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Abstract. We present an elementary model of random size varying population given by a
stationary continuous state branching process. For this model we compute the joint distri-
bution of: the time to the most recent common ancestor, the size of the current population
and the size of the population just before the most recent common ancestor (MRCA). In
particular we show a natural mild bottleneck effect as the size of the population just before
the MRCA is stochastically smaller than the size of the current population. We also compute
the number of old families which corresponds to the number of individuals involved in the
last coalescent event of the genealogical tree. By studying more precisely the genealogical
structure of the population, we get asymptotics for the number of ancestors just before the
current time. We give explicit computations in the case of the quadratic branching mech-
anism. In this case, the size of the population at the MRCA is, in mean, less by 1/3 than
size of the current population size. We also provide in this case the fluctuations for the
renormalized number of ancestors.

1. Introduction

A large literature is devoted to constant size population models. It goes back to Wright
[47] (1930) and Fisher [21] (1931) in discrete time, and Moran [39] (1958) in continuous
time. Models for constant infinite population in continuous time with spatial motion were
introduced by Fleming and Viot [22] (1979). On the other hand, the study of the genealogical
tree of constant size population was initiated by Kingman [29] (1982), and described in a more
general setting by Pitman [43] (1999) and Sagitov [46] (1999). The complete description of
the genealogy of the Fleming-Viot process can be partially done using the historical super-
process by Dawson and Perkins [13] (1991) and precisely by using the look-down process
developed by Donnelly and Kurtz [14, 15] (1999) or the stochastic flows from Bertoin and Le
Gall [9, 10, 11] (2003).

It is however natural to consider random size varying population models. Branching popu-
lation models, for which sizes of the population are random, goes back to Galton and Watson
[23] (1873) in discrete time and with finite mass individual. Jirina [26] (1958) considered
continuous state branching process (CB) models corresponding to individuals with infinitesi-
mal mass. The genealogy of those processes can be partially described through the historical
super-process. However the continuum Lévy tree introduced by Le Gall and Le Jan [34]
(1998) and developed later by Duquesne and Le Gall [16] (2002) allows to give a complete
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description of the genealogy in the critical and sub-critical cases. See the approach of Abra-
ham and Delmas [1] (2008) or Berestycki, Kyprianou and Murillo [7] (2009) for a description
of the genealogy in the super-critical cases.

The two families of models: constant size population and branching populations are, in
certain cases, linked. The case of a quadratic branching corresponds to the fact that only
two genealogical lines of the population genealogical tree can merge together. In this par-
ticular case, it is possible to establish links between the constant size population model and
CB models. Thus, conditionally on having a constant population size, the Dawson-Watanabe
super-process is a Fleming-Viot process, see Etheridge-March [18] (1991). On the other hand,
using a time change (with speed proportional to the inverse of the population size), it is pos-
sible to recover a Fleming-Viot process from a Dawson-Watanabe super-process, see Perkins
[41] (1992). Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg and Wakolbinger [12]
(2005) have given similar results for stable branching mechanism. In the same spirit, Kaj
and Krone [27] (2003) studied the genealogical structure of models of random size varying
population models and recover the Kingman coalescent with a random time change.

Recently, some authors studied the coalescent process (or genealogical tree) of random size
varying population, in this direction see Möhle [38] (2002), Lambert [30] (2003) for branching
process and Jagers and Sagitov [25] (2004) for stationary random size varying population.

Our primary interest is to present an elementary model of random size varying population
and exhibit some interesting property which could not be observed in constant size model.
The most striking example is the natural mild bottleneck effect: in a stationary regime, the
size of the population just before the most recent common ancestor (MRCA) is stochastically
smaller than the current population size. Our second goal is to give some properties of the
coalescent tree such as: time to the most recent common ancestor (TMRCA), number of
individuals involved in the last coalescent event, asymptotic behavior of the number of recent
ancestors.

One of the major drawback of the branching population models is that either the population
becomes extinct or decreases to 0, which happens with probability 1 in the (sub)critical cases,
or blows up exponentially fast with positive probability in the super-critical case. In particular
there is no stationary regime, and the study of the genealogy of a current population depends
on the arbitrary original size and time of the initial population. To circumvent this problem,
we consider a sub-critical CB, Y = (Yt, t ≥ 0), with branching mechanism ψ given by (1). We
get the Q-process by conditioning Y to non-extinction (which is an event of zero probability),
see [35] and [31]. The Q-process can also be seen as a CB with immigration, see [45]. We
take the opportunity to present a probabilistic construction of independent interest for the
Q-process in Corollary 3.5 which relies on a Williams’ decomposition of CB described in [2].
A first study of the genealogical tree of the Q-process can be found in [30].

We consider the Q-process under its stationary distribution and defined on the real line:
Z = (Zt, t ∈ R). Its Laplace transform, see (3.6), is given by

E

[

e−λZt

]

= exp

(

−
∫ ∞

0
ds ψ̃′(u(λ, s))

)

, λ ≥ 0, t ∈ R,

where ψ̃(λ) = ψ(λ)− λψ′(0). In order for Zt to be finite, we shall assume condition (A2):

∫ 1

0

(

1

vψ′(0)
− 1

ψ(v)

)

dv < +∞.
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In order for the TMRCA to be finite, we assume condition (A1):
∫ ∞

1

dv

ψ(v)
< +∞.

Notice a very similar condition exists to characterize coalescent processes which descent from
infinity, see [6].

As in the look-down representation for constant size population, we shall represent the
process Z using the picture of an immortal individual which gives birth to independent sub-
populations or families. For fixed time t0 = 0 (which we can indeed choose to be equal to 0
by stationarity), we consider A the TMRCA of the population living at time 0, ZA = Z(−A)−
the size of the population just before the MRCA, ZI the size of the population at time 0
which has been generated by the immortal individual over the time interval (−A, 0) and
ZO = Z0−ZI the size of the population at time 0 which has been generated by the immortal
individual at time −A. In Theorem 4.1, we give the joint distribution of (A,ZA, ZI , ZO).
One interesting phenomenon is Corollary 4.3.

Corollary 1. Conditionally on A; ZA, ZI and ZO are independent.

In particular, conditionally on A, ZA and Z are independent. Conditionally on A, ZA

depends on the past before −A of the process Z and has to die at time 0, ZO corresponds to
the size of the population at time 0 generated at time −A and ZI corresponds to the size of the
population at time 0 generated by the immortal individual over the time interval (−A, 0).
Then, as the immortal individual gives birth to independent populations, the Corollary is
then intuitively clear.

One of the most striking result, the natural mild bottleneck effect, is stated in Proposi-
tion 4.5:

Proposition 2. ZA is stochastically smaller than Z0.

Thus just before the MRCA, the population size is unusually small. Notice this result
is not true in general if one considers the size of the population at the MRCA instead of
just before, see Remark 4.6. We get nice quantitative results for the quadratic branching
mechanism case, see Corollary 7.2.

Corollary 3. Assume ψ is quadratic (and given by (42)). We have: a.s.

P(ZA < Z0|A) =
11

16
and E[ZA|A] = 2

3
E[Z0|A]

an in particular:

P(ZA < Z0) =
11

16
and E[ZA] =

2

3
E[Z0].

Notice that even is ZA is stochastically smaller than Z0 it is not a.s. smaller.
We also give in Theorem 4.7 the joint distribution of Z0 and the TMRCA of the immortal

individual and n individuals picked at random in the population at time 0. See also related
results in [30].

We investigate in Proposition 5.2 the joint distribution of A,Z0 and NA, where NA + 1
represents the number of individuals involved in the last coalescent event of the genealogical
tree. Under a first moment condition on Z, we get that if the TMRCA is large, then the last
coalescent event is likely to involve only two individuals. In the stable case, this first moment
condition is not satisfied, and the last coalescent event does not depend on the TMRCA, see
Remark 5.5. This suggests a result similar to the one obtained in [12]: in the stable case,
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the topology of the genealogical tree (which does not take into account the length of the
branches) may not depend on its depth given by the TMRCA.

After giving a more precise description of the genealogy of Z using continuum Lévy trees,
we compute in Theorem 6.9 the asymptotic behavior of the number of ancestors at time −s,
Ms, of the population at time 0.

Theorem 4. The following convergence holds in probability:

lim
s↓0

Ms

c(s)
= Z0,

where c(s) is related to the extinction probability of Y and defined by

∫ ∞

c(t)

dv

ψ(v)
= t.

This result is very similar to the one obtained on coalescent process in [6] (notice the con-
vergence is a.s. in [6]). We can precise the fluctuations in the quadratic case, see Theorem 7.8.

