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Abstract— This work deals with numerical techniques to compute electrostatic
fields in devices with rounded corners in 2D situations. The approach leads to the
solution of two problems: one on the device where rounded corners are replaced
by sharp corners and the other on an unbounded domain representing the shape of
the rounded corner after an appropriate rescaling. Both problems are solved using
different techniques and numerical results are provided to assess the efficiency and
the accuracy of the techniques.

Index Terms— Finite element method, geometric singularity, asymptotic expansion, rounded
corner.

I. Introduction

The precise description of an object containing rounded corners leads to consider meshes with
a large number of nodes in the corner neighborhood when the finite element method (FEM) is
straightforwardly applied. Dealing with such meshes makes the computation time- and resource-
consuming. Moreover, these computations have to be repeated if the curvature radius of the
rounded corner is modified.

In order to avoid this computational cost, the rounded corners are usually replaced by sharp
corners. The obtained computational results are then “globally correct” but locally inaccurate
in the neighborhood of the corners. We aim at remedying this drawback.

In this work, we are dealing with a 2D electrostatic problem in a domain with a rounded corner
(see Fig. 1(a)). The proposed method to approximate the electric scalar potential is based on
two observations, which can be checked by simple numerical experiments:
• the exact solutions close to the corner, computed for several values of the curvature radius ε,
are quasi-similar, up to a “scaling factor” (related to ε). It is also noticed that the “shape”
of the solutions close to the corner (their “shape” but not their amplitude) weakly depend
on other elements of the studied structure, such as the distance to the boundaries: indeed, if
the corner geometry is self-similar1, it is also said that the dominant term of the solutions
close to the corner are self-similar.

1Roughly, it means that one paremeter, here ε, and a basic geometry are sufficient to describe the corners for
any value of ε.
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• the exact solutions far from the corner are weakly influenced by the change of the curvature
radius ε, and they converge to the solution on the domain with the sharp corner when ε

goes to zero.
It can be deduced that an accurate approximate solution of the exact solution for any curvature

radius ε can be build from the solutions of two problems:
• an electrostatic problem on the real domain except that the rounded corner is replaced by
a sharp corner;

• an electrostatic problem on a domain that only takes the shape of the rounded corner
into account. The corresponding solution so-called profile will be used with an appropriate
“scaling”.

This intuitive argument coincides with the mathematical results proposed partially by Timouyas
[1] in 2003 and recently completed by Dauge and her collaborators [2]. In addition to the
predictable behavior of the solution, some error estimates are also provided in [1], [2] for the
approximate solutions we consider. The method consists in matching the solutions of the two
problems. The main insight lies in this coupling: if the corner shape is modified (more than by
the scale factor ε), then the only profile terms have to be computed again, leading to a gain in
the computations compared with an entire re-meshing of the entire domain.

This work is addressed to the community of engineers that use numerical methods (as it was
done in [3]), and the aim is to illustrate the finite element implementation of the theoretical
concepts which are proved in other references [4], [2].

In Section II are given the principles of the method. Then, we provide explicitly how to solve
the different problems that enable to build the approximate solution:
• the computation of the “singularity factor” of the solution on the domain with the sharp
angle, in Section III;

• the problem on the unbounded domain taking only into account the shape of the rounded
corner, in Section IV.

In Sections II, III and IV, numerical results are given to assess the accuracy of the proposed
techniques.

II. Principles of the method

For the sake of clarity, the method is explained on a specific structure, see Fig. 1, but it can
be straightforwardly extended to other structures, in particular including more than two electric
conductors.

A. Definitions of the considered problems

Denote by vε the solution on Ωε (see Fig.1(a)) of the following problem:
4vε = 0, on Ωε,

vε = 0, on Γ0
ε, and vε = V1, on Γ1,

∂vε
∂n

= 0, on ΓN ,

(1)

where n is the unitary outward normal on the boundary of the domain. The factor ε defines
the true size of the rounded corner, starting from the profile domain given Fig. 1(c), where the
characteristic size of the rounded corner is 1.
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Figure 1. Considered domains Ω, Ω∞ and Ωε.

