52)[95
distance between their signatures. Similarly, when bogdi DT, (ﬂ)ﬁz Fh) (2)51 M) 1 1 (6)
we use the distance measure between image signaturesde divi “ () “ M) o
a population of images into subgroups. An unsupervisedsielagFinally, the distance between two images is a weighted sum of
fication algorithm is used to cluster similar image signasyuras these symmetric divergences over the subbands [18]. Thigyabi
described in section 1lI-C. By this process, image sigregtran to select a weight vector and a wavelet basis makes this image
be included in a DT like any other attribute. representation suitable for specialized medical datasets

A. Image signature C. Signature Clustering

In previous studies on CBIR, we decided to extract signature Thanks to the image signatures and the associated distance
for images from their wavelet transform [18]. Using the wia¥e measure above, a population of cases can be divided into sub-
transform for database management is convenient: images ggoups using an unsupervised classification algorithmyigea
be compressed in JPEG-2000 format [19], which relies @Rat a custom distance measure can be specified. Because it is
the wavelet transform, and their signature can be extractgighple and fast, the Fuzzy C-Means algorithm (FCM) [22] was
directly in the compressed domain. Moreover, waveletthasgsed for this purpose; the Euclidian distance was replaned i
image signatures have shown their superiority over otheigen FCM by the proposed distance between signatures. Findiag th
signatures [18]. The proposed signatures model the disivib right number of clusters is generally a difficult problem viwer,
of the wavelet coefficients in each subband of the wavelghen the data is labeled, mutual information between aluste

decomposition; as a consequence, a multiscale descripfionand class labels can be used to determine the optimal nurhber o
images is obtained. To characterize the distribution ofelv clustersk™ [23] (see equation (7)).

coefficients in a given subband, Wouwer's work was applied o K

[20]: Wouwer showed that this distribution can be modeledaby . ple, k)
generalized Gaussian function (see equation (2)). K= arg}r?ax; ;p(c’ k) logor i p(c)p(k) 0
p(z;a, ) = B - e*(‘%‘)ﬁ (2) Wherec = 1..C are the class labelg(c, k) is the joint probability
2al'(5) distribution function of the class and cluster labels;) andp(k)

I(z) = / ey 3) are the marginal probability distribution functions.
0

The maximum likelihood estimator&, 3) of the wavelet co- V. DECISION TREE BASED RETRIEVAL

efficient distribution in each subband are used as a sigmatfyr Objective

[21]. These estimators can be computed directly from JPE@2  Let ¢, be a case placed as a query by a user. The objective of

compressed images, which can be useful when a large numbethef proposed framework is to retrieve tiemost similar cases

images have to be processed. Any wavelet basis can be useih ta reference database. For diabetic retinopathy follpwthe

decompose images. However, the effectiveness of the éstrachumber of cases retrieved by the system is seRte= 5, at

signatures largely depends on the choice of this basis. H®r tophthalmologist’'s request; they consider this number cafit

reason, we proposed to search for an optimal wavelet basigwi for time reasons and in view of the results provided by the

the lifting scheme framework [18], which is at the core of theystem. Consequently, the satisfaction of the user's néds

JPEG-2000 compression standard. assessed by the precision & denotedrng, defined as the
percentage of cases relevant fgramong the topmosk results.

B. Distance Measure

Do and Vetterli proposed the use of the Kullback-Leiblere(seB. Single Tree Based Indexing
_equation (4))divergenc_e benNeen wavelet coefficientibisﬂions To find the R most similar cases, we need to compute a
in each subband to define a distance measure between S@a%anilarity measure between, and each case; in the reference
[21]. database. To that purpose, we propose to compare theimassig
_ ) B _ p(X;61) ment weights to each ledf: w,; andw;;, j = 1..M. These
D(p(X;61)[lp(X;62)) = /p(X’ 01) log (X 92)dng ) weights have been computed for each learning case (siibskt
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(a) The Decision Tree (b) Case 1: unknown sex (c) Case 2: unknown sex
late angio. missing late angio. in group G1
age<40 age<40

Fig. 4. lllustration of the retrieval process. In (b), whaittribute ‘late angio.’ is missing, the leaves for Groups Btwill be browsed, whereas for (c), where this
attribute is available, only the leaves for Groups 1 and 3 mgl browsed.

