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We present an elementary model of random size varying population given by a stationary continuous state branching process. For this model we compute the joint distribution of: the time to the most recent common ancestor, the size of the current population and the size of the population just before the most recent common ancestor (MRCA). In particular we show a natural mild bottleneck effect as the size of the population just before the MRCA is stochastically smaller than the size of the current population. We also compute the number of old families which corresponds to the number of individuals involved in the last coalescent event of the genealogical tree. By studying more precisely the genealogical structure of the population, we get asymptotics for the number of ancestors just before the current time. We give explicit computations in the case of the quadratic branching mechanism. In this case, the size of the population at the MRCA is, in mean, less by 1/3 than size of the current population size. We also provide in this case the fluctuations for the renormalized number of ancestors.

Introduction

A large literature is devoted to constant size population models. It goes back to Wright [START_REF] Wright | Evolution in Mendelian populations[END_REF] (1930) and Fisher [START_REF] Fisher | The genetical theory of natural selection[END_REF] (1931) in discrete time, and Moran [START_REF] Moran | Random processes in genetics[END_REF] (1958) in continuous time. Models for constant infinite population in continuous time with spatial motion were introduced by Fleming and Viot [START_REF] Fleming | Some measure-valued Markov processes in population genetics theory[END_REF] (1979). On the other hand, the study of the genealogical tree of constant size population was initiated by Kingman [START_REF] Kingman | The coalescent[END_REF] (1982), and described in a more general setting by Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF] (1999) and Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF] (1999). The complete description of the genealogy of the Fleming-Viot process can be partially done using the historical superprocess by Dawson and Perkins [START_REF] Dawson | Historical processes[END_REF] (1991) and precisely by using the look-down process developed by Donnelly and Kurtz [START_REF] Donnelly | A countable representation of the Fleming-Viot measure-valued diffusion[END_REF][START_REF] Donnelly | Particle representations for measure-valued population models[END_REF] (1999) or the stochastic flows from Bertoin and Le Gall [9, 10, 11] (2003).

It is however natural to consider random size varying population models. Branching population models, for which sizes of the population are random, goes back to Galton and Watson [START_REF] Galton | On the probability of the extinction of families[END_REF] (1873) in discrete time and with finite mass individual. Jirina [START_REF] Jirina | Stochastic branching processes with continuous state space[END_REF] (1958) considered continuous state branching process (CB) models corresponding to individuals with infinitesimal mass. The genealogy of those processes can be partially described through the historical super-process. However the continuum Lévy tree introduced by Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF] (1998) and developed later by Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] (2002) allows to give a complete description of the genealogy in the critical and sub-critical cases. See the approach of Abraham and Delmas [START_REF] Abraham | A continuum-tree-valued Markov process[END_REF] (2008) or Berestycki, Kyprianou and Murillo [START_REF] Berestycki | The prolific backbone for supercritical superdiffusions[END_REF] (2009) for a description of the genealogy in the super-critical cases.

The two families of models: constant size population and branching populations are, in certain cases, linked. The case of a quadratic branching corresponds to the fact that only two genealogical lines of the population genealogical tree can merge together. In this particular case, it is possible to establish links between the constant size population model and CB models. Thus, conditionally on having a constant population size, the Dawson-Watanabe super-process is a Fleming-Viot process, see Etheridge-March [START_REF] Etheridge | A note on superprocesses[END_REF] (1991). On the other hand, using a time change (with speed proportional to the inverse of the population size), it is possible to recover a Fleming-Viot process from a Dawson-Watanabe super-process, see Perkins [START_REF] Perkins | Conditional Dawson-Watanabe processes and Fleming-Viot processes[END_REF] (1992). Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg and Wakolbinger [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF] (2005) have given similar results for stable branching mechanism. In the same spirit, Kaj and Krone [START_REF] Kaj | The coalescent process in a population with stochastically varying size[END_REF] (2003) studied the genealogical structure of models of random size varying population models and recover the Kingman coalescent with a random time change.

Recently, some authors studied the coalescent process (or genealogical tree) of random size varying population, in this direction see Möhle [START_REF] Öhle | The coalescent in population models with time-inhomogeneous environment[END_REF] (2002), Lambert [START_REF] Lambert | Coalescence times for the branching process[END_REF] (2003) for branching process and Jagers and Sagitov [START_REF] Jagers | Convergence to the coalescent in populations of substantially varying size[END_REF] (2004) for stationary random size varying population.

Our primary interest is to present an elementary model of random size varying population and exhibit some interesting property which could not be observed in constant size model. The most striking example is the natural mild bottleneck effect: in a stationary regime, the size of the population just before the most recent common ancestor (MRCA) is stochastically smaller than the current population size. Our second goal is to give some properties of the coalescent tree such as: time to the most recent common ancestor (TMRCA), number of individuals involved in the last coalescent event, asymptotic behavior of the number of recent ancestors.