Let also v denote the solution on the domain Ω (see Fig. 1(b)) of a problem similar to (1):
4v = 0, on Ω,

v = 0, on Γ0, and v = V1, on Γ1,

∂v

∂n
= 0, on ΓN .

(2)

In the neighborhood of the sharp corner2, v can be expanded in series as follows [5]:

v(r, θ) = λrα sin(αθ) +
∞∑
k=2

akr
kα sin(kαθ),

(
α = π

ω

)
, (3)

and the first term of this expansion is said singular because it makes the amplitude of the electric
field go to the infinite at the sharp corner for α < 1 (i.e. ω > π). The factor λ is called the
singularity factor in the following. Methods for the computation of λ are given in Section III. A
specific notation will also be used for the first function of expansion (3):

S(r, θ) = rα sin(αθ). (4)

Finally, let v∞ denote the solution of 4v∞ = 0 in the unbounded domain Ω∞ where the
characteristic size of the rounded corner is 1, see Fig. 1(c). The rounded corner has the same
shape as in the real domain Ωε, the potential is zero on Γ0

∞, and the behavior of the potential
at infinity is given by the first term of the expansion (3) up to the scalar λ:

lim
r∞→+∞

(v∞(r∞, θ)− S(r∞, θ)) = 0. (5)

The FEM enables to compute the term v∞ whatever the rounded corner shape (see Section
IV). Note that for particular rounded corner shapes analytic expressions of v∞ can be obtained,
for instance using conformal maps.

It is assumed in the remainder of this section that the approximate finite element solutions
for v and v∞ have already been computed.

2It is valid on any intersection of a disc centered in O with the domain Ω which coincides with the intersection
of the same disc with an infinite sector whose corner is in O and whose angle is ω.
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B. Proposed approximate solution

Solution vε can be computed straightforwardly by the FEM, using a “fine” discretization close
to the rounded corner. However, this computation has to be performed for each corner “scale” ε.

Our aim is to approximate the solution vε by using only:
• the solution v, that will approximate vε far from the corner, i.e. when r � ε;
• the solution v∞, after a proper scaling by ε and the singularity coefficient λ, that will
approximate the solution close to the corner, i.e. when r ≤ ε.

The “scaling” used to map a point of coordinate (r, θ) in Ωε to a point in Ω∞ is given by
(r∞, θ) = (r/ε, θ). This change of coordinates applied in (4) leads to:

εαS(r∞, θ) = S(r, θ). (6)

These considerations enable to understand the following approximate expressions, that are de-
tailed in [2]:

vε(r, θ) ≈ λεαv∞(r∞, θ), for r < kε (usually, k = 1), (7)

vε(r, θ) ≈ v(r, θ) + λεα[v∞(r∞, θ)− S(r∞, θ)], (8)

for r > kε.

C. Remarks

The proposed expressions remain approximate:
• expressions (7) and (8) are not equal for r = kε, in particular when the geometry of the
domain Ωε makes the solution for r < kε to be not symmetric. Indeed, in this first order
approximation, the effect of the domain Ωε close to the corner is only related to the value
of the singularity factor λ. It is not sufficient: any problem with the same angle ω and the
same λ will give the same approximate solution close to the corner. A numerical example is
considered in Subsection IV-D.

• in (8), (v∞(r∞, θ)−S(r∞, θ)) is not exactly zero on Γ1: thus, the conditions on this boundary,
which are satisfied by v, are not satisfied by approximation (8). However, it can be seen, that
whenever ε goes to zero, the remaining error becomes negligible: the scaling of the domain
makes to send the boundaries further from the origin in the dimensionless solution v∞ and
the behavior at infinity (5) can be used.

It is possible to compute complementary terms, to increase the accuracy of the approximate
solution. In particular, the following term in the expansion (3), which will vary as sin(2αθ), will
be able to introduce an asymmetry of the approximation close to the rounded corner. Nonetheless,
our numerical experiments with the first terms of the expansion show the relevance of this first
order approach and illustrate the theoretical estimates for the numerical error [2].