Theorem 5. Assume ψ is quadratic (and given by (42)). We have

√

c(s)E[Z0]

(

Ms

c(s)
− Z0

)

(d)−−−→
s↓0+

(Z0 − Z ′
0),

where Z ′
0 is distributed as Z0 and independent of Z0.

The paper is organized as follows. We first recall well known facts on CB in Section 2. We
introduce in Section 3 the corresponding stationary CB, which is related to the Q-process
of the CB, and give its first properties. We give the joint distribution of (A,ZA, ZI , ZO) in
Section 4 and prove the natural bottleneck effect, that is ZA is stochasitcally smaller than
Z0. We compute the number of old families (or number of individuals involved in the last
coalescent event) in Section 5 and the asymptotics of the number of ancestors in Section 6.
A first consequent part of this latter Section is devoted to the introduction of the genealogy
of CB processes using continuum random Lévy trees. We give more detailed results in the
quadratic branching setting of Section 7.

2. Continuous-state branching process (CB)

We recall some well-known fact on continuous-state branching process (CB), see for ex-
ample [36] and references therein. We consider a sub-critical branching mechanism ψ: for
λ ≥ 0,

(1) ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)
π(dℓ)

[

e−λℓ−1 + λℓ
]

,

where α = ψ′(0) > 0, β ≥ 0 and π is a Radon measure on (0,+∞) such that
∫

(0,+∞)(ℓ ∧
ℓ2) π(dℓ) < +∞. We consider the non trivial case that is either β > 0 or π((0, 1)) = +∞.
Notice that ψ is convex, of class C1 on [0,+∞) and of class C∞ on (0,+∞) and ψ′′(0+) ∈
(0,+∞].

Let Px be the law of a CB Y = (Yt, t ≥ 0) started at mass x ≥ 0 and with branching
mechanism ψ, and let Ex be the corresponding expectation. The process Y is a càd-làg R+-
valued Feller process and 0 is a cemetery point. The process Y has no fixed discontinuities.
For every λ > 0, for every t ≥ 0, we have

(2) Ex

[

e−λYt
]

= e−xu(λ,t),
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where the function u is the unique non-negative solution of

(3) u(λ, t) +

∫ t

0
ψ
(

u(λ, s)
)

ds = λ, λ ≥ 0, t ≥ 0.

Note that the function u is equivalently characterized as the unique non-negative solution of

(4)

∫ λ

u(λ,t)

dr

ψ(r)
= t λ ≥ 0, t ≥ 0.

or as the unique non-negative solution of: for λ ≥ 0,

(5)

{

∂tu+ ψ(u) = 0 t > 0,
u(λ, 0) = λ.

Markov property of Y implies that for all λ, s, t ≥ 0:

(6) u(u(λ, t), s) = u(λ, t+ s).

Let N be the canonical measure (we shall also call it excursion measure) associated to
Y . It is a σ-finite measure which intuitively describe the distribution of Y started at an
infinitesimal mass. We recall that if

∑

i∈I
δxi,Y i(dx, dY )

is a Poisson point measure with intensity 1[0,+∞)(x) dxN[dY ], then

(7)
∑

i∈I
1{xi≤x}Y

i

is distributed as Y under Px. In particular, we have: for λ ≥ 0

N

[

1− e−λYt
]

= lim
x↓0

1

x
Ex

[

1− e−λYt
]

= u(λ, t).

For convenience, we shall put Yt = 0 for t < 0.
Let ζ = inf{t;Yt = 0} be the extinction time of Y . We consider the function:

(8) c(t) = N[ζ > t] = N[Yt > 0] = lim
λ→∞

↑ u(λ, t).

We shall assume throughout this paper, but for Sections 3.1 and 3.3, that the strong extinction
property holds:

(A1)

∫ ∞

1

dv

ψ(v)
< +∞.

It follows from (4) and (8) that c is the unique non-negative solution of:

(9)

∫ ∞

c(t)

dv

ψ(v)
= t, t > 0.

Thanks to (A1), we get that c(t) is finite for all t > 0 and N[ζ = +∞] = 0. We also get that
c is continuous decreasing and thus one-to-one from (0,+∞) to (0,+∞). Letting λ goes to
infinity in (6) yields that for s, t ≥ 0

(10) u(c(t), s) = c(t+ s).
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3. Stationary CB

In contrast to Wright-Fisher population models, CB models do not exhibit stationary
distributions. However, by conditioning sub-critical CB to non-extinction (see [45], [20] and
[31] for details), one get the so-called Q-process, which we denotes by Y ′′. This process is also a
CB process with immigration introduced in [28] and may have a stationary distribution. This
process, as pointed out in [3] see also [19], has a heuristic interpretation by introducing a fixed
ancestral lineage, namely it is an independent sum of the process Y and the population thrown
off by an ”immortal individual” whose laws coincide with the law of a generic population Y .

We introduce the process Y ′′ in Section 3.1 as well as its stationary version Z. Then we
check in Section 3.2, that under (A1) the process Y ′′ is indeed the Q-process associated to
Y . This gives then a natural interpretation of Z. We give preliminary results on the process
Z in Sections 3.3 and 3.4.

3.1. Poisson point measure of CB. We consider the following Poisson point measures.

• Let N0(dr, dt) =
∑

i∈I δ(ri,ti)(dr, dt) be a Poisson point measure on (0,+∞)×R with
intensity

r π(dr)dt.

• Conditionally on N0, let (N1,i, i ∈ I), where N1,i(dt, dY ) =
∑

j∈J1,i δtj ,Y j (dt, dY ), be

independent Poisson point measures with respective intensity

riδti(dt)N[dY ].

Notice that for all j ∈ J1,i, we have tj = ti. We set J1 =
⋃

i∈I J1,i and N1(dt, dY ) =
∑

j∈J1 δtj ,Y j(dt, dY ).

• Let N2(dt, dY ) =
∑

j∈J2 δtj ,Y j(dt, dY ) be a Poisson point measure independent of

(N0,N1) and with intensity

2β dt N[dY ].

We set J = J1
⋃

J2. We shall call Y j, with j ∈ J a family and tj its birth time.
We will consider the two following processes Y ′′ = (Y ′′

t , t ≥ 0) and its stationary version
Z = (Zt, t ∈ R):

Y ′′
t =

∑

j∈J ,tj>0

Y j
t−tj ,(11)

Zt =
∑

j∈J
Y j
t−tj .(12)

We will denote by P the probability under which Y ′′ and Z are defined and E the correspond-
ing expectation.

At this stage, let us emphasize there is another natural decomposition of Y ′′ and Z. For
i ∈ I, set Y i =

∑

j∈J1,i Y
j and I = I

⋃

J2. The random measure

(13) N3(dt, dY ) =
∑

i∈I
δti,Y i(dt, dY )

is a Poisson point measure with intensity dtµ(dY ) and

(14) µ(dY ) = 2βN[dY ] +

∫

(0,+∞)
ℓπ(dℓ) Pℓ(dY ).
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And we have:

Y ′′
t =

∑

i∈I;ti>0

Y i
t−ti ,(15)

Zt =
∑

i∈I
Y i
t−ti .(16)

We shall call Y i, with i ∈ I a clan and ti its birth time. For j ∈ J2, Y
j is a clan and a

family. Notice that a.s. two clans have different birth time, but families in the same clan
have the same birth time.

The presentation with clans is simpler than the representation with families and most of the
results can be obtained using the former representation. We will use the family representation
in Sections 5 and 6.

We define ψ̃ by:

(17) ψ̃(λ) = ψ(λ)− λψ′(0) = ψ(λ)− αλ.

We first give a Lemma on the family representation.

Lemma 3.1. Let F be a non-negative measurable function. We have

(18) E

[

e−
∑

j∈J F (tj ,Y j)
]

= exp

(

−
∫

R

dt ψ̃′(N[1− eF (t,Y )])

)

.

Proof. Using Poisson point measure properties, we get:

E

[

e−
∑

j∈J F (tj ,Y j)
]

= E

[

e
−∑

j∈J1
F (tj ,Y j)

]

E

[

e
−∑

j∈J2
F (tj ,Y j)

]

= E

[

e−
∑

i∈I riN[1−F (ti,Y )]
]

e−2β
∫

dt N[1−eF (t,Y )]

= e
−

∫

dt
∫

(0,+∞)
ℓπ(dℓ) (1−exp(−ℓN[1−F (t,Y )]))

e−2β
∫

dt N[1−eF (t,Y )]

= e−
∫

dt ψ̃′(N[1−eF (t,Y )]) .