One of the major drawback of the branching population models is that either the population becomes extinct or decreases to 0, which happens with probability 1 in the (sub)critical cases, or blows up exponentially fast with positive probability in the super-critical case. In particular there is no stationary regime, and the study of the genealogy of a current population depends on the arbitrary original size and time of the initial population. To circumvent this problem, we consider a sub-critical CB, Y = (Y t , t ≥ 0), with branching mechanism ψ given by [START_REF] Abraham | A continuum-tree-valued Markov process[END_REF]. We get the Q-process by conditioning Y to non-extinction (which is an event of zero probability), see [START_REF] Li | Asymptotic behaviour of continuous time and state branching processes[END_REF] and [START_REF] Lambert | Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct[END_REF]. The Q-process can also be seen as a CB with immigration, see [START_REF] Roelly-Coppoletta | Processus de Dawson-Watanabe conditionné par le futur lointain[END_REF]. We take the opportunity to present a probabilistic construction of independent interest for the Q-process in Corollary 3.5 which relies on a Williams' decomposition of CB described in [START_REF] Abraham | Williams' decomposition of the Lévy continuous random tree and simultaneous extinction probability for populations with neutral mutations[END_REF]. A first study of the genealogical tree of the Q-process can be found in [START_REF] Lambert | Coalescence times for the branching process[END_REF].

We consider the Q-process under its stationary distribution and defined on the real line: Z = (Z t , t ∈ R). Its Laplace transform, see (3.6), is given by

E e -λZt = exp - ∞ 0 ds ψ′ (u(λ, s)) , λ ≥ 0, t ∈ R,
where ψ(λ) = ψ(λ)λψ ′ (0). In order for Z t to be finite, we shall assume condition (A2):

1 0 1 vψ ′ (0) - 1 ψ(v) dv < +∞.
In order for the TMRCA to be finite, we assume condition (A1):

∞ 1 dv ψ(v) < +∞.
Notice a very similar condition exists to characterize coalescent processes which descent from infinity, see [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF].

As in the look-down representation for constant size population, we shall represent the process Z using the picture of an immortal individual which gives birth to independent subpopulations or families. For fixed time t 0 = 0 (which we can indeed choose to be equal to 0 by stationarity), we consider A the TMRCA of the population living at time 0, Z A = Z (-A)- the size of the population just before the MRCA, Z I the size of the population at time 0 which has been generated by the immortal individual over the time interval (-A, 0) and Z O = Z 0 -Z I the size of the population at time 0 which has been generated by the immortal individual at time -A. In Theorem 4.1, we give the joint distribution of (A, Z A , Z I , Z O ). One interesting phenomenon is Corollary 4.3.

Corollary 1. Conditionally on

A; Z A , Z I and Z O are independent.
In particular, conditionally on A, Z A and Z are independent. Conditionally on A, Z A depends on the past before -A of the process Z and has to die at time 0, Z O corresponds to the size of the population at time 0 generated at time -A and Z I corresponds to the size of the population at time 0 generated by the immortal individual over the time interval (-A, 0). Then, as the immortal individual gives birth to independent populations, the Corollary is then intuitively clear.

One of the most striking result, the natural mild bottleneck effect, is stated in Proposition 4.5:

Proposition 2. Z A is stochastically smaller than Z 0 .
Thus just before the MRCA, the population size is unusually small. Notice this result is not true in general if one considers the size of the population at the MRCA instead of just before, see Remark 4.6. We get nice quantitative results for the quadratic branching mechanism case, see Corollary 7.2. Corollary 3. Assume ψ is quadratic (and given by ( 42)). We have: a.s.

P(Z A < Z 0 |A) = 11 16 and E[Z A |A] = 2 3 E[Z 0 |A]
an in particular:

P(Z A < Z 0 ) = 11 16 and E[Z A ] = 2 3 E[Z 0 ].
Notice that even is Z A is stochastically smaller than Z 0 it is not a.s. smaller. We also give in Theorem 4.7 the joint distribution of Z 0 and the TMRCA of the immortal individual and n individuals picked at random in the population at time 0. See also related results in [START_REF] Lambert | Coalescence times for the branching process[END_REF].

We investigate in Proposition 5.2 the joint distribution of A, Z 0 and N A , where N A + 1 represents the number of individuals involved in the last coalescent event of the genealogical tree. Under a first moment condition on Z, we get that if the TMRCA is large, then the last coalescent event is likely to involve only two individuals. In the stable case, this first moment condition is not satisfied, and the last coalescent event does not depend on the TMRCA, see Remark 5.5. This suggests a result similar to the one obtained in [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF]: in the stable case, the topology of the genealogical tree (which does not take into account the length of the branches) may not depend on its depth given by the TMRCA.

After giving a more precise description of the genealogy of Z using continuum Lévy trees, we compute in Theorem 6.9 the asymptotic behavior of the number of ancestors at time -s, M s , of the population at time 0.