We emphasize that the method is generic and could be applied to other particular shapes
which would not be “rounded” (and even to a simple surface irregularity, on a surface plane).

D. Application to the computation of the maximum field as a function of the curvature radius

With a reduced amount of numerical computations (a mesh without the rounded corner of the
whole studied device and a mesh of the rounded corner but built independently from the rest of
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the structure) it is possible to determine the variation of the electric field close to the rounded
corner as a function of the curvature radius. Indeed, the electric field Eε(r, θ) in any point close
to the rounded corner depends only on:
• the singularity factor λ whose evaluation is introduced in Section III starting from v the
solution with the sharp corner;

• the field E∞(r∞, θ) transferred to the domain Ωε;
• the scale factor ε.

The corresponding relation is given close to the corner by:

Eε(r, θ) = − grad(vε)(r, θ) = λε(α−1)E∞(r∞, θ). (9)

For instance, if the statistical distribution of the curvature radii is known for a series of N
pieces used in a high-voltage device, it will be possible to compute the statistical distribution
corresponding to the maximal electric field in these pieces.

III. Computation of the singularity factor

A. The Fourier method: weighted line integral of v

The Fourier method enables to compute an approximation of the singularity factor λ from the
solution v of the problem with the sharp corner (see Fig. 1(b)) given by the FEM. A weighted
integral of v is computed on an arc of circle of radius r0 centered on O, from one border of the
angle to the other:

λ = 2
ω
r−α0

ω∫
0

v(r0, θ) sin(αθ) dθ. (10)

When θ varies between 0 and ω, αθ varies between 0 and π; in this range of variation, the
integration of sin(αθ) with sin(kαθ) is zero for all k strictly greater than 1. Relation (10) is then
obtained by considering expansion (3) in the line integral.

There is no restriction in the choice of r0 except that the arc of circle must belong to the
domain Ω.

B. Dual solution method

The theoretical explanations concerning this method can be found in [1, Subsubsection 2.3.8].
This approach enables to compute the singularity factor λ as follows:

λ =
∫

Ω
fv∗ ds, (11)

where Ω is the domain with the sharp angle (see Fig. 1(b)), v∗ a function that is described in the
following, and f a function equal to 4w, where w is a “regular lifting” function. It is proposed
here not to construct this “regular lifting” but the less regular lifting which is commonly (but
often implicitly) used in the FEM.

Consider a domain Ωδ, see Fig. 2. It can be seen that when the radius δ of the circle Cδ goes
to zero, Ωδ converges to Ω, see Fig. 1(b).

For two functions v and v∗ in Ωδ such that 4v = 4v∗ = 0 in Ωδ, straighforward application
of Green formula leads to

0 =
∫
∂Ωδ

(
∂v

∂n
v∗ − v∂v

∗

∂n

)
dl, (12)
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Figure 2. Domain Ωδ where δ → 0 is considered.

As in [1], integral (12) can be made explicit on each boundary of the domain for a non zero δ.
Using the particular properties of the functions v and v∗, and passing to the limit when δ goes
to zero lead to the result.

In this computation, v is the FEM solution of problem (2) on Ω. The function v∗ is the sum
of the “dual singular function” S∗:

S∗(r, θ) = r−α sin(αθ), (13)

and a more regular function v∗R computed on the domain Ω which is the solution of the following
problem: 

4v∗R = 0, on Ω,

v∗R = −S∗, on Γ0 ∪ Γ1,

∂v∗R
∂n

= −∂S
∗

∂n
, on ΓN .

(14)

Problem (14) can be solved by the FEM. Denote by v∗ the non zero singular function defined by

v∗ = v∗R + S∗. (15)

This function satisfies 
4v∗ = 0, on Ω,

v∗ = 0, on Γ0 ∪ Γ1,

∂v∗

∂n
= 0, on ΓN .