�

Proposition 3.2. The process Y ′′ is a CB with branching mechanism ψ and immigration
function ψ̃′:

ψ̃′(λ) = 2βλ+

∫

(0,+∞)
ℓπ(dℓ) (1− e−λℓ)

started at Y ′′
0 = 0.

Proof. This is a direct consequence of Lemma 3.1 and results from [28]. �

In particular Y ′′ is a strong Markov process started at 0 and its transition kernel is char-
acterized by: for λ ≥ 0, t ≥ 0, r ≥ 0

E[e−λY
′′
t |Y ′′

0 = r] = exp

(

−ru(λ, t)−
∫ t

0
ψ̃′(u(λ, s)) ds

)

.

The next result is then straightforward.

Corollary 3.3. For each t ∈ R, {Zs; s ≥ t} has the same law as a CB with branching

mechanism ψ and immigration function ψ̃′ started at the invariant distribution P(Zt ∈ ·).
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3.2. Q-process. We check the process Y ′′ is indeed the Q-process for CB using Williams’
decomposition.

Let m > 0 and νm(dt) =
∑

i∈I riδti(dt), where
∑

i∈I δ(ri,ti)(dr, dt) is a Poisson point mea-
sure with intensity

1[0,m](t) e
−rc(m−t) r π(dr)dt.

Conditionally on νm, let
∑

j∈Jm δtj ,Y j (dt, dY ) be a Poisson point measure with intensity
(

νm(dt) + 2β1[0,m](t) dt
)

N[dY, ζ < m− t].

The next Proposition is a consequence of Theorem 3.3 in [2].

Proposition 3.4. Assume (A1) holds. Under N, conditionally on {ζ = m}, Y is distributed
as (Y ′

t , t ≥ 0) where

Y ′
t =

∑

j∈Jm

Y j
t−tj .

It is then easy to deduce the following Corollary using representation (15) of Y ′′.

Corollary 3.5. Assume (A1) holds. The limit distribution of Y under N, conditionally on
{ζ = m}, as m goes to infinity, is the distribution of Y ′′ from Proposition 3.2.

Corollary 3.5 readily implies that the Q-process associated to Y , that is the limit distri-
bution of Y under N, conditionally on {ζ ≥ m}, as m goes to infinity, is the distribution of
Y ′′ from Proposition 3.2.

3.3. Stationary CB. We first give an interpretation of Z in population terms. At time t,
Zt correspond to the size of a population generated by an immortal individual (with zero
mass) which gives birth at rate 2β to clans (or families) which sizes evolve independently
as Y under N and at rate 1 with intensity r π(dr) to clans with initial size r which evolve
independently as Y under Pr.

By construction the process Z is stationary. The next Lemma which gives the Laplace
transform of Z is a direct consequence of the construction of Z.

Lemma 3.6. For all t ∈ R and λ ≥ 0, the Laplace transform of Zt is given by:

(19) E

[

e−λZt

]

= exp

(

−
∫ ∞

0
ds ψ̃′(u(λ, s))

)

.

Proof. Using Lemma 3.1, we have:

E

[

e−λZt

]

= exp

(

−
∫

R

ds ψ̃′(N[1− e−λYt−s ])

)

= exp

(

−
∫ ∞

0
ds ψ̃′(u(λ, s))

)

.

�

We shall consider the following assumption

(A2)

∫ +∞

1
ℓ log(ℓ) π(dℓ) < +∞.

The next Lemma is well known (notice condition (A1) is not assumed).

Lemma 3.7. In the sub-critical case, the following conditions are equivalent:

(i) (A2) holds.

(ii)
∫ 1
0

(

1
αv − 1

ψ(v)

)

dv < +∞.

(iii) Er[Yt log(Yt)] < +∞ for some t > 0 and r > 0.
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(iv) Er[Yt log(Yt)] < +∞ for all t > 0 and r > 0.

Proof. For (i) ⇔ (ii) see [24] proof of Theorem 4a, and for (ii) ⇔ (iii) (or (iv)) use Lemma 1
p.25 of [5]. �

The next Proposition gives a condition for finiteness of Z, see also [42] in a more general
framework.

Proposition 3.8. We have P(Z0 < +∞) = 1 if and only if (A2) holds.

Proof. Thanks to (19), we get P(Z0 < +∞) = 1 if and only if limλ→0

∫∞
0 ds ψ̃′(u(λ, s)) = 0.

As λ 7→ u(λ, s) decreases to 0 as λ goes down to 0 for all s ≥ 0, we deduce by dominated

convergence that P(Z0 < +∞) = 1 if and only if
∫∞
0 ds ψ̃′(u(λ, s)) < +∞ for at least one

λ > 0.
Notice that ∂tu+ψ(u) = 0 implies ψ′(u) = −∂2t u/∂tu, and hence for every 0 ≤ t < T < +∞

we have

(20)

∫ T

t
ψ̃′(u(λ, s)) ds = log

(

ψ(u(λ, t)) eαt

ψ(u(λ, T )) eαT

)

.

We deduce that T 7→ ψ(u(λ, T )) eαT is decreasing. We also get that
∫∞
0 ds ψ̃′(u(λ, s)) <

+∞ if and only if limT→+∞ ψ(u(λ, T )) eαT > 0 or equivalently limT→+∞ u(λ, T ) eαT > 0 as
limT→+∞ u(λ, T ) = 0 thanks to (4).

We deduce from (4) that

(21) u(λ, T ) eαT = λ exp

(

α

∫ λ

u(λ,T )
dr
( 1

ψ(r)
− 1

αr

)

)

.

Thus we deduce from Lemma 3.7 that P(Z0 < +∞) = 1 if and only if (A2) holds. �

Corollary 3.9. Assume (A2) holds. We have for λ > 0, t ∈ R:

(22) E

[

Zt e
−λZt

]

=
ψ̃′(λ)
ψ(λ)

E

[

e−λZt

]

.

In particular, we have:

(23) E[Zt] =
ψ′′(0+)

ψ′(0)
∈ (0,+∞].

Proof. We deduce from (19) that:

E

[

Zt e
−λZt

]

= E

[

e−λZt

]

∂λ

∫ ∞

0
ψ̃′(u(λ, s)) ds.

We deduce from (4) that λ 7→ u(λ, s) is increasing and of class C∞ on (0,+∞) and that

(24) ∂λu(λ, s) =
ψ(u(λ, s))

ψ(λ)
=

−∂su(λ, s)
ψ(λ)

.

Thus, we get:

∂λ

∫ ∞

0
ψ̃′(u(λ, s)) ds =

∫ ∞

0
ψ′′(u(λ, s))∂λu(λ, s) ds

= − 1

ψ(λ)

∫ ∞

0
ψ′′(u(λ, s))∂su(λ, s) ds

=
ψ̃′(λ)
ψ(λ)

.
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The last part of the Corollary is immediate. �

Remark 3.10. Assumption (A1) is not needed to define the process Y ′′ or the stationary
process Z. However the study of MRCA for Z is not relevant if (A1) does not hold.

Notice, we will introduce a complete genealogical structure for Z in Section 6 by using a
genealogical structure of the families (Y j , j ∈ J ).

From now on, we shall assume that (A1) and (A2) are in force.

3.4. Further property for stationary CB. By construction, we deduce that for all t ∈ R,
the process (Zs+t, s ≥ 0) is a CB with branching mechanism ψ and immigration function

ψ̃′ started as the stationary distribution whose Laplace transform is given by (19). Then
Proposition 1.1 in [28] implies that Z is a Hunt process and in particular it is càd-làg and
strongly Markov taking values in [0,+∞]. By stationarity and since +∞ is a cemetery point
for Z, we deduce that a.s. for all t ∈ R, Zt is finite.

Next, we recall some asymptotic properties of the functions u and c given in Lemma 3.1
of [30].

Lemma 3.11. For every λ ∈ (0,∞), we have

(25) lim
t→∞

u(λ, t)

c(t)
= e−αc

−1(λ),

and there exists κ∗ ∈ (0,∞) such that

lim
t→∞

c(t)eαt = κ∗.(26)

We also compute some integral of ψ̃′.

Proposition 3.12. The followings hold for every 0 ≤ t <∞:
∫ ∞

t
ψ̃′(u(λ, s))ds = log

(

ψ(u(λ, t)) eαt+αc
−1(λ)

κ∗α

)

, λ > 0,(27)

∫ ∞

t
ψ̃′(c(s))ds = log

(

ψ(c(t))eαt

κ∗α

)

,(28)

where the constant κ∗ is defined in Lemma 3.11.