the reference database) while building the tree (see seltt®). wherew,,; is the assignment weight of casg to the ;" leaf
They can be computed a posteriori for each remaining casgein of the ¢! tree and)/; is the number of leaves in thé” tree.
reference database — in particular those added after theinga Several methods have been proposed in the literature toaene
phase — and for the query. In that purpose, the weighi(e) of ~ sets, or committees, of DTs: Random Forests [24] or randeniz
each edge in the tree is stored (see section 1I-B). The retrieval4.5 [25] for instance. They usually perform better as diess
system is illustrated on an example in Fig. 4. than single DTs. To generate DT committees, the learning
A similarity measureS,;, between two cases, and ¢, is algorithm is randomized as follows: to decide which testustho
defined in equation (8)S,, relies on the assignment weightbe selected for dividing a tree node, themost discriminant
(Waj)j=1..m (resp.(wy;)j=1.) Of ¢, (resp.cy) to each to each attributes, according to the entropy measure (see equétin
leaf [;, j = 1..M. are identified one of them is picked randomly with uniform

M probability.
Sab = Z Wqj Wy (8)
j=1

D. Retrieval System Boosting

This similarity measure, the scalar product(ef,;);—:..as and : .
(o3 )m1..01 )r/naps to [0:1]. It is mgximal v(vhe]rz)mj a;éwb are  When applied to unbalanced datasets, DTs tend to be biased
3)i=1..M> N

completely assigned to the same leaf. It is minimal whenethe \./vardsb;che Iargest clﬁlss_es Ejzer]{ IkaTS ; re Lj.sed 13255 céa’ssme
is no leaf to which both cases are at least partially assigned this problem can be alleviated thanks to boosting [16]. Bogs

The similarity measure between the quegyand each case; glgorithms typically build a DT (;c.)mmitt.ee in. iterations,_ b.y
in the reference database can be computed very quickly.els dgﬁcrementally adding weak classifiers (|..e. with a .predg:tl
not require browsing the entire reference database: accuracy at least better than chance) to a final strong fitassit
For each leaf. in the DT, a listL; containing every case each iterationk, a weak classifieh, is learnt from the learning
° g | s | j ni very

h th is built duri he | . set with respect to a distribution (learning cases are asdig
¢; such thatw;; # 0 is built during the learning PrOCESS. nore or less weight); the weight distribution is initiallyiéorm.

These lists are updated each time a new case is InCludeqr{f}, \yeak classifier is then added to the final strong classifier
the referenge _database. . ..._.and the learning cases are reweighted: misclassified cases g
« Al the begmnmg of the retrieval process, each S'm'lam‘)(/eight and correctly classified cases lose weight. We falbihe
measureSy; is set to 0. . example of Adaboost [16], the most popular boosting alponrit
« For each leat, sgch thatw,; # 0, L; is browsed: for each to define a boosting strategy for our retrieval system. In our
casec; € Lj, Sg; is increased byug;wi;. application,h;, denotes a set of DTs used as a “weak retriever”
(see section IV-C). At each iteratidn the weightdy (¢;) of case
C. Multiple Tree Based Indexing ¢; is updated as follows:

Because of the hierarchical architecture of the systemegbov 1) the weighted average retrieval eregrof Ay, is computed:
some attributes might be given too much weight. In the exampl € = 1 — >, di(ci)mp(c:)
of Fig. 4 for instance, a male and a female both aged 30 would be2) the weightay, of 7 is updatediay, = § In <=5
regarded as completely dissimilar, because of their diffesex, ~ 3) @ variabley,(c;) indicating whetherdy,(c;) should be
whereas age might play a significant role. To solve this bl increased {x(c;) > 0) or decreased~{(c;) < 0) is
we propose a retrieval system relying not only on one DT but  computed:y,(c;) =1 — 21 (ci)
rather on several (say) DTs. Retrieving similar cases from a 4) dk(c;) is updated according ta; and-yi(c;): drt1(ci) o
single DT or from several DTs can be done similarly: instead i (ci)e® (")
of computing the scalar product between the assignmenthigeigThe final “strong retrieverH is thus a set of DT sets, weighted
to the leaves of one DT, we simply compute the scalar produmt oy. Equivalently, H is a DT set in which each treein hy
between the assignment weights to the leaves of each of thede assigned a weighty = «; in H. Consequently, the final
DTs. The expression of the new similarity meassfg is given similarity measure becomes),, given in equation (10).