(16)

Considering again the path integral (12) when δ goes to zero, the integrations are restricted
to Γ1 and Cδ:

0 = lim
δ→0

∫
∂Ωδ

(
∂v

∂n
v∗ − v∂v

∗

∂n

)
dl,

= lim
δ→0

∫
Γ1
−v∂v

∗

∂n
dl + lim

δ→0

∫
Cδ

(
∂v

∂n
v∗ − v∂v

∗

∂n

)
dl.

(17)

It can be shown that the path integral on Cδ converges to πλ when δ goes to zero (λ being the
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sought singular factor):
lim
δ→0

∫
Cδ

(
∂v

∂n
v∗ − v∂v

∗

∂n

)
dl = πλ. (18)

Moreover, the integral on Γ1 in (17) can be written:∫
Γ1
−v∂v

∗

∂n
dl = −V 1

∫
Γ1

∂v∗

∂n
dl. (19)

It is an integral only on the boundaries with non zero Dirichlet conditions (that are far from the
corner), and it corresponds to the flux of the dual solution v∗ on each of these boundaries. The
singularity factor is then given by:

λ = − 1
π
V 1
∫

Γ1

∂v∗

∂n
dl. (20)

Integral (19) is a “classical” computation in the FEM that is often approximated by using
Green formula by a surface integral:

−V 1
∫

Γ1

∂v∗

∂n
dl ≈ V 1

∫
CΓ1
∇w · ∇v∗ ds, (21)

where CΓ1 is a transition layer often limited to one layer of elements in direct contact with the
boundary and w is equal to 1 on Γ1 and goes to zero through the layer; see Fig. 3 for the function
w used in a FEM computation.

In fact, V 1w is the FEM lifting and it can be seen as an application of (11), by taking the
laplacian of V 1w as a distribution. Eventually, the singularity factor is given by

λ = − 1
π
V 1
∫

CΓ1
∇w · ∇v∗ ds. (22)

Figure 3. Lifting function w used in a FEM computation.

C. Numerical comparison of both methods

The singularity factor λ is computed on the geometry of Fig. 4. The boundary conditions are
the same as these described in Subsection II-A. The potential V 1 is chosen equal to 1.

It is shown on Fig. 5 that for the method proposed in Subsection III-A, the computed result
for λ is dependent on the choice of r0. As r0 increases, the computed value for λ quickly coincides
for both methods.
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Figure 5. Value of λ computed by the method described in Subsection III-A as a function of r0. The dotted line
indicates the value computed by the method described in Subsection III-B.

IV. Solution of the problem in Ω∞
It was introduced in Subsection II-A a potential v∞ solution of the Laplace equation on the

unbounded domain Ω∞.
In Subsection IV-A, the problem for v∞ is formulated as a classical Laplace problem with non

homogeneous boundary conditions, straightforwardly solved by the FEM. In Subsection IV-B, it is
shown that conformal maps may give a solution for certain specific shapes of the rounded corner.
In Subsection IV-C, the practical method used to obtain the approximation (8) by combining
the solution v∞ with the solution v on the domain with the sharp corner, is explained.
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A. The equivalent problem with shifted singularity

Let us define a new function S∞, with the correct behavior at infinity (5) and whose laplacian
is zero in Ω∞. Note that S (given in (4)) itself is not suitable, because its laplacian is not defined
in O (r equal to 0). We propose for instance:

S∞(r, θ) = rαs sin(αθ), (23)

where rs is the distance between the observation point and any point inside the infinite conductor,
typically the center of curvature of the rounded corner (Fig. 6).

O

Γ0
∞

r∞
rs

Figure 6. Definition of rs

The behavior at infinite obviously satisfies (5), but this function is not zero on the surface
of the conductor: v∞ will be written as the sum of this function S∞ and a corrective potential
vR∞s:

v∞ = S∞ + vR∞s (24)

which is the solution of: 
4vR∞s = 0, on Ω∞,

vR∞s = −S∞, on Γ0
∞,

lim
r∞→∞

vR∞s(r∞, θ) = 0.
(25)

This regular potential vR∞s can be found with the FEM and a classical “shell transformation”
in order to take the unbounded domain into account [6].