Proof. We deduce from (20), (25) and (26) that:

lim
T→∞

ψ(u(λ, T )) eαT = lim
T→∞

ψ(u(λ, T ))

u(λ, T )

u(λ, T )

c(T )
c(T ) eαT = α e−αc

−1(λ) κ∗,

and (27) follows by letting T −→ ∞ for both sides of (20). Then, let λ goes to infinity in
(27) to get (28) and use the monotone convergence theorem. �

As a consequence of (27) with t = 0 and Lemma 3.6, we get the following Corollary.

Corollary 3.13. For all t ∈ R and λ ≥ 0, the Laplace transform of Zt is given by:

(29) E

[

e−λZt

]

= exp

(

−
∫ ∞

0
ds ψ̃′(u(λ, s))

)

=
e−αc

−1(λ) κ∗α
ψ(λ)

.

Eventually, we check that Z is non-zero. Recall notations from Section 3.1. Let ζi =
inf{t > 0;Y i

t = 0} be the duration of the family or clan Y i and ti + ζi its extinction time,
with i in I, J1 or J2.
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Proposition 3.14. We have

P

(

∑

i∈I
1(ti,ti+ζi)(t) > 0, ∀t ∈ R

)

= 1,

In particular, we have P(∃t ∈ R;Zt = 0) = 0.

For −∞ < a < b < +∞, we will consider in the forthcoming proof

(30) Na,b =
∑

i∈I
1{ti<a;b<ti+ζi},

the number of clans born before a and still alive at time b. Notice Na,b is a Poisson random
variable with parameter

Λ(b− a) : =

∫

drµ(dY ) 1(−∞,a)(r)1{ζ+r>b}

=

∫ ∞

b−a
dr ψ̃′(c(r))

= log

(

ψ(c(b − a)) eα(b−a)

κ∗α

)

,(31)

where we used (14) the definition of µ for the first equality and (28) for the last equality.

Proof. Observe that no clan surviving at time t ∈ (a, b) implies that there are no clan sur-
viving on any non-degenerate interval containing t. Hence, for any n ≥ 1, we have:

{

∃t ∈ (a, b),
∑

i∈I
1(ti,ti+ζi)(t) = 0

}

⊂
n
⋃

j=1

{

Nuj−1,uj = 0
}

∪
n+1
⋃

j=1

{

Nvj−1,vj = 0
}

where uj = a+ j(b− a)/n and vj = a+(2j − 1)(b− a)/2n. Notice that Nuj−1,uj and Nvj−1,vj

are Poisson random variables with parameter θn = Λ((b− a)/n). We deduce that

(32) P

(

∃t ∈ (a, b),
∑

i∈I
1(ti,ti+ζi)(t) = 0

)

≤ (2n + 1) e−θn .

Therefore the first part of the Proposition will be proved as soon as limn→+∞ n exp(−θn) = 0
which, thanks to formula (31), will be implied by lim

t→0
tψ(c(t)) = +∞ and thus by

(33) lim
λ→+∞

∫ +∞

λ

dr

ψ(r)
ψ(λ) = +∞.

Hypothesis on β and π imply there exists a constant c0 > 0 such that

αλ ≤ ψ(λ) ≤ c0λ
2 and lim

λ→+∞
ψ(λ)/λ = +∞.

Therefore (33) is in force.
The second part of the Proposition is clear by definition of ζi and representation (16). �
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4. TMRCA and populations sizes

We consider the coalescence of the genealogy at a fixed time t0. Thanks to stationarity,
we may assume that t0 = 0 and we write Z instead of Z0. There are infinitely many clans
contributing to the population at time 0. The Poisson random variable introduced in (30),
with b = 0, gives the number of clans born before a and still alive at time 0. Notice its
parameter is finite, see (31). Therefore, there are only finitely many clans born before a and
alive at time 0. In particular, this implies that there is one unique oldest clan alive at time
0. We denote by −A the birth time of this unique oldest clan at time 0:

A = − inf{ti ≤ 0;Y i
−ti > 0, i ∈ I}.

We set ZO the population size of this clan at time 0:

ZO := Y i
−ti , if A = −ti.

The time A is also the time to the most recent common ancestor (TMRCA) of the population
at time 0. The size of all the clans alive at time 0 with birth time in (−A, 0) is given by

ZI := Z − ZO.

We are also interested in the size of the population just before the most recent common
ancestor (MRCA):

ZA := Z(−A)− =
∑

i∈I
Y i
(−A−ti)1{ti<−A}.

Theorem 4.1. The joint distribution of (A,ZA, ZI , ZO) is characterized by the following:
for λ, γ, η ≥ 0 and t ≥ 0,

(34) E

[

e−λZ
A−γZI−ηZO

;A ∈ dt
]

= dt
(

ψ̃′(c(t)) − ψ̃′(u(η, t))
)

× exp

(

−
∫ t

0
ds ψ̃′(u(γ, s))−

∫ ∞

0
ds ψ̃′(u(λ+ c(t), s))

)

.

Proof. Given f a non-negative Borel measurable function defined on R, we have

E

[

e−λZ
A−γZI−ηZO

f(A)
]

= E

[

∑

j∈I
exp



−λ
∑

i∈I,ti<tj
Y i
(tj−ti) − γ

∑

i∈I,ti>tj
Y i
−ti − ηY j

−tj





f(−tj) 1{
Y j
−tj

>0,
∑

i∈I,ti<tj
1
{Y i

−ti
>0}

=0

}

]

=

∫ ∞

0
dt µ

(

e−ηYt ;Yt > 0
)

f(t) E



exp



−γ
∑

i∈I,ti>−t
Y i
−ti









lim
K→∞

E

[

exp

(

−λ
∑

ti<−t

(

Y i
(−t−ti) +K1{

Y i
−ti

>0
}

)

)]

,

where we used that Poisson point measures over disjoint sets are independent. We have:

µ
(

e−ηYt ;Yt > 0
)

= µ
(

1{Yt>0} −
(

1− e−ηYt
))

= ψ̃′(c(t)) − ψ̃′(u(η, t)).
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Using Lemma 3.1, we get:

E



exp



−γ
∑

i∈I,ti>−t
Y i
−ti







 = exp

(

−
∫ t

0
ds ψ̃′(u(γ, s))

)

.

We also have:

lim
K→∞

E



exp



−λ
∑

i∈I,ti<−t

(

Y i
(−t−ti) +K1{

Y i
−ti

>0
}

)









=exp

(

−
∫

ds 1{s>0} µ
(

1− e−λYs 1{Ys+t=0}
)

)

=exp

(

−
∫

ds 1{s>0} µ
(

1− e−λYs PYs (Yt = 0)
)

)

=exp

(

−
∫

ds 1{s>0} µ
(

1− e−(λ+c(t))Ys
)

)

=exp

(

−
∫ ∞

0
ds ψ̃′(u(λ+ c(t), s))

)

,

where we used exponential formulas for Poisson point measure in the first equality and the
Markov property of Y for the second equality. Putting things together, we then get (34). �

It is then easy to derive the distribution of the TMRCA A.

Corollary 4.2. The distribution function of A is given by

P(A ≤ t) = E[e−c(t)Z ] = exp

(

−
∫ ∞

t
ds ψ̃′(c(s))

)

,

and A has density, fA, with respect to the Lebesgue measure given by:

(35) fA(t) = ψ̃′(c(t)) exp
(

−
∫ ∞

t
ds ψ̃′(c(s))

)

1{t>0} =
ψ̃′(c(t))
ψ(c(t))

e−αt κ∗α1{t>0}.

Proof. This is a direct consequence of Theorem 4.1 and (10). Use Lemma 3.6 to get (35). �

The next result is a direct consequence of Theorem 4.1.

Corollary 4.3. Conditionally on A, the three random variables ZI , ZA and ZO are indepen-
dent.

We can also give the mean of the population size just before the most recent common
ancestor (MRCA) (to be compared to the mean size of the current population given by (23)).

Corollary 4.4. Let t > 0. We have

(36) E

[

e−λZ
A |A = t

]

=
E
[

e−(λ+c(t))Z
]

E
[

e−c(t)Z
] and E[ZA|A = t] =

ψ̃′(c(t))
ψ(c(t))

.

Proof. This is a direct consequence of Theorem 4.1 and of (22). �

We deduce from (36) that the distribution of ZA conditionally on {A = t} converges, as t
goes to infinity, to the distribution of Z.
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As another application of Theorem 4.1, we get that the population just before the MRCA,
ZA, is stochastically smaller than the current population, Z. Note that strong inequality,
namely inequality in the almost-surely sense, does not hold in general (see Section 7).