Theorem 4. The following convergence holds in probability:

lim s↓0 M s c(s) = Z 0 ,
where c(s) is related to the extinction probability of Y and defined by

∞ c(t) dv ψ(v) = t.
This result is very similar to the one obtained on coalescent process in [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] (notice the convergence is a.s. in [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF]). We can precise the fluctuations in the quadratic case, see Theorem 7.8. Theorem 5. Assume ψ is quadratic (and given by ( 42)). We have

c(s)E[Z 0 ] M s c(s) -Z 0 (d) ---→ s↓0+ (Z 0 -Z ′ 0 ),
where Z ′ 0 is distributed as Z 0 and independent of Z 0 .

The paper is organized as follows. We first recall well known facts on CB in Section 2. We introduce in Section 3 the corresponding stationary CB, which is related to the Q-process of the CB, and give its first properties. We give the joint distribution of (A, Z A , Z I , Z O ) in Section 4 and prove the natural bottleneck effect, that is Z A is stochasitcally smaller than Z 0 . We compute the number of old families (or number of individuals involved in the last coalescent event) in Section 5 and the asymptotics of the number of ancestors in Section 6. A first consequent part of this latter Section is devoted to the introduction of the genealogy of CB processes using continuum random Lévy trees. We give more detailed results in the quadratic branching setting of Section 7.

Continuous-state branching process (CB)

We recall some well-known fact on continuous-state branching process (CB), see for example [START_REF] Li | Measure-valued branching Markov processes[END_REF] and references therein. We consider a sub-critical branching mechanism ψ: for λ ≥ 0, (1)

ψ(λ) = αλ + βλ 2 + (0,+∞) π(dℓ) e -λℓ -1 + λℓ ,
where α = ψ ′ (0) > 0, β ≥ 0 and π is a Radon measure on (0, +∞) such that (0,+∞) (ℓ ∧ ℓ 2 ) π(dℓ) < +∞. We consider the non trivial case that is either β > 0 or π((0, 1)) = +∞. Notice that ψ is convex, of class C 1 on [0, +∞) and of class C ∞ on (0, +∞) and ψ ′′ (0+) ∈ (0, +∞]. Let P x be the law of a CB Y = (Y t , t ≥ 0) started at mass x ≥ 0 and with branching mechanism ψ, and let E x be the corresponding expectation. The process Y is a càd-làg R +valued Feller process and 0 is a cemetery point. The process Y has no fixed discontinuities. For every λ > 0, for every t ≥ 0, we have [START_REF] Abraham | Williams' decomposition of the Lévy continuous random tree and simultaneous extinction probability for populations with neutral mutations[END_REF] E x e -λYt = e -xu(λ,t) ,

where the function u is the unique non-negative solution of (3) u(λ, t)

+ t 0 ψ u(λ, s) ds = λ, λ ≥ 0, t ≥ 0.
Note that the function u is equivalently characterized as the unique non-negative solution of (4)

λ u(λ,t) dr ψ(r) = t λ ≥ 0, t ≥ 0.
or as the unique non-negative solution of: for λ ≥ 0,

(5)

∂ t u + ψ(u) = 0 t > 0, u(λ, 0) = λ.
Markov property of Y implies that for all λ, s, t ≥ 0:

(6) u(u(λ, t), s) = u(λ, t + s).
Let N be the canonical measure (we shall also call it excursion measure) associated to Y . It is a σ-finite measure which intuitively describe the distribution of Y started at an infinitesimal mass. We recall that if

i∈I δ x i ,Y i (dx, dY ) is a Poisson point measure with intensity 1 [0,+∞) (x) dxN[dY ], then (7) 
i∈I

1 {x i ≤x} Y i
is distributed as Y under P x . In particular, we have: for λ ≥ 0

N 1 -e -λYt = lim x↓0 1 x E x 1 -e -λYt = u(λ, t).
For convenience, we shall put Y t = 0 for t < 0. Let ζ = inf{t; Y t = 0} be the extinction time of Y . We consider the function:

(8) c(t) = N[ζ > t] = N[Y t > 0] = lim λ→∞ ↑ u(λ, t).
We shall assume throughout this paper, but for Sections 3.1 and 3.3, that the strong extinction property holds:

(A1) ∞ 1 dv ψ(v) < +∞.
It follows from ( 4) and ( 8) that c is the unique non-negative solution of:

(9) ∞ c(t) dv ψ(v) = t, t > 0.
Thanks to (A1), we get that c(t) is finite for all t > 0 and N[ζ = +∞] = 0. We also get that c is continuous decreasing and thus one-to-one from (0, +∞) to (0, +∞). Letting λ goes to infinity in (6) yields that for s, t ≥ 0 (10) u(c(t), s) = c(t + s).