B. Method of conformal maps

The method of conformal maps [7] allows to build analytically potentials with the properties
requested for v∞, i.e. equal to zero on the conductor and with a prescribed behavior at infinity, on
domains like Ω∞. However, only some particular shapes are reachable by these transformations.

1) Example of transformation for a rounded corner: Let us consider the two complex planes:

z =x+ iy = reiθ where (x, y) are the coordinates in the real geometry, (26)

w =u + iv = Reiφ where v is the electric potential. (27)

and the following conformal map [8, p. 320]:

z = k[(w + a)1/α + (w− a)1/α], (28)
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with a = 2α−1 and k = 1/2.
The image of the straight line v = 0 in the w-plane is composed of (see Fig. 7):
• the half-line y = 0, x > 1, for u > a (u− a > 0 and u + a > 0);
• the half-line reiπ/α, r > 1, for u < −a (u− a < 0 and u + a < 0);
• a rounded line from Pl(zl = eiπ/α) to Pr(zr = 1), for u ∈ [−a, a], (u− a < 0 and u + a > 0).

Moreover, for |w|� |a|, z ≈ w1/α and v = =(w) = R sin(φ) ≈ rα sin(αθ), what is the expected
behavior at infinity. Then, this transformation gives the solution v∞ for the particular shape
given by (28), which is not exactly an arc of circle. We emphasize that this transformation does
not lead to the exact computation of the v∞ corresponding to the previous subsubsections IV-A
since the geometries are slightly different. However the solutions are similar as provided by the
numerical simulations in Section IV-D.

Figure 7. z(u = constant) and z(v = constant) plotted in the z-plane for the conformal map (28). The rounded
corner is not an arc of circle since rr = 1, r0 =

√
2− .5 < 1

2) Reference values of the electric field: The electric field on the conductor, for any point on
the right of the rounded corner (v = 0, u > a) is:

−dv
dy

= −2α
(u + a)(1−α)/α + (u− a)(1−α)/α . (29)

For example, the modulus of E∞ at the ends of the rounded corner is

|E∞(Pl)|= |E∞(Pr)|= α2α, (30)
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while on the middle-point of the rounded corner it equals

|E∞(P0)|= α2(1−α)2/α

sin
(
π
2α
) . (31)

For the right angle (α = 2/3), the field is constant on the rounded corner:

|E∞(α = 2/3, ε = 1)|= 25/3/3 = 1, 058267... (32)

even though it varies for other values of the conducting corner.
The approximate field on the real structure at the same points is deduced from E∞ using (9):

for this computation, only the scale ε and the singularity factor λ are required.
We propose to use the reference field (31), or its particular value 1.06 for a right rounded

angle, when the shape of the rounding is not exactly known, and when an approximation of the
maximum field as function of the mean curvature of the corner is the requested information.
3) Remarks: Such conformal maps have the required behavior at infinite and on the straight

parts of the conductor for favorably replacing the singular function S∞ given in (23) used in
Subsection IV-A. The only condition is that the line v = 0 remains inside the real conductor (at
the reference scale ε = 1). By the way, the norm of the correction vR∞s (25) will probably be
reduced.

C. Scaling by ε: projection method

Whatever the method used to build v∞ in the domain Ω∞ (the FEM, conformal maps or
another method), this potential is not directly obtained onn the mesh where v is computed.

Moreover, the computation of the sum (7) and (8) for a particular ε, on a domain Ωε, see Fig.
1(a), requires a projection of v∞ on the mesh of the final domain, with a scaling factor different
for each value of ε. For this purpose, the projection is performed by a continuous least-square
approach [9].

When only the results in some particular points is of interest, such as the amplitude of the
electric field in the middle of the rounded corner, this step requires no particular computation.