Proposition 4.5. We have P(ZA ≤ z|A = t) ≥ P(Z ≤ z) for all z ≥ 0 and t ≥ 0. Hence,
the population size ZA is stochastically smaller than Z: P(ZA ≤ z) ≥ P(Z ≤ z) for all z ≥ 0.
In particular, we have

E[ZA|A] ≤ E[Z] a.s.

Proof. The first equality of (36) implies that for any non-negative measurable function F
defined on R,

E
[

F (ZA)|A = t
]

=
E
[

F (Z) e−c(t)Z
]

E
[

e−c(t)Z
] .

Note that e−c(t)Z −E
[

e−c(t)Z
]

is non-negative for Z less than 1
−c(t) log

(

E
[

e−c(t)Z
])

and non-

positive otherwise, and that limz→∞ E[e−c(t)Z ;Z ≤ z] − E[e−c(t)Z ]P(Z ≤ z) = 0. We deduce
that:

P(ZA ≤ z|A = t) =
E
[

e−c(t)Z ;Z ≤ z
]

E
[

e−c(t)Z
] ≥ P(Z ≤ z).

For the last assertion, recall that for any non-negative random variable, we have E[X] =
∫∞
0 P(X > x)dx. �

Remark 4.6. Instead of considering ZA, the size of the population just before the MRCA, we
could consider the size of the population at the MRCA, ZA+ , which is formally given by

ZA+ = ZA +
∑

i∈I
Y i
0 1{ti=−A}.

Notice we don’t take into account the contribution of i ∈ J2 as for those indices we have
Y i
0 = 0. (In particular if π = 0, then Z is continuous and ZA = ZA+ .) Similar computations

as those in the proof of Theorem 4.1 yield: for λ, t > 0

E[e−λZ
A
+ |A = t] = E[e−λZ

A |A = t]
ψ′(λ+ c(t)) − ψ′(λ)
ψ′(c(t)) − ψ′(0)

.

If ψ′′(0) = +∞, then we get that lim
t→+∞

E[e−λZ
A
+ |A = t] = 0. Thus, conditionally on {A = t},

for t large, we have that ZA+ is likely to be very large. (Intuitively, a clan is born at time −t
which has survive up to time 0; and if t is large, it is very likely to have a large initial size.)
Therefore, ZA+ is not stochastically smaller than Z in the general case.

We may also consider the TMRCA of the immortal individual and individuals taken in-
dependently and uniformly among the current population living at time t. Let Jnt ⊂ I be
the indices of the clans of the randomly chosen n individuals alive at time t. (One indi-
vidual chosen at random in the population at time t belongs to the clan, i with probability
Y i
t−ti/Zt.) Notice that Card (Jnt ) ≤ n. The TMRCA for the n individuals alive at time t and

the immortal individual is given by:

Ant := − inf{ti; i ∈ Jnt , i ∈ I}.
Because of the stationarity, we shall focus on t = 0 and write An for Ant . The joint law of Z
and An can be characterized by the following result.



SMALLER POPULATION SIZE AT THE MRCA TIME FOR STATIONARY BRANCHING PROCESSES 15

Theorem 4.7. For any n ≥ 1 and any λ, T ≥ 0, we have

E

[

Zn e−λZ 1{An≤T}
]

=
e−αc

−1(λ) κ∗α
ψ(u(λ, T ))

(−1)n
∂n

∂nη

(

ψ(u(λ+ η, T ))

ψ(λ+ η)

)

∣

∣

∣

η=0
.

Proof. By definition, we have:

E

[

Zn e−λZ 1{An≤T}
]

= E



Zn
∑

i1,··· ,in

Y i1
−ti1
Z

· · ·
Y in
−tin
Z

n
∏

k=1

1{−ti≤T} e
−λZ





= E

[(∫

N3(ds, dY ) Y−s1{−s≤T}

)n

exp

(

−λ
∫

N3(ds, dY ) Y−s

)]

= (−1)n
∂n

∂nη
E

[

exp

(

−
∫

N3(ds, dY )
(

ηY−s1{−s≤T} + λY−s
)

)]

∣

∣

∣

∣

∣

η=0

= (−1)n
∂n

∂nη
exp

(

−
∫ ∞

T
ds ψ̃′(u(λ, s)) −

∫ T

0
ds ψ̃′(u(λ+ η, s))

)

∣

∣

∣

∣

∣

η=0

,

where N3 in the second equality is defined by (13). The result then follows from (20) and
(27). �

Remark 4.8. Following almost the same lines as the proof of Theorem 4.7, one can characterize
explicitly the joint distribution of

{(

Zrj , A
nj
rj

)

; 1 ≤ j ≤ m
}

for any m,n1, · · · , nm ∈ N
∗ and

−∞ < r1 < r2 < · · · < rm <∞.

5. Number of old families

We now consider the number families in the oldest clan alive at time 0. This correspond
to the number of individuals involved in the last coalescent event of the genealogical tree. To
this end, we take the representation (12) for Z.

Definition 5.1. The number of oldest families alive at time 0 (excluding the immortal par-
ticle) is defined by:

(37) NA =
∑

j∈J
1{A=−tj , Y j

−tj
>0} =

∑

j∈J
1{A=−tj , ζj>−tj}.

We have NA ≥ 1. In the particular case π = 0 and β > 0, we have J = J2 and NA = 1.

The following proposition give the joint law of A, NA and Z.

Proposition 5.2. We have for a ∈ [0, 1], λ ≥ 0, t ≥ 0,

E

[

aN
A
e−λZ |A = t

]

=
ψ′(c(t)) − ψ′((1− a)c(t) + au(λ, t))

ψ̃′(c(t))
e−

∫ t
0
ψ̃′(u(λ,r)) dr .

and

E

[

aN
A |A = t

]

=
ψ′(c(t)) − ψ′((1− a)c(t))

ψ̃′(c(t))
= 1−

ψ̃′
(

(1− a)c(t)
)

ψ̃′
(

c(t)
) .
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Proof. Recall notations from Section 3.1. For i ∈ I, we set J∗
i = J1,i if i ∈ I and J∗

i = {i} if
i ∈ J2. Given any non-negative function f , we have, using (12) and (16):

E

[

aN
A
e−λZ f(A)

]

= E

[

e
−λ∑k∈I Y

k
−tk

∑

i∈I
a
∑

j∈J∗
i
1{ζj>−ti}f(−ti) 1{Y i

−ti
6=0}1

{

∑

k′∈I,t
k′

<ti
1
{Y k′

−ti
>0}

=0
}

]

=

∫ ∞

0
ds f(s) E

[

e
−λ∑

k∈I Y
k
−tk

1{tk>−s}

]

P

(

∑

k∈I
1{tk<−s, Y k

s >0} = 0

)

×
(

2βN
[

a e−λYs 1{Ys>0}
]

+

∫

(0,+∞)
ℓπ(dℓ) Eℓ

[

a
∑

j∈J3
1
{Y

j
s >0} e

−λ∑j∈J3
Y j
s 1{∑j∈J3

Y j
s >0}

]

)

,

where
∑

j∈J3 δY j (dY ) is under Eℓ a Poisson point measure with intensity ℓN[dY ]. We have

E

[

e
−λ∑k∈I Y

k
−tk

1{tk>−s}

]

P

(

∑

k∈I
1{tk<−s, Y k

s >0} = 0

)

= e−
∫ s
0 dr ψ̃

′(u(λ,r))−
∫ ∞
s dr ψ̃′(c(r)) .

We also have

N

[

e−λYs 1{Ys>0}
]

= N[Ys > 0]− N[1− e−λYs ] = c(s)− u(λ, s).

and

Eℓ

[

a
∑

j∈J3
1
{Y

j
s >0} e

−λ∑j∈J3
Y j
s 1{∑j∈J3

Y j
s >0}

]

= Eℓ

[

a
∑

j∈J3
1
{Y

j
s >0} e

−λ∑j∈J3
Y j
s

]

− Pℓ





∑

j∈J3
Y j
s = 0





= exp
(

−ℓN[(1− a e−λYs)1{Ys>0}]
)

− exp (−ℓN[Ys > 0])

= exp
(

−ℓN[Ys > 0] + ℓaN[e−λYs ]1{Ys>0}]
)

− exp (−ℓN[Ys > 0])

= exp
(

−ℓ
(

(1− a)c(s)− au(λ, s)
))

− exp (−ℓc(s)) .
Thus, we get:

2βN
[

a e−λYs 1{Ys>0}
]

+

∫

(0,+∞)
ℓπ(dℓ) Eℓ

[

a
∑

j∈J3
1
{Y

j
s >0} e

−λ∑

j∈J3
Y j
s 1{∑j∈J3

Y j
s >0}

]

= ψ′(c(s))− ψ′((1− a)c(s) + au(λ, s)).