Stationary CB

In contrast to Wright-Fisher population models, CB models do not exhibit stationary distributions. However, by conditioning sub-critical CB to non-extinction (see [START_REF] Roelly-Coppoletta | Processus de Dawson-Watanabe conditionné par le futur lointain[END_REF], [START_REF] Evans | Measure-valued Markov branching processes conditioned on nonextinction[END_REF] and [START_REF] Lambert | Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct[END_REF] for details), one get the so-called Q-process, which we denotes by Y ′′ . This process is also a CB process with immigration introduced in [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF] and may have a stationary distribution. This process, as pointed out in [START_REF] Aldous | The continuum random tree II: an overview[END_REF] see also [START_REF] Evans | Two representations of a conditioned superprocess[END_REF], has a heuristic interpretation by introducing a fixed ancestral lineage, namely it is an independent sum of the process Y and the population thrown off by an "immortal individual" whose laws coincide with the law of a generic population Y .

We introduce the process Y ′′ in Section 3.1 as well as its stationary version Z. Then we check in Section 3.2, that under (A1) the process Y ′′ is indeed the Q-process associated to Y . This gives then a natural interpretation of Z. We give preliminary results on the process Z in Sections 3.3 and 3.4.

3.1.

Poisson point measure of CB. We consider the following Poisson point measures.

• Let N 0 (dr, dt) = i∈I δ (r i ,t i ) (dr, dt) be a Poisson point measure on (0, +∞) × R with intensity r π(dr)dt.

• Conditionally on N 0 , let (N 1,i , i ∈ I), where N 1,i (dt, dY ) = j∈J 1,i δ t j ,Y j (dt, dY ), be independent Poisson point measures with respective intensity

r i δ t i (dt)N[dY ].
Notice that for all j ∈ J 1,i , we have t j = t i . We set

J 1 = i∈I J 1,i and N 1 (dt, dY ) = j∈J 1 δ t j ,Y j (dt, dY ). • Let N 2 (dt, dY ) = j∈J 2 δ t j ,Y j (dt, dY ) be a Poisson point measure independent of (N 0 , N 1 ) and with intensity 2β dt N[dY ].
We set J = J 1 J 2 . We shall call Y j , with j ∈ J a family and t j its birth time.

We will consider the two following processes Y ′′ = (Y ′′ t , t ≥ 0) and its stationary version Z = (Z t , t ∈ R):

Y ′′ t = j∈J ,t j >0 Y j t-t j , (11) 
Z t = j∈J Y j t-t j . (12) 
We will denote by P the probability under which Y ′′ and Z are defined and E the corresponding expectation.

At this stage, let us emphasize there is another natural decomposition of Y ′′ and Z. For

i ∈ I, set Y i = j∈J 1,i Y j and I = I J 2 . The random measure (13) N 3 (dt, dY ) = i∈I δ t i ,Y i (dt, dY )
is a Poisson point measure with intensity dtµ(dY ) and ( 14)

µ(dY ) = 2βN[dY ] + (0,+∞)
ℓπ(dℓ) P ℓ (dY ).

And we have:

Y ′′ t = i∈I;t i >0 Y i t-t i , (15) 
Z t = i∈I Y i t-t i . (16) 
We shall call Y i , with i ∈ I a clan and t i its birth time. For j ∈ J 2 , Y j is a clan and a family. Notice that a.s. two clans have different birth time, but families in the same clan have the same birth time.

The presentation with clans is simpler than the representation with families and most of the results can be obtained using the former representation. We will use the family representation in Sections 5 and 6.

We define ψ by:

(17) ψ(λ) = ψ(λ) -λψ ′ (0) = ψ(λ) -αλ.
We first give a Lemma on the family representation.

Lemma 3.1. Let F be a non-negative measurable function. We have

(18) E e -j∈J F (t j ,Y j ) = exp - R dt ψ′ (N[1 -e F (t,Y ) ]) .
Proof. Using Poisson point measure properties, we get:

E e -j∈J F (t j ,Y j ) = E e -j∈J 1 
F (t j ,Y j ) E e -j∈J 2 F (t j ,Y j ) = E e -i∈I r i N[1-F (t i ,Y )] e -2β dt N[1-e F (t,Y ) ] = e -dt (0,+∞) ℓπ(dℓ) (1-exp(-ℓN[1-F (t,Y )])) e -2β dt N[1-e F (t,Y ) ] = e -dt ψ′ (N[1-e F (t,Y ) ]) .
Proposition 3.2. The process Y ′′ is a CB with branching mechanism ψ and immigration function ψ′ :

ψ′ (λ) = 2βλ + (0,+∞) ℓπ(dℓ) (1 -e -λℓ )
started at Y ′′ 0 = 0. Proof. This is a direct consequence of Lemma 3.1 and results from [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF].

In particular Y ′′ is a strong Markov process started at 0 and its transition kernel is characterized by: for λ ≥ 0, t ≥ 0, r ≥ 0

E[e -λY ′′ t |Y ′′ 0 = r] = exp -ru(λ, t) - t 0 ψ′ (u(λ, s)) ds .
The next result is then straightforward.

Corollary 3.3. For each t ∈ R, {Z s ; s ≥ t} has the same law as a CB with branching mechanism ψ and immigration function ψ′ started at the invariant distribution P(Z t ∈ •).