in equation 9.
T M, T M,

b = Z Z Watj Whtj 9) b = Z Z O Watj Wht (20)

t=1 j—1 t=1j=1



IEEE TITB-00027-2008

TABLE |

STRUCTURED CONTEXTUAL INFORMATION FOR DIABETIC RETINOPATH PATIENTS

attributes

possible values

family clinical context

diabetes, glaucoma, blindness, misc.

medical clinical context

arterial hypertension, dyslipidemia, protenuria, renal dialysis, allergy, misc.

general clinical context

surgical clinical context

cardiovascular, pancreas transplant, renal transplant, misc.

ophthalmologic clinical context

cataract, myopia, AMD, glaucoma, unclear medium, cataract surgery, glaucoma surgery, n

circumstances, examinatior

diabetes type

none, type I, type Il

diabetes duration

< 1year, 1to5 years, 5to 10 years, 10 years

and diabetes context

diabetes stability

good, bad, fast modifications, glycosylated hemoglobin

treatments

insulin injection, insulin pump, anti-diabetic drug + insulin, adi@betic drug, pancreas transplal

eye symptoms reported

ophthalmologically

none, systematic ophthalmologic screening - known diabetes, recently

ni

nt

symptomatic diagnosed diabetes by check-up, diabetic diseases other than ophthalmic ones
before the angiography tes. ophthalmologically none, infection, unilateral decreased visual acuity (DVA), bilateral DVA,
giography asymptomatic Neovascular glaucoma, intra-retinal hemorrhage, retinal detachment, misc.

focal edema, diffuse edema, none, ischemic

l l

maculopathy [

TABLE Il

V. APPLICATION TO TWOMEDICAL DATASETS PATIENT DISEASE SEVERITY DISTRIBUTION

The proposed framework has been applied to two heteroge- ’ dataset‘ disease severity ‘ number of
neous medical datasets. The first dataset (DRD) is being buil patients
; . . no apparent diabetic retinopathy 7
at the LaTIM_Iaboratory (Inserm U§50), |n_coIIaborat|on hwit mild non-proliferative 13
ophthalmologists from Brest University Hospital. The settone DRD moderate non-proliferative 25
; : severe non-proliferative 15
(DDSM) is a well-known public access dataset [27]. proliferative P
treated/non active diabetic retinopathy 14
normal 695
A. Diabetic Retinopathy Dataset (DRD) DDSM benign 669
cancer 913

Diabetic retinopathy is damage to the retina caused by com-
plications of diabetes, which can eventually lead to blesn
The diabetic retinopathy dataset contains retinal imadgetisa B. Digital Database for Screening Mammography (DDSM)
betic patients, with associated anonymized informationtham The DDSM project [27], inv0|ving the Massachusetts General
pathology. The dataset consists of 86 patient files com@iniHospital, the University of South Florida and the Sandia Na-
1399 photographs altogether. Patients have been recraitedional laboratories, has built a mammographic image databa
Brest University Hospital since June 2003 and images wef& research on breast cancer screening. It consists of 2277
acquired by experts using a Topcon Retinal Digital Camepatient files. Each one includes two images of each breastgal
(TRC-501A) connected to a computer. Images have a definitigith some associated patient information (age at time adystu
of 1280 pixels/line for 1008 lines/image. They are losslessbtlety rating for abnormalities, American College of Rémy
compressed images. An image series is given in Fig. 5. Thgeast density rating and keyword description of abnorigali
contextual information available is the patients’ age aexiand and image information (scanner, spatial resolution, efthe
structured medical information (see table I). If patiergsards following contextual attributes were included in the syste
were comprehensive, they would consist of 10 images per eye age at time of study
(see Fig. 5) and of 13 contextual attributes. However, in our = -oo« density rating
dataset, 11.9% of images and 39.7% of contextual attritalteeg . digitizer

are missing. The disease severity level, according to ICD . . .
9 ty 9 I%%e remaining attributes were not used, either becauseatey

classification [3], was assessed by one three-year expeden -
expert for each patient. The distribution of the diseaserstyv rﬁgarded as usdeless (gate of st_udy, daFe dlg;:lzzd, ett.)egmse
among the above-mentioned 86 patients is given in table II. t €y require advance expert interaction (the _escr|m)_|b_ ne
lesions visible in images). Images have a varying definjtifn
about 2000 pixels/line for 5000 lines/image. Each patidatfas
been graded by a physician. Patients are then classifiedar th
groups: normal, benign and cancer. The distribution of ggsad
among the patients is given in table II.