Putting things together, we obtain:

E

[

aN
A
e−λZ f(A)

]

=

∫ ∞

0
ds f(s) e−

∫ s
0 dr ψ̃

′(u(λ,r))−
∫ ∞
s dr ψ̃′(c(r))

[

ψ′(c(s))− ψ′((1− a)c(s) + au(λ, s))
]

.

Then, use (35) for the density of A to get the result. �
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Corollary 5.3. We have:

(38) P(NA = n|A = t) = (−1)n+1 c(t)
nψ(n+1)(c(t))

n! ψ̃′(c(t))
, n ∈ N

∗.

Suppose that ψ′′(0+) <∞ (that is E[Z] < +∞). Then, we have

E[NA|A = t] = ψ′′(0)
c(t)

ψ̃′(c(t))
.

Furthermore the function t 7−→ E[NA|A = t] is non-increasing.

Proof. The first two assertions are straightforward consequences of Proposition 5.2. To get
the monotonicity of t 7−→ E[NA|A = t], we simply notice that both t 7−→ c(t) and

x 7−→ ψ̃′(x)
x

= 2β +

∫ ∞

0
π(dℓ)ℓ

1− e−xℓ

x

are non-increasing. �

Remark 5.4. Suppose that ψ′′(0+) <∞. We deduce from (38) that

lim
t→+∞

P(NA = 1|A = t) = 1.

Thus, the distribution of NA conditionally on {A = t} converges as t goes to infinity to 1.
So roughly speaking NA is likely to be equal to 1 if the TMRCA (or age of the oldest clan
alive) is large. Notice that if ψ′′(0+) = +∞, this result may be false (see the next Remark).

Remark 5.5. Let us consider the stable cases, ψ(λ) = αλ + c0λ
1+α0 , with c0 > 0 and α0 ∈

(0, 1]. We deduce from Corollary 5.3 that

E[aN
A |A = t] = 1− (1− a)α0 .

In particular NA is independent of A. The case α0 = 1 correspond to the quadratic branching
mechanism and we get that a.s. NA = 1. For α0 ∈ (0, 1), we deduce from (38) that: for
n ∈ N

∗

P(NA = n|A = t) =
1

n!
α0

n−1
∏

k=1

(k − α0).

For α0 ∈ (0, 1), we have ψ′′(0+) = +∞ and the result of Remark 5.4 does not hold.

6. Asymptotics for the number of ancestors

The number N−s,0 defined by (30) of clans born before time −s and alive at time 0 is non-
decreasing and is distributed as a Poisson random variable with parameter Λ(s) given by (31).
As Λ(s) goes to infinity as s goes down to 0, we deduce that N−s,0 tends to infinity almost
surely as s ↓ 0+. A natural question is then how fast the numbers N−s,0 tend to infinity. It
follows from the definition of the Poisson random measure N3 in (13) that {N−Λ−1(s),0; s ≥ 0}
is Poisson process with parameter 1, and by the strong law of large numbers for Lévy processes
(see [8]), we deduce that

lim
s↓0+

N−s,0
Λ(s)

= 1 almost surely.

One can also ask how fast the numberMs of ancestors at time −s of the current population
living at time 0 tends to infinity. To answer this question, we need to introduce the genealogy
of the families. Notice the genealogy of a CB is a richer structure than the CB itself.
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6.1. Genealogy of CB. We recall here the construction of the Lévy continuum random tree
(CRT) introduced in [34, 33] and developed later in [16] for critical or sub-critical branching
mechanism. The results of this section are mainly extracted from [16], except for the next
subsection which is extracted from [32].

6.1.1. Real trees and their coding by a continuous function. Let us first recall the definition
of real trees.

Definition 6.1. A metric space (T , d) is a real tree if the following two properties hold for
every v1, v2 ∈ T .

• (Unique geodesic.) There is a unique isometric map fv1,v2 from [0, d(v1, v2)] into T
such that

fv1,v2(0) = v1 and fv1,v2(d(v1, v2)) = v2.

• (No loop.) If q is a continuous injective map from [0, 1] into T such that q(0) = v1
and q(1) = v2, we have

q([0, 1]) = fv1,v2([0, d(v1, v2)]).

A rooted real tree is a real tree (T , d) with a distinguished vertex v∅ called the root.

Let (T , d) be a rooted real tree. The range of the mapping fv1,v2 is denoted by [[v1, v2]]
(this is the line between v1 and v2 in the tree). In particular, for every vertex v ∈ T , [[v∅, v]] is
the path going from the root to v which we call the ancestral line of vertex v. More generally,
we say that a vertex v is an ancestor of a vertex v′ if v ∈ [[v∅, v

′]]. If (vk ∈ K) is a set of
vertex of T , there is a unique a ∈ T such that [[v∅, a]] =

⋂

k∈K [[v∅, vk]]. We call a the most
recent common ancestor of (vk ∈ K). A leaf is a vertex which is the ancestor of itself only.
We say that d(∅, v) is the level (or generation) of the vertex v.

We now recall the coding of a compact real tree by a continuous function g : [0,+∞) −→
[0,+∞) with compact support and such that g(0) = 0. We also assume that g is not
identically 0. For every 0 ≤ s ≤ t, we set

mg(s, t) = inf
u∈[s,t]

g(u) and dg(s, t) = g(s) + g(t)− 2mg(s, t).

We then introduce the equivalence relation s ∼ t if and only if dg(s, t) = 0. Let Tg be the
quotient space [0,+∞)/ ∼. It is easy to check that dg induces a distance on Tg. Moreover,
(Tg, dg) is a compact real tree (see [17], Theorem 2.1). We say that g is the height process of
the tree Tg.

For instance, when g is a normalized Brownian excursion, the associated real tree is Aldous’
CRT [4].

6.1.2. The underlying Lévy process. We present now how to define a height process that codes
a random real trees describing the genealogy of a CB using a Lévy process with Laplace
exponent given by the branching mechanism ψ. We shall consider only the case of the sub-
critical branching mechanism ψ given by (1).

Let X = (Xt, t ≥ 0) be a R-valued Lévy process with no negative jumps, starting from
0 and with Laplace exponent ψ under the probability measure P (and E the corresponding

expectation): for λ ≥ 0, E
[

e−λXt

]

= etψ(λ). Since we assume that β > 0 or π((0, 1)) = +∞,

we get that a.s. X is of infinite variation.
We introduce some processes related to X. Let I = (It, t ≥ 0) be the infimum process of

X, It = inf0≤s≤tXs, and let S = (St, t ≥ 0) be the supremum process, St = sup0≤s≤tXs. We
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will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t]:

Ist = inf
s≤r≤t

Xr.

The point 0 is regular for the Markov process X − I, and −I is the local time of X − I at 0
(see [8], chap. VII). Let N be the associated excursion measure of the process X − I away
from 0. Let σ = inf{t > 0;Xt− It = 0} be the length of the excursion of X − I under N. We
have X0 = I0 = 0 N-a.e.

Since X is of infinite variation, 0 is also regular for the Markov process S −X. The local
time, L = (Lt, t ≥ 0), of S −X at 0 will be normalized so that

E[e
−λS

L−1
t ] = e−tψ(λ)/λ,

where L−1
t = inf{s ≥ 0;Ls ≥ t} (see also [8] Theorem VII.4 (ii)).

6.1.3. The height process and the Lévy CRT. For each t ≥ 0, we consider the reversed process

at time t, X̂(t) = (X̂
(t)
s , 0 ≤ s ≤ t) by:

X̂(t)
s = Xt −X(t−s)− if 0 ≤ s < t,

and X̂
(t)
t = Xt. The two processes (X̂

(t)
s , 0 ≤ s ≤ t) and (Xs, 0 ≤ s ≤ t) have the same

law. Let Ŝ(t) be the supremum process of X̂(t) and L̂(t) be the local time at 0 of Ŝ(t) − X̂(t)

with the same normalization as L. As assumption (A1) is in force, there exists a continuous

modification H = (Ht, t ≥ 0) of the process (L̂(t), t ≥ 0), see Theorem 1.4.3 in [16]. The
process H is the so-called height-process and (TH , dH) is the corresponding Lévy tree. Notice
that N-a.e. we have Ht = 0 for t ≥ σ.

6.1.4. Local time for the height process and CB. We now check that TH represents the ge-
nealogy of a CB with branching mechanism ψ.

The local time of the height process is defined through the next result, see [16], Lemma
1.3.2 and Proposition 1.3.3.