3.2. Q-process. We check the process Y ′′ is indeed the Q-process for CB using Williams' decomposition.

Let m > 0 and ν m (dt) = i∈I r i δ t i (dt), where i∈I δ (r i ,t i ) (dr, dt) is a Poisson point measure with intensity 1 [0,m] (t) e -rc(m-t) r π(dr)dt. Conditionally on ν m , let j∈J m δ t j ,Y j (dt, dY ) be a Poisson point measure with intensity

ν m (dt) + 2β1 [0,m] (t) dt N[dY, ζ < m -t].
The next Proposition is a consequence of Theorem 3.3 in [START_REF] Abraham | Williams' decomposition of the Lévy continuous random tree and simultaneous extinction probability for populations with neutral mutations[END_REF].

Proposition 3.4. Assume (A1) holds. Under N, conditionally on {ζ = m}, Y is distributed as (Y ′ t , t ≥ 0) where Y ′ t = j∈J m Y j t-t j .
It is then easy to deduce the following Corollary using representation [START_REF] Donnelly | Particle representations for measure-valued population models[END_REF] of Y ′′ .

Corollary 3.5. Assume (A1) holds. The limit distribution of Y under N, conditionally on {ζ = m}, as m goes to infinity, is the distribution of Y ′′ from Proposition 3.2.

Corollary 3.5 readily implies that the Q-process associated to Y , that is the limit distribution of Y under N, conditionally on {ζ ≥ m}, as m goes to infinity, is the distribution of Y ′′ from Proposition 3.2.

Stationary CB.

We first give an interpretation of Z in population terms. At time t, Z t correspond to the size of a population generated by an immortal individual (with zero mass) which gives birth at rate 2β to clans (or families) which sizes evolve independently as Y under N and at rate 1 with intensity r π(dr) to clans with initial size r which evolve independently as Y under P r .

By construction the process Z is stationary. The next Lemma which gives the Laplace transform of Z is a direct consequence of the construction of Z. Lemma 3.6. For all t ∈ R and λ ≥ 0, the Laplace transform of Z t is given by:

(19) E e -λZt = exp - ∞ 0 ds ψ′ (u(λ, s)) .
Proof. Using Lemma 3.1, we have:

E e -λZt = exp - R ds ψ′ (N[1 -e -λY t-s ]) = exp - ∞ 0 ds ψ′ (u(λ, s)) .
We shall consider the following assumption

(A2) +∞ 1 ℓ log(ℓ) π(dℓ) < +∞.
The next Lemma is well known (notice condition (A1) is not assumed).

Lemma 3.7. In the sub-critical case, the following conditions are equivalent: (i) (A2) holds.

(ii)

1 0 1 αv -1 ψ(v) dv < +∞. (iii) E r [Y t log(Y t )] < +∞ for some t > 0 and r > 0. (iv) E r [Y t log(Y t )]
< +∞ for all t > 0 and r > 0.

Proof. For (i) ⇔ (ii) see [START_REF] Grey | Asymptotic behaviour of continuous time, continuous state-space branching processes[END_REF] proof of Theorem 4a, and for (ii) ⇔ (iii) (or (iv)) use Lemma 1 p.25 of [START_REF] Athreya | Branching processes[END_REF].

The next Proposition gives a condition for finiteness of Z, see also [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF] in a more general framework.

Proposition 3.8. We have P(Z 0 < +∞) = 1 if and only if (A2) holds.

Proof. Thanks to [START_REF] Evans | Two representations of a conditioned superprocess[END_REF], we get P(Z 0 < +∞) = 1 if and only if lim λ→0 ∞ 0 ds ψ′ (u(λ, s)) = 0. As λ → u(λ, s) decreases to 0 as λ goes down to 0 for all s ≥ 0, we deduce by dominated convergence that P(Z 0 < +∞) = 1 if and only if ∞ 0 ds ψ′ (u(λ, s)) < +∞ for at least one λ > 0.

Notice that ∂ t u+ψ(u) = 0 implies ψ ′ (u) = -∂ 2 t u/∂ t u, and hence for every 0 ≤ t < T < +∞ we have (20

) T t ψ′ (u(λ, s)) ds = log ψ(u(λ, t)) e αt ψ(u(λ, T )) e αT .
We deduce that T → ψ(u(λ, T )) e αT is decreasing. We also get that ∞ 0 ds ψ′ (u(λ, s)) < +∞ if and only if lim T →+∞ ψ(u(λ, T )) e αT > 0 or equivalently lim T →+∞ u(λ, T ) e αT > 0 as lim T →+∞ u(λ, T ) = 0 thanks to (4).

We deduce from ( 4) that ( 21)

u(λ, T ) e αT = λ exp α λ u(λ,T ) dr 1 ψ(r) - 1 αr .
Thus we deduce from Lemma 3.7 that P(Z 0 < +∞) = 1 if and only if (A2) holds.