C. Attributes of a medical case

In those datasets, each patient file consists of a mixture
of digital images and contextual information. Contextuéd a
Fig. 5. Photograph sequence of a patient's eye. Photog(aph®) and (c) were triputes (13 in DRD, 3 in DDSM) do not require advanced
obtained with different color filters. Photographs (d) tpggnstitute a temporal . | ib h “ RD
angiographic series: a contrast product is injected andoghaphs are taken at preprocessing: tgxtua attributes (SUC as treatmerptsD )
different stages (early (d), intermediate (e), (g)-(j) aatt|(). (9)-() are images were translated into codes and processed as nominal &sibu
from the periphery of the retina. numerical contextual attributes (such as “breast denattyg” in

DDSM) did not require any preprocessing at all. Images, en th
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other hand, require advanced preprocessing: numericddudts F. Baseline heterogeneous information retrieval method
were extracted to characterize them. A usual solution teeekt T4 evaluate the contribution of DTs for heterogeneous and

numerical attributes from images is to segment these imaggsomplete case retrieval, the proposed approach has loeen ¢
and extract domain specific information. However, this @8ph  pared to a weighted sum of heterogeneous distance functions
requires expert knowledge, so it is not sufficient for gemerinanaging missing values [30]. This method was used as a refer
database management. Another solution was proposed: $maggee for being the natural generalization of CBR. We exténde

were indexed by their digital content (i.e. a generic sigmat j; 1o cases containing images thanks to the distance measure
was extracted — see section llI-A). An image signature Waswveen image signatures defined in section I1I-B.
computed for each type of images (10 for DRD, 4 for DDSM).

To push performance further, it is possible to include deomai
specific knowledge in the proposed framework, in addition to
the generic signatures. In DRD, for instance, we counted theA precision atkR=5 of 0.788:0.137(resp.0.869:0.161) was
number of microaneurysms (the most frequent lesion of di@bemeasured on DRD (resp. DDSM) using the process described
retinopathy) detected by the algorithm described in [28 ate in section V-D. It means that, on average, approximately fou

not mammography experts, so we did not include any expéﬁses among the five cases retrieved for a query are relevant.
knowledge in the system for DDSM. The best set of parameter values, obtained for each dataset

by the process described in section V-D, is given in table llI
Because of the limited number of images per class in DRD (see
table 1), retrieval performance necessarily drops wittréasing

To maximize the retrieval precision of the proposed systerRs: a precision atR=10 of 0.681:0.133 and a precision at
the following parameters had to be tuned: R=20 of 0.5710.129 were obtained on this dataset. Retrieval

. the wavelet basis used to decompose images and the weRgformance also decreases on DDSM: a precisiof?=t0 of
vector used in the distance measure between signapites (0.819£0.157 and a precision ak=20 of 0.756:0.163 were

« the numbenp! of generated trees in each weak retriekgr ©Obtained on this dataset. To bring out the discriminatioifitab

« the random parameter> = k (the number of attributes Of each attribute, we report in table IV the precision at 5 of a
among which the tested attribute is selected at each nodéfrieval system that simply finds the 5 most similar caseh wi

« the FCM parametep? (the fuzzy coefficient [22]) respect to that attribute. More generally, to estimate tbe- c

System performance was assessed by 10-fold cross-vahdatfribmion,c’f numerical (image series' signature_s) and odosd
Let N be the number of cases in a reference database86 !nformat!on, DT sets were learnt using num.e.rlcal or contakt
for DRD, N=2277 for DDSM). For each fold, each referencdiformation alone. On DRD, retrieval precision based on all
database was divided randomly into two sefsi(the test set attribu'Fes is significantly higher than retrieva_l precislmased on
— 0.1V cases) and” (0.9N cases). The wavelet basis and th@umerical attributes alone, at the 90% confidence level fioat
weights ¢°) were trained oril” for each “image attribute” [18]. on DPSM). Tc_> evaluate the contr|but|c_>n of boc_)stlng, the ager
For each element in the product spaBé x P2 x P3, a DT Precision at five over each class, with or without boostirsy, i