Proposition 6.2. There exists a jointly measurable process (Las , a ≥ 0, s ≥ 0) which is
continuous and non-decreasing in the variable s such that:

• For every t ≥ 0, lim
ε→0

sup
a≥0

E

[

sup
s≤t

∣

∣

∣

∣

ε−1

∫ s

0
1{a<Hr≤a+ε} dr − Las

∣

∣

∣

∣

]

= 0.

• For every t ≥ 0, lim
ε→0

sup
a≥ε

E

[

sup
s≤t

∣

∣

∣

∣

ε−1

∫ s

0
1{a−ε<Hr≤a} dr − Las

∣

∣

∣

∣

]

= 0.

• P-a.s., for every t ≥ 0, L0
t = −It.

• The occupation time formula holds: for any non-negative measurable function g on

R+ and any s ≥ 0,

∫ s

0
g(Hr) dr =

∫

(0,+∞)
g(a)Las da.

Let Tx = inf{t ≥ 0; It ≤ −x}. We have the following Ray-Knight theorem which explains
why the Lévy CRT can be viewed as the genealogical tree of a CB.

Proposition 6.3 ([16], Theorem 1.4.1). The process (LaTx , a ≥ 0) is distributed under P as
Y under Px (i.e. is a CB with branching mechanism ψ starting at x).

We then get the following Corollary.

Corollary 6.4. The process L(H) = (Laσ, a ≥ 0) is distributed under the excursion measure
N as Y under its excursion measure N.

Informally, Laσ counts the number of vertices (in fact leaves) of TH at level a under N.
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6.1.5. Poissonian representation of the height process above a level. Let a > 0 be fixed. We
consider the excursions of the height process H above a under the excursion measure N.
Precisely, let (uk, vk), k ∈ K be the excursions of H above a over the time interval [0, σ]. We
set Hk = (Huk+s∧vk − a, s ≥ 0).

The next result is a consequence of Proposition 4.2.3 in [16].

Proposition 6.5. Conditionally on (Lrσ, r ≤ a), the measure
∑

k∈K δHk(dH) is a Poisson
point measure with intensity LaσN[dH].

We give a definition for the number of ancestors, which will be used in the next section.

Definition 6.6. The number of ancestors at time a of the population (coded by H) living at
time b is the number of excursions of H above level a which reach level b > a:

Ra,b(H) =
∑

k∈K
1{ζk≥b−a},

where ζk = max{Hk
s , s ≥ 0}.

6.2. Genealogy of Z. Recall notations from Section 6.1.5. In order to simplify notations,
we shall write N for N.

We use formulation (12) to construct the genealogy of Z. Recall notation N0 from Sec-
tion 3.1.

• Conditionally on N0, let Ñ1(dt, dH) =
∑

j∈J1 δtj ,Hj(dt, dH) be a Poisson point mea-

sure with intensity ν(dt) N[dH] with ν(dt) =
∑

i∈I riδti(dt).
• Let Ñ2(dt, dH) =

∑

j∈J2 δtj ,Hj(dt, dH) be a Poisson point measure independent of

(N0, Ñ1) and with intensity 2β dt N[dH].

We will write Y j for L(Hj) for j ∈ J = J1
⋃

J2. Thus notation (12) is still consistent with
the previous Sections, thanks to Corollary 6.4. And the process

∑

j∈J δtj ,Hj allows to code
for the genealogy of the families of Z.

Let s > 0. Following Definition 6.6, we consider Ms the number of ancestors at time −s
of the current population living at time 0, not including the immortal individual:

Ms =
∑

j∈J
1{tj<−s}R−s−tj ,−tj (H

j).

6.3. Asymptotics for the number of ancestors. We first give a technical Lemma, which
proof is postponed to the end of this Section.

Lemma 6.7. The joint distribution of Ms and Z0 is characterized by the following equation:
for η, λ ≥ 0 s > 0,

(39) E

[

e−ηMs−λZ0

]

= e−
∫ s
0
dr ψ̃′(u(λ,r))

E

[

e−Z−s[(1−e−η)c(s)+e−η u(λ,s)]
]

.

In particular, Ms has the same distribution as V s
Z−s

, where V s is a Poisson process with

parameter c(s) independent of (Zt, t ∈ R).

Remark 6.8. Note that one can replace Z−s by Z0 for the right hand side of (39) thanks
to stationarity. The effect of our presentation is to emphasize the branching property: con-
ditionally on Z−s, the number of families with lifetime larger than s is a Poisson random
variable with parameter the product of population size Z−s and the rate c(s) = N(ζ > s)
that one family has lifetime lager than s.
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The next result is the analogue of the result on the number of ancestors for coalescent
process given in [6] and [37].

Theorem 6.9. The following convergence holds in probability:

lim
s→0

Ms

c(s)
= Z0.

Proof. Let ρ > 0. We take η = ρ/c(s). We deduce from (39) that:

lim
s→0

E

[

e
−ρ Ms

c(s)
−λZ0

]

= E

[

e−Z0(ρ+λ)
]

.

This implies that

(

Ms

c(s)
, Z0

)

converges in distribution to (Z0, Z0), which gives the result. �

Remark 6.10. Suppose in addition that
∫∞
0 x2π(dx) < ∞. Set π̃(dx) = x2π(dx). Then the

π̃-coalescent Nµ defined in [6] comes down from infinity by the assumption (A2) (see [6] and
the references therein). It was shown in [6] that the speed of coming down from infinity
satisfies

(40) lim
t↓0+

Nµ
t

c(t)
= 1 almost surely.

From the heuristic duality between coalescence and branching processes, our result in Theo-
rem 6.9 can be seen as a duality to (40).

Proof of lemma 6.7. For any η, λ ≥ 0, we have:

E

[

e−ηMs−λZ0

]

=E

[

e
−λ∑j∈J 1{−s≤tj≤0}Y

j
−tj

]

E



exp



−ηMs − λ
∑

j∈J
1{tj<−s}Y

j
−ti









=exp

(

−
∫ s

0
dr ψ̃′(u(λ, r))

)

E



exp



−
∑

j∈J
1{tj<−s}

(

ηR−s−tj ,−tj (H
j) + λY j

−ti

)









=exp

(

−
∫ s

0
dr ψ̃′(u(λ, r))

)

(41)

exp

(

−
∫ ∞

0
da ψ̃′ (N[1− exp(−ηRa,a+s(H)− λYa+s)])

)

,

where we used that Poisson random measures over disjoint sets are independent in the first
equality, Lemma 3.1 in the second equality and a immediate generalization of Lemma 3.1 to
genealogies in the third equality.

Using notations from Section 6.1.5 on the Poissonian representation of the height process
above level a from Proposition 6.5, we get

N

[

1− e−ηRa,a+s(H)−λYa+s

]

= N

[

1− e−
∑

k∈K η1{ζk≥s}+λY (Hk)s
]

= N

[

1− e−YaN[1−exp(−η1{ζ≥s}−λYs)]
]

.

As 1− exp
(

−η1{ζ≥s} − λYs
)

= (1− e−η)1{ζ≥s} + e−η(1− e−λYs), we deduce that

N

[

1− e−ηRa,a+s(H)−λYa+s

]

= N

[

1− e−λ
′Ya
]

= u
(

λ′, a
)

,
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with λ′ = (1− e−η)c(s) + e−η u(λ, s). Then we use (3.6) to write

exp

(

−
∫ ∞

0
da ψ̃′ (N[1− exp(−ηRa,a+s(H) + λYa+s)])

)

= exp

(

−
∫ ∞

0
da ψ̃′ (u(λ′, a)

)

)

= E

[

e−λ
′Z−s

]

.

Plugging this in (41), we get (39). �

7. The quadratic branching mechanism

Let (ek; k ∈ N) be independent exponential random variables with mean 1.

7.1. Preliminaries. In this Section we give some explicit distributions and more precise
results for the case of quadratic branching mechanism:

ψ(λ) = βλ2 + 2βθλ,(42)

where β > 0 and θ > 0. We have

u(λ, t) =
2θλ

(2θ + λ) e2θβt−λ, c(t) =
2θ

e2θβt−1
, κ∗ = 2θ.

For every t ∈ R, it follows from Corollary 3.3 that the process {Zs+t; s ≥ 0} has the same
distribution as the strong solution of the following stochastic differential equation

dXs =
√

2βXsdWs + 2β(1− θXs)ds,

with initial law P(Z0 ∈ ·), where W is a standard Brownian motion (see [44] Section XI.3 for
the existence of strong solution).

7.2. Joint law of the TMRCA and populations sizes. We have the following represen-
tations.

Theorem 7.1. Assume ψ is given by (42).

(i) We have for λ ≥ 0:

(43) E[e−λZ ] =

(

2θ

2θ + λ

)2

and Z
(d)
=

1

2θ
(e1 + e2).