Corollary 3.9. Assume (A2) holds. We have for λ > 0, t ∈ R:

(22) E Z t e -λZt = ψ′ (λ) ψ(λ) E e -λZt .
In particular, we have:

(23) E[Z t ] = ψ ′′ (0+) ψ ′ (0) ∈ (0, +∞].
Proof. We deduce from [START_REF] Evans | Two representations of a conditioned superprocess[END_REF] that:

E Z t e -λZt = E e -λZt ∂ λ ∞ 0 ψ′ (u(λ, s)) ds.
We deduce from (4) that λ → u(λ, s) is increasing and of class C ∞ on (0, +∞) and that

(24) ∂ λ u(λ, s) = ψ(u(λ, s)) ψ(λ) = -∂ s u(λ, s) ψ(λ) .
Thus, we get:

∂ λ ∞ 0 ψ′ (u(λ, s)) ds = ∞ 0 ψ ′′ (u(λ, s))∂ λ u(λ, s) ds = - 1 ψ(λ) ∞ 0 ψ ′′ (u(λ, s))∂ s u(λ, s) ds = ψ′ (λ) ψ(λ) .
The last part of the Corollary is immediate.

Remark 3.10. Assumption (A1) is not needed to define the process Y ′′ or the stationary process Z. However the study of MRCA for Z is not relevant if (A1) does not hold. Notice, we will introduce a complete genealogical structure for Z in Section 6 by using a genealogical structure of the families (Y j , j ∈ J ).

From now on, we shall assume that (A1) and (A2) are in force.

3.4.

Further property for stationary CB. By construction, we deduce that for all t ∈ R, the process (Z s+t , s ≥ 0) is a CB with branching mechanism ψ and immigration function ψ′ started as the stationary distribution whose Laplace transform is given by [START_REF] Evans | Two representations of a conditioned superprocess[END_REF]. Then Proposition 1.1 in [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF] implies that Z is a Hunt process and in particular it is càd-làg and strongly Markov taking values in [0, +∞]. By stationarity and since +∞ is a cemetery point for Z, we deduce that a.s. for all t ∈ R, Z t is finite.

Next, we recall some asymptotic properties of the functions u and c given in Lemma 3.1 of [START_REF] Lambert | Coalescence times for the branching process[END_REF].

Lemma 3.11. For every λ ∈ (0, ∞), we have [START_REF] Jagers | Convergence to the coalescent in populations of substantially varying size[END_REF] lim

t→∞ u(λ, t) c(t) = e -αc -1 (λ) ,
and there exists κ * ∈ (0, ∞) such that

lim t→∞ c(t)e αt = κ * . ( 26 
)
We also compute some integral of ψ′ .

Proposition 3.12. The followings hold for every 0 ≤ t < ∞:

∞ t ψ′ (u(λ, s))ds = log ψ(u(λ, t)) e αt+αc -1 (λ) κ * α , λ > 0, ( 27 
) ∞ t ψ′ (c(s))ds = log ψ(c(t))e αt κ * α , ( 28 
)
where the constant κ * is defined in Lemma 3.11. Proof. We deduce from [START_REF] Evans | Measure-valued Markov branching processes conditioned on nonextinction[END_REF], [START_REF] Jagers | Convergence to the coalescent in populations of substantially varying size[END_REF] and ( 26) that: lim

T →∞ ψ(u(λ, T )) e αT = lim T →∞ ψ(u(λ, T )) u(λ, T ) u(λ, T ) c(T ) c(T ) e αT = α e -αc -1 (λ) κ * ,
and [START_REF] Kaj | The coalescent process in a population with stochastically varying size[END_REF] follows by letting T -→ ∞ for both sides of [START_REF] Evans | Measure-valued Markov branching processes conditioned on nonextinction[END_REF]. Then, let λ goes to infinity in [START_REF] Kaj | The coalescent process in a population with stochastically varying size[END_REF] to get [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF] and use the monotone convergence theorem.

As a consequence of ( 27) with t = 0 and Lemma 3.6, we get the following Corollary.

Corollary 3.13. For all t ∈ R and λ ≥ 0, the Laplace transform of Z t is given by:

(29) E e -λZt = exp - ∞ 0 ds ψ′ (u(λ, s)) = e -αc -1 (λ) κ * α ψ(λ) .
Eventually, we check that Z is non-zero. Recall notations from Section 3.1. Let ζ i = inf{t > 0; Y i t = 0} be the duration of the family or clan Y i and t i + ζ i its extinction time, with i in I, J 1 or J 2 .

Proposition 3.14. We have

P i∈I 1 (t i ,t i +ζ i ) (t) > 0, ∀t ∈ R = 1,
In particular, we have P(∃t ∈ R; Z t = 0) = 0.

For -∞ < a < b < +∞, we will consider in the forthcoming proof 

where we used [START_REF] Donnelly | A countable representation of the Fleming-Viot measure-valued diffusion[END_REF] the definition of µ for the first equality and (28) for the last equality.