committee was built using’. Each tree in this committee wasdiven in table V. Robustness to information incompletenisss

learnt using a learning sdt (0.8N cases) selected at random iissessed in Fig. 6. Whereas a precision at five of G-08B37
T;V =T\ L was used for validation. The precision/atof this ('€SP- 0.863:0.161) was obtained on DRD (resp. DDSM) with

committee for a case; in V' (i.e. mr(c;)) was computed over (€ Proposed approach, a precision at five of 033185 (resp.
the DTs learnt wher; was inV. The score of this committeeo'70%0'251) was obta|.ned on DRD (rgsp. DDSN_I) with a
is the averagerx(ci), ¢; € T. The DT committee of maximal usual CBIR approach (i.e. each case simply consists of one

performance for the current fold, according @ was then image), using the same image signatures; a comparison with
assessed using the test get other image signatures is provided in [18]. The precisiofivat

The search for the best element in the product spatec obtained with_the paselinfa heterqgeneous informationexetr

P2 x P3 has been sped up by a genetic algorithm [29]. method described in section V-F is 0.553178 on DRD and
0.739£0.182 on DDSM.

Finally, the average computation time required to retrithe= 5

VI. RESULTS

D. Retrieval system calibration

E. Robustness to information incompleteness most similar cases, using the settings of table IlI, is givetable
Robustness to information incompleteness has been adse¥de Clearly, most of the time is spent while image signatures
as follows: are computed. Once the distances between images have been

1) For each case in the test sef’, 100 new cases have beeﬁ:omputed, the learning process in itself only takes 0.8 rsgx0
generated as described in 2). (resp. 80 seconds) per DT for DRD (resp. DDSM). Experiments

2) Letn; be the number of attributes inputted for each new Were performed using an AMD Athlon 64-bit based computer
case has been obtained by removing a number of attrib{#ning at 2 GHz.
values randomly selected i0, 1, ...,n;}.

3) Robustness to information incompleteness is visually as VIl. DISCUSSION AND CONCLUSIONS
sessed by plotting the average precision at five with respecis novel medical information retrieval framework has been
to the number of available attributes, using the cas@gesented in this paper: it supports queries consistingnafje
generated as described in 1)-2). series with contextual information. The framework usessiec
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TABLE Il
OPTIMAL PARAMETER SETTINGS
[ parameter [ DRD [ DDSM |
pt (nr of trees inhy,) 5 2
p2 (random parameter 3 1
p° (FCM parameter) 1.5 2.75
total nr of trees 40 16
TABLE IV
INFLUENCE OF EACH ATTRIBUTE ON RETRIEVAL PRECISION
[ DRD “ DDSM ]
age 0.321+£0.172 || age 0.438+0.204
sexe 0.3144+0.190 breast density| 0.352+0.201
familial clinical context 0.298+0.180 || digitizer 0.294+0.198
medical clinical context 0.328+0.195
surgical clinical context 0.256+0.184
ophthalmic clinical context 0.353+0.167
diabetes type 0.319+0.160
diabetes duration 0.363£0.167
diabetes stability 0.314+0.186
treatments 0.302+0.185
symptoms ophth. symptomatic| 0.363+0.164
symptoms ophth. asymptomatic 0.328+0.179
maculopathy 0.353+0.159
contextual 0.463+0.165 || contextual 0.451+0.201
number of microaneurysms 0.353+0.187 || LCC view 0.682+0.179
green filtered photographs 0.542+0.156 || LMLO view 0.685+0.178
blue filtered photographs 0.370+£0.178 || RCC view 0.694+0.176
red filtered photographs 0.389+0.168 || RMLO view 0.691+-0.178
early angiographs 0.579+-0.149
interm. angiographs (center) 0.498+0.164
late angiographs 0.560+0.150
interm. angiographs (nasal) 0.5070.165
interm. angiographs (temporal) 0.474+-0.166
interm. angiographs (upper) 0.449+0.163
interm. angiographs (lower) 0.519+0.154
numerical 0.702£0.142 || numerical 0.802£0.172
[ all [ 0.788£0.137 ][ all [ 0.869+0.161 |
TABLE V
PRECISION AT FIVE FOR EACH CLASS
dataset DRD DDSM
class no boosting boosting no boosting boosting
1 0.30740.178 | 0.597+0.150 0.862+0.173 | 0.873+0.156
2 0.705£0.166 | 0.802£0.146 0.818+0.183 | 0.872+0.164
3 0.870+0.096 | 0.835+0.092 || 0.83%+0.180 | 0.864+0.162
4 0.719£0.163 | 0.793+0.156
5 0.67740.170 | 0.758+0.166
6 0.847+0.128 | 0.809+0.133
entire set| 0.742+0.157 | 0.788+0.137 || 0.840+0.179 | 0.869+0.161
TABLE VI
COMPUTATION TIME
dataset DRD DDSM
wavelet transform (for 1 image) 0.22 s 1.99s
estimating(&, 3) (for 1 image) 435s 33.90 s
computing the distance between| 0.0335 s 114 s
signatures (for 1 image modality
browsing the trees and ranking | 0.067 s | 0.0032 ms
the cases
average total time 17.24 s 99.50 s