(ii) We have for t ≥ 0:

(44) P(A ≤ t) = (1− e−2θβt)2 and A
(d)
=

1

2θβ
max(e1, e2).

(iii) Conditionally on {A = t}, we have the following distribution representation:

(45)
(

ZA, ZI , ZO
) (d)
=

(

e1 + e2
2θ + c(t)

,
e3 + e4
2θ + c(t)

,
e5

2θ + c(t)

)

.

Proof. By Lemma 19, we have

E[e−λZ ] =

(

2θ

2θ + λ

)2

.

This gives (i). Using Theorem 4.1, we obtain:

E[e−λZ
A−γZI−ηZO

;A ∈ dt] = 2β(2θ)6 e6θβt(e2θβt−1)

[(2θ + η) e2θβt −η][(2θ + γ) e2θβt−γ]2[(2θ + λ) e2θβt−λ]2 dt.

We then deduce (ii) and (iii). �
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We then are able to compare more precisely the size of the current population Z = ZI+ZO

with the size of the population ZA just before the birth time of the MRCA. As (Zt, t ∈ R)
is continuous, notice that that ZA is also the size of the population at the birth time of the
MRCA. Recall that ZA is stochastically smaller than Z. The next Corollary indicates that
ZA is however not a.s. smaller than Z.

Corollary 7.2. Assume ψ is given by (42). We have: a.s.

P(ZA < Z|A) = 11

16
and E[ZA|A] = 2

3
E[Z|A]

as well as

P(ZA < Z) =
11

16
and E[ZA] =

2

3
E[Z].

Proof. We have

P(ZA < Z|A) = P(e1 + e2 < e3 + e4 + e5) =
11

16
.

The other equalities are obvious. �

There is also an interesting result (which is not valid for general branching mechanism)
which can be interpreted by time reversal. Recall ζ is the extinction time of Y .

Proposition 7.3. Assume ψ is given by (42). Conditionally on Z, A is distributed as ζ
under PZ : for all t ≥ 0

(46) P(A > t|Z) = e−c(t)Z = PZ(ζ ≤ t).

Proof. We deduce from (43) and (44) that the densities of Z and A are:

(47) fA(t) = 4θβ e−2θβt(1− e−2θβt)1{t>0} and fZ(z) = (2θ)2z e−2θz 1{z>0}.

We also deduce from (45) the density of Z conditionally on A = t:

fZ|A=t(z) = (2θ + c(t))3z2 e−(2θ+c(t))z 1{z>0}.

Using Bayes’ rule, we get the density of A conditionally on Z = z: for z, t > 0

fA|Z=z(t) = fZ|A=t(z)
fA(t)

fZ(z)
=

z(2θ)2β

(e2θβt−1)2
e2θβt exp

(

− 2θz

e2θβt−1

)

= −c′(t)z e−c(t)z .

We obtain P(A ≤ t|Z) = e−c(t)Z . Then, we conclude as

Pr(ζ ≤ t) = e−rN[ζ≥t] = e−rc(t),

where we used the Poissonian representation of Y given by (7). �

Notice that (46) implies that

P(c(A)Z ≥ c(t)Z|Z) = P(A ≤ t|Z) = e−c(t)Z .

We obtain that c(A)Z is independent of Z and c(A)Z
(d)
= e1. We thus deduce the following

Corollary.

Corollary 7.4. Assume ψ is given by (42). We have the following representation:

(Z, c(A), ZA)
(d)
=

(

e1 + e2
2θ

, 2θ
e3

e1 + e2
,

1

2θ

e1 + e2
e1 + e2 + e3

(e4 + e5)

)

.

Remark 7.5. It is also easy to check that conditionally on {Z = z}, A is distributed as
1

2βθ
log

(

1 +
2θz

e3

)

. In particular, we deduce that A is distributed as
1

2βθ
log

(

1 +
e1 + e2

e3

)

.
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7.3. TMRCA for n individuals. Next, we consider the joint distribution of Z and An the
TMRCA of the immortal individual and n individuals chosen at random among the current
population. The next result is a direct application of Theorem 4.7.

Proposition 7.6. Assume ψ is given by (42). We set s = 1− e−2βθt. We have for n ∈ N
∗:

E

[

Zn e−λZ 1{An∈[0,t]}
]

=
(n + 1)!sn

(2θ + λs)n

(

2θ

2θ + λ

)2

,

and the size-biased distribution of An is the maximum of n independent exponential random
variables with mean 1:

E
[

Zn1{An∈[0,t]}
]

= E[Zn](1− e−2βθt)n.

We can compute explicitly the distribution of A1. See also [30], section 3, for similar
computations in a slightly different setting.

Proposition 7.7. Assume ψ is given by (42). We set s = 1− e−2βθt. We have:

(48) P(A1 ≤ t) = 2
s

1− s

(

1 +
s

1− s
log(s)

)

and P(c(A1)Z ≥ x|Z) = 2

x
− 2

x2
(1− e−x).

In particular c(A1)Z is independent of Z.

Notice that P(A ≤ t) = s2 so that we recover from (48) the trivial inequality P(A1 ≤ t) ≥
P(A ≤ t) as A ≥ A1.

Proof. Applying Theorem 4.7, we get

E[e−λZ 1{A1≤t}] =
∫ ∞

λ
dη E[Z e−ηZ 1{A1≤t}]

=2(e2θβt −1)2
(

1

(e2θβt−1)

2θ

2θ + λ
− log

(

1 +
1

(e2θβt−1)

2θ

2θ + λ

))

.(49)

In particular, the distribution of A1 is given by

P(A1 ≤ t) = 2(e2θβt−1)2
(

1

(e2θβt−1)
− log

(

1 +
1

(e2θβt−1)

))

.

Applying inverse Laplace transforms to (49) and using the density of Z given in (47), we get
that the conditional law of A1 given Z:

P(A1 ≤ t|Z) = 2(e2θβt−1)2

(2θ)2Z

(

2θ

e2θβt−1
+

e−2θZ/(e2θβt −1)−1

Z

)

,

which implies that

P(2θZ/(e2θβA
1 −1) > x) =

2

x
− 2

x2
(1− e−x).

�

7.4. Fluctuations for the renormalized number of ancestors. Finally, we complete
Theorem 6.9 by giving the fluctuations for the renormalized number of ancestors.

Theorem 7.8. Assume ψ is given by (42). We have

√

c(s)E[Z]

(

Ms

c(s)
− Z

)

(d)−−−→
s↓0+

(Z − Z ′),

where Z ′ is distributed as Z and independent of Z.
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Proof. We first note that for every λ > 0,
∫ s

0
ψ̃′
(

u(λ
√

c(s), r)
)

dr ≤ sψ′
(

λ
√

c(s)
)

−−−→
s↓0+

0,

and

lim
s→0

(1− eλ/
√
c(s))c(s) + eλ/

√
c(s) u(λ

√

c(s), s) = −λ2/2.

Under the current assumption on the exponent ψ, E[eλZ ] <∞ and E[eλMs ] <∞ for λ > 0
small enough. Hence, by an analytic continuation argument, we see that (39) implies that
for λ > 0 small enough, the following holds for all small s:
(50)

E

[

e
−λ

√
c(s)

(

Z− Ms
c(s)

)]

= e−
∫ s
0
ψ̃′(u(λ

√
c(s),r)) dr

E

[

e
−Z

(

(1−eλ/
√

c(s))c(s)+eλ/
√

c(s) u(λ
√
c(s),s)

)]

.

Hence, for all small λ > 0, we have

lim
s→0

E

[

e
−λ

√
c(s)(Z− Ms

c(s)
)
]

= E

[

eλ
2Z/2

]

=

(

2θ

2θ − λ2/2

)2

= E

[

e−λ(Z−Z
′)/
√

E[Z]
]

,

since E[Z] = 1/θ. The result is then a consequence of [40]. �
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Birkhäuser Boston, Boston, MA, 1992.

[42] M. A. PINSKY. Limit theorems for continuous state branching processes with immigration. Bull. Amer.
Math. Soc., 78, 1972.

[43] J. PITMAN. Coalescents with multiple collisions. Ann. Probab., 27(4):1870–1902, 1999.
[44] D. REVUZ and M. YOR. Continuous martingales and Brownian motion, volume 293. Springer Verlag,

Berlin Heidelberg New-York, 3 edition, 1999.
[45] S. ROELLY-COPPOLETTA and A. ROUAULT. Processus de Dawson-Watanabe conditionné par le
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Jean-François Delmas, Université Paris-Est, CERMICS, 6-8 av. Blaise Pascal, Champs-sur-
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