Proof. Observe that no clan surviving at time t ∈ (a, b) implies that there are no clan surviving on any non-degenerate interval containing t. Hence, for any n ≥ 1, we have:

∃t ∈ (a, b), i∈I 1 (t i ,t i +ζ i ) (t) = 0 ⊂ n j=1 N u j-1 ,u j = 0 ∪ n+1 j=1 N v j-1 ,v j = 0
where u j = a + j(ba)/n and v j = a + (2j -1)(ba)/2n. Notice that N u j-1 ,u j and N v j-1 ,v j are Poisson random variables with parameter θ n = Λ((ba)/n). We deduce that [START_REF] Gall | Random real trees[END_REF] P ∃t ∈ (a, b),

i∈I 1 (t i ,t i +ζ i ) (t) = 0 ≤ (2n + 1) e -θn .
Therefore the first part of the Proposition will be proved as soon as lim n→+∞ n exp(-θ n ) = 0 which, thanks to formula [START_REF] Lambert | Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct[END_REF], will be implied by lim 

TMRCA and populations sizes

We consider the coalescence of the genealogy at a fixed time t 0 . Thanks to stationarity, we may assume that t 0 = 0 and we write Z instead of Z 0 . There are infinitely many clans contributing to the population at time 0. The Poisson random variable introduced in (30), with b = 0, gives the number of clans born before a and still alive at time 0. Notice its parameter is finite, see [START_REF] Lambert | Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct[END_REF]. Therefore, there are only finitely many clans born before a and alive at time 0. In particular, this implies that there is one unique oldest clan alive at time 0. We denote by -A the birth time of this unique oldest clan at time 0:

A = -inf{t i ≤ 0; Y i -t i > 0, i ∈ I}.
We set Z O the population size of this clan at time 0:

Z O := Y i -t i , if A = -t i .
The time A is also the time to the most recent common ancestor (TMRCA) of the population at time 0. The size of all the clans alive at time 0 with birth time in (-A, 0) is given by

Z I := Z -Z O .
We are also interested in the size of the population just before the most recent common ancestor (MRCA):

Z A := Z (-A)-= i∈I Y i (-A-t i ) 1 {t i <-A} .
Theorem 4.1. The joint distribution of (A, Z A , Z I , Z O ) is characterized by the following: for λ, γ, η ≥ 0 and t ≥ 0, (

) E e -λZ A -γZ I -ηZ O ; A ∈ dt = dt ψ′ (c(t)) -ψ′ (u(η, t)) × exp - t 0 ds ψ′ (u(γ, s)) - ∞ 0 ds ψ′ (u(λ + c(t), s)) . 34 
Proof. Given f a non-negative Borel measurable function defined on R, we have

E e -λZ A -γZ I -ηZ O f (A) = E j∈I exp   -λ i∈I,t i <t j Y i (t j -t i ) -γ i∈I,t i >t j Y i -t i -ηY j -t j   f (-t j ) 1 Y j -t j >0, i∈I,t i <t j 1 {Y i -t i >0} =0 = ∞ 0 dt µ e -ηYt ; Y t > 0 f (t) E   exp   -γ i∈I,t i >-t Y i -t i     lim K→∞ E exp -λ t i <-t Y i (-t-t i ) + K1 Y i -t i >0 ,
where we used that Poisson point measures over disjoint sets are independent. We have:

µ e -ηYt ; Y t > 0 = µ 1 {Yt>0} -1 -e -ηYt = ψ′ (c(t)) -ψ′ (u(η, t)).
Using Lemma 3.1, we get:

E   exp   -γ i∈I,t i >-t Y i -t i     = exp - t 0 ds ψ′ (u(γ, s)) .
We also have:

lim K→∞ E   exp   -λ i∈I,t i <-t Y i (-t-t i ) + K1 Y i -t i >0     = exp -ds 1 {s>0} µ 1 -e -λYs 1 {Y s+t =0} = exp -ds 1 {s>0} µ 1 -e -λYs P Ys (Y t = 0) = exp -ds 1 {s>0} µ 1 -e -(λ+c(t))Ys = exp - ∞ 0 ds ψ′ (u(λ + c(t), s)) ,
where we used exponential formulas for Poisson point measure in the first equality and the Markov property of Y for the second equality. Putting things together, we then get [START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF].

It is then easy to derive the distribution of the TMRCA A.

Corollary 4.2. The distribution function of A is given by

P(A ≤ t) = E[e -c(t)Z ] = exp - ∞ t ds ψ′ (c(s)) ,
and A has density, f A , with respect to the Lebesgue measure given by:

(35) f A (t) = ψ′ (c(t)) exp - ∞ t ds ψ′ (c(s)) 1 {t>0} = ψ′ (c(t)) ψ(c(t)) e -αt κ * α1 {t>0} .
Proof. This is a direct consequence of Theorem 4.1 and (10). Use Lemma 3.6 to get [START_REF] Li | Asymptotic behaviour of continuous time and state branching processes[END_REF].

The next result is a direct consequence of Theorem 4.1.

Corollary 4.3. Conditionally on A, the three random variables Z I , Z A and Z O are independent.

We can also give the mean of the population size just before the most recent common ancestor (MRCA) (to be compared to the mean size of the current population given by ( 23)).