trees (DTs) to combine heterogeneous information (in @ar,
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Fig. 6. Robustness to information incompleteness. Goocdevetriperformance
can be obtained even if many attributes are unavailable: ob,Rprecision at
five of 60% (resp. 70%) can be reached even if less than 40%. (6886) of the
attributes are available.

taken into account (6). On this dataset, the proposed framiew
outperforms the retrieval of single images by a factor oBlir
precision. This stands to reason since an image alone isajlgne
not sufficient for experts to correctly diagnose the dissaserity
level of a patient. Nevertheless, as table IV shows, images
are discriminant attributes, red free photographs (Fig.bd (
and angiographs (Fig. 5 (d)-(j)) in particular. These twaga
modalities are indeed the most useful for physicians toofoll
up diabetic retinopathy. On DDSM, the superiority of images
over nominal attributes is even more obvious, as illustrate
table V. This table also shows that using images seriesowtth
contextual information, instead of single images, incesaby
itself the average precision at five by a factor of 1.32 on
DRD. Adding contextual information increases precisioriter.
Besides, this non-linear retrieval method is 1.43 times emor
precise than a linear combination of heterogeneous distaon
DRD. The improvement brought by heterogeneous information
retrieval is more moderate for DDSM (0.860.161 as opposed
to 0.709:0.251). Performance increase can be explained by the
combination of evidence from four images instead of one gnd b
a fine segmentation of the feature space into homogeneoupgyro
provided by DTs, which helps us better separate the classes.

Boosting does not lead to a significant increase of precision
over the entire dataset, however it increases precisiondia
classes: in DRD, precision significantly increases forslhsthe
rarest class, at the 90% confidence level (see table V).

The proposed retrieval system is fast: most of the commurtati
time is spent during the image processing steps. Moreavey, i
not necessary to process every image. The first reason is that
the retrieval system only needs to characterize attribtgsted

a way to include image signatures in a DT was proposed), nodes browsed by the query case; as a consequence, certain

handle missing values and avoid over fitting. The latter prop

images do not need to be processed. The second reason is that

reinforced by boosting, makes this framework well suited tsufficient precision can be reached before every attribasebleen
process both large datasets such as DDSM and small dataggiatted by the user. Provided that the retrieval list is atpd
such as DRD.
The precision at five obtained for DRD (0.788.137) is his/her query when he/she is satisfied with the results. OB DR
particularly interesting, in view of the few cases avaitahthe for instance, a precision at five of 60% can be reached by
large number of missing values and the number of classaputting less than 40% of the attributes (see Fig. 6): wiitis t

each time an attribute is updated, the user can stop forimglat
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precision, the majority of the retrieved cases (3 out of 9phg
to the correct class.
Another interest of the proposed framework is its genstalit; 3

(12]

C. L. Bozec, E. Zapletal, M. Jaulent, D. Heudes, and Rddéet, “Towards
content-based image retrieval in a HIS-integrated PACS,AMIA’ 00,
2000, pp. 477-481.

S. Antani, L. R. Long, and G. R. Thoma, “A biomedical infortioa system

any multimedia database may be processed so long as a procesSor combined content-based retrieval of spine X-ray imagesassociated

to cluster cases is provided for each new modality (sourdgoyi (4]
etc). This paper reports promising results about the useat# d
mining techniques to combine numerical and contextualrinfgis]
mation in a medical retrieval framework; we are now focusinﬂG]
on alternative data mining algorithms to improve perforo&n

[17]
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