D. Numerical results

The aim of the section is to illustrate the efficiency of the proposed method by computing the
potential for two different domains: a symmetric configuration (the domain of Subsection III-C)
and a non-symmetric configuration. The non-symmetric configuration consists in cutting down
half vertical part of the symmetric domain (see 8(a)), the shape of the corner remaining the same
in both cases.

In addition we aim at studying the robustness of the approach by performing the numerical
simulations for quite large corners. It is shown that even if the corner is large, the method
provides good approximation of the potential in the symmetric configuration. For large corner,
the accuracy of the method gets down in the non-symmetric configuration, but as soon as the
corner becomes small compared with the characteristic size of the domain, the accuracy of two
configurations reaches the same order ε.

Observe that since the corner shape is the same for both configurations, the profile term v∞ is
the same. It is computed by considering the method proposed in Subsection IV-A. More precisely,
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Figure 8. Non-symmetric domain.

the value of max(|E∞|) is 1.1467 V/m (this value can be compared to the value 1.06 V/m that is
given by the conformal map described in Subsection IV-B; the value given by the conformal map
is close to the average value on the rounded corner that equals 1.05822 V/m). For both problems
λ is computed by the method proposed in Subsection III-B. In the symmetric configuration λ is
equal to 8.31235 (Fig. 4) while it equals 11.2770 for the non-symmetric domain (Fig. 8(a)).
1) Electric field close to the corner in the two configurations: According to relation (7) the

knowledge of λ and v∞ should provide accurate approximation of the normal electric field on
the conductor close to the corner. Fig. 9(a) provides the maximum values of the electric field
given by the real problem (the domain with the rounded corner) and by the profile term in the
unbounded domain for several corner radii in the symmetric configuration. Observe the good
agreement between results obtained by formula (9) and results obtained by straightforward
FEM computations even for large radii. In the non-symmetric domain, the accuracy of the
approximation is slightly altered for large radii (see Fig 9(b)) But as soon as the radius is small
compared with the characteristic size of the domain, the accuracy is similar to the symmetric
domain. However we emphasize that even for large radii, the maximal values of the electric field
in the non-symmetric configuration remains good, since the corresponding relative errors are
smaller than 4% for a corner radius equal to 10mm (that is 40% of the domain characteristic
size).
2) Electric field far from the corner: Function v and relation (8) should provide accurate

approximations of the normal electric field on the conductor far from the corner for the symmetric
and non symmetric domains. This is recovered by the simulations (see Figs. 10(a), 10(b), 11(a)
and 11(b)).

Observe that for small values of ε in the non symmetric domain (the corner radius equals 2 mm
in Fig.11(a) and it is equal to 1 mm in Fig. 11(b)) the pointwise difference between the real and
the approximate electric field near the corner is improved compared to Fig. 10(b).
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Figure 9. Comparison of the maximum electric field on the rounded corner between results obtained by
straightforward FEM computations and results obtained by relation (9).

V. Conclusion and perspectives

In this work, a set of practical techniques was proposed to enable the implementation of new
methods to estimate the electric field in the neighborhood of conductors containing rounded
corners, in the 2D case.

The computation on the whole studied structure can be done by replacing rounded corners
by sharp corners. A generic self-similar solution enables to estimate the electric field close to the
corner by post-processing for several values of the curvature radius. Some numerical tests have
assessed the relevance of the proposed approach.

It has been also shown that forgotten techniques, as conformal maps, enable, in some cases,
to build exactly the generic solution and in every case, to approximate it. They can be coupled
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Figure 10. Comparison of the normal electric field on the conductor for ε = 10 mm.

with more computationally intensive numerical methods as the FEM, by providing speed and
accuracy.

We are currently working to the extension of these techniques to:
• cases with several angles (such as some MEMs applications),
• 3D cases which is our real aim,
• singularity treatment (with sharp corners) for eddy-current problems, that lead also to self-
similar solutions, with the penetration depth δ playing the same role as the scaling factor ε
in the present study.
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Figure 11. Comparison of the normal electric field on the conductor for the non-symmetric case Fig. 8(b).
ε = 2 mm and ε = 1 mm.
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