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Abstract. The work described in this abstract presents a roadmap to-
wards the creation and specification of a virtual humanoid capable of
performing expressive gestures in real time. We present a gesture motion
data acquisition protocol capable of handling the main articulators in-
volved in human expressive gesture (whole body, fingers and face). We
then present the postprocessing of captured data leading to a motion
database complying with our motion specification language and capable
of feeding data driven animation techniques.

Issues. Embodying a virtual humanoid with expressive gestures raises many
problems such as computation-cost efficiency, realism and level of expressiveness,
or high level specification of expressive gesture [1]. In this abstract, we focus on
the acquisition of motion capture data from the main articulators involved in
communicative gesture (whole body, face mimics and fingers motion). We then
present how acquired data are postprocessed in order to build a database com-
patible with high level gesture specification and capable of feeding real time
data-driven motion synthesis techniques. A recent automatic segmentation algo-
rithm based on Principal Component Analysis (PCA) is then evaluated.

Motion acquisition protocol. The motion data acquisition protocol is de-
signed to capture the whole range of articulators involved in order to produce
human communicative gestures. This protocol relies on two complementary tech-
niques, as shown in figure 1. The first technique aims at capturing facial and
body motions and relies on a set of reflective markers placed on standardized
anatomical landmarks and a network of 12 Vicon-MX" infrared cameras located
all around the subject. The second technique aim to capturing finger motion
thanks to pair of Cybergloves? measuring finger abduction and flexion. This
technique is well suited to finger motion, as it is robust by fingers occlusions
that may appear too often during signing performance. The two sets of data
acquired are post processed, synchronized and merged offline.

! http://www.vicon.com/products/viconmx . html
2 http://wuw.immersion.com/3d/products/cyberglove.php
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Fig. 1. motion acquisition protocol

The resulting dataset describes the evolution along n frames of a skeleton hi-
erarchy composed by k joints. for each joint i, a set of [; degrees of freedom is
defined, 1 <I; < 3. The size of a posture vector v is then easily computed.

Table 1 sums up the composition of a posture vector according to our represen-
tation model.

segment [coord typel|joints number| DOF per joint|size of segment subvector
body | angular 18 1<1<3 54
hand angular 18 1<1<3 25
total angular 36 — 79

Table 1. detail of a posture vector

Processing motion data. One of the early step of data processing consists of
segmenting motion into relevant chunks. Extracted chunks must be short enough
to guarantee the synthesis of a wide range of new motions while keeping suffi-
cient meaning to comply with high level task oriented specification language [2].
Even though it has been shown that low level motion segmentation can be
achieved in a straightforward manner [7][4], Hodgins and al. recently showed
that higher level motion segmentation could be efficiently achieved thanks to
principal component analysis (PCA) approach. According to the results they



presented [6], PCA segmentation method applied on simple motions represent-
ing typical human activities, such as walking, running, sitting, standing idle, etc.
achieved very good results: up to 80% precision call for simple body movements.
This algorithm is based on the assumption that the intrinsic dimensionality of a
motion sequence containing a single behavior should be smaller than the intrinsic
dimensionality of a motion sequence containing multiple behaviors. Thus, from
one motion sequence to another, the reconstruction error of the frames projected
onto the optimal hyperplane of dimension r increases rapidly, for a fixed r. fig-
ure 2 illustrates a motion transition detection between two hand configurations.

PCA segmentation applied to hand motion
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Fig. 2. automatic segmentation using PCA. Cut is performed when derivative of error
reaches three standard deviation from the average.

Evaluating the PCA approach to hand motion segmentation. We apply
the PCA based segmentation algorithm described to a sequence representing a
non signer subject finger spelling French dactylologic alphabet [3]. The sequence
is 7200 frames long with 120 frames per second. To perform PCA, Decomposition
is thus performed on a 7200 x 25 matrix extracted from the total motion data and
representing the right hand motion. According to our experiments, the ratio Er
which indicates how much information is retained by projecting the frames on
the optimal r-dimensional hyperplane reaches acceptable range [6] when r < 3 for
all the 20 segments we extracted manually from the alphabet spelling sequence.
Further experiments lead us to set the window parameter k originally fixed at 2

seconds to 1.3 seconds, considering that hand motion is much faster than body
motion.
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Fig. 3. segmentation results



Results. In parallel to automated PCA based hand motion segmentation, a
human observer segmented manually the finger spelling sequence by identifying
probables zones of motion transition. Figure 3 compares how the two methods
assigned motion separation zones. The human observer identified 27 zones while
PCA based motion segmentation algorithm identified 29 zones. Among those,
22 zones are overlapping.

Conclusion. We have presented a motion acquisition framework designed to
manage several articulators involved in communicative gesture and in sign lan-
guage performance. We then rely on the data provided by this framework to
evaluate a recent automatic motion segmentation technique based on principal
component analysis of hand motion. This method proves to be capable of solving
high level segmentation required by our needs. In the near future, we wish to
extend this technique to the whole upper body motion. In parallel, we would
like to provide a better evaluation framework based on data acquired and an-
notated by French sign language specialists. Such a framework will provide us
with the ground required to perform reliable motion analysis and performance
comparisons.
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