Corollary 4.4. Let t > 0. We have

(36) E e -λZ A |A = t = E e -(λ+c(t))Z E e -c(t)Z and E[Z A |A = t] = ψ′ (c(t)) ψ(c(t)) .
Proof. This is a direct consequence of Theorem 4.1 and of [START_REF] Fleming | Some measure-valued Markov processes in population genetics theory[END_REF].

We deduce from (36) that the distribution of Z A conditionally on {A = t} converges, as t goes to infinity, to the distribution of Z.

As another application of Theorem 4.1, we get that the population just before the MRCA, Z A , is stochastically smaller than the current population, Z. Note that strong inequality, namely inequality in the almost-surely sense, does not hold in general (see Section 7). Proposition 4.5. We have P(Z A ≤ z|A = t) ≥ P(Z ≤ z) for all z ≥ 0 and t ≥ 0. Hence, the population size Z A is stochastically smaller than Z: P(Z A ≤ z) ≥ P(Z ≤ z) for all z ≥ 0.

In particular, we have

E[Z A |A] ≤ E[Z] a.s.
Proof. The first equality of [START_REF] Li | Measure-valued branching Markov processes[END_REF] implies that for any non-negative measurable function F defined on R,

E F (Z A )|A = t = E F (Z) e -c(t)Z E e -c(t)Z .
Note that e -c(t)Z -E e -c(t)Z is non-negative for Z less than 1 -c(t) log E e -c(t)Z and nonpositive otherwise, and that lim z→∞ E[e -c(t)Z ; Z ≤ z] -E[e -c(t)Z ]P(Z ≤ z) = 0. We deduce that:

P(Z A ≤ z|A = t) = E e -c(t)Z ; Z ≤ z E e -c(t)Z ≥ P(Z ≤ z).
For the last assertion, recall that for any non-negative random variable, we have E[X] = ∞ 0 P(X > x)dx. Remark 4.6. Instead of considering Z A , the size of the population just before the MRCA, we could consider the size of the population at the MRCA, Z A + , which is formally given by

Z A + = Z A + i∈I Y i 0 1 {t i =-A} .
Notice we don't take into account the contribution of i ∈ J 2 as for those indices we have Y i 0 = 0. (In particular if π = 0, then Z is continuous and Z A = Z A + .) Similar computations as those in the proof of Theorem 4.1 yield: for λ, t > 0

E[e -λZ A + |A = t] = E[e -λZ A |A = t] ψ ′ (λ + c(t)) -ψ ′ (λ) ψ ′ (c(t)) -ψ ′ (0) .
If ψ ′′ (0) = +∞, then we get that lim t→+∞ E[e -λZ A + |A = t] = 0. Thus, conditionally on {A = t}, for t large, we have that Z A + is likely to be very large. (Intuitively, a clan is born at time -t which has survive up to time 0; and if t is large, it is very likely to have a large initial size.) Therefore, Z A + is not stochastically smaller than Z in the general case.

We may also consider the TMRCA of the immortal individual and individuals taken independently and uniformly among the current population living at time t. Let J n t ⊂ I be the indices of the clans of the randomly chosen n individuals alive at time t. (One individual chosen at random in the population at time t belongs to the clan, i with probability Y i t-t i /Z t .) Notice that Card (J n t ) ≤ n. The TMRCA for the n individuals alive at time t and the immortal individual is given by: A n t := -inf{t i ; i ∈ J n t , i ∈ I}. Because of the stationarity, we shall focus on t = 0 and write A n for A n t . The joint law of Z and A n can be characterized by the following result.

Theorem 4.7. For any n ≥ 1 and any λ, T ≥ 0, we have

E Z n e -λZ 1 {A n ≤T } = e -αc -1 (λ) κ * α ψ(u(λ, T )) (-1) n ∂ n ∂ n η ψ(u(λ + η, T )) ψ(λ + η) η=0 .
Proof. By definition, we have:

E Z n e -λZ 1 {A n ≤T } = E   Z n i 1 ,••• ,in Y i 1 -t i 1 Z • • • Y in -t in Z n k=1 1 {-t i ≤T } e -λZ   = E N 3 (ds, dY ) Y -s 1 {-s≤T } n exp -λ N 3 (ds, dY ) Y -s = (-1) n ∂ n ∂ n η E exp -N 3 (ds, dY ) ηY -s 1 {-s≤T } + λY -s η=0 = (-1) n ∂ n ∂ n η exp - ∞ T ds ψ′ (u(λ, s)) - T 0 ds ψ′ (u(λ + η, s)) η=0 ,
where N 3 in the second equality is defined by [START_REF] Dawson | Historical processes[END_REF]. The result then follows from ( 20) and ( 27).

Remark 4.8. Following almost the same lines as the proof of Theorem 4.7, one can characterize explicitly the joint distribution of Z r j , A

n j r j ; 1 ≤ j ≤ m for any m, n 1 , • • • , n m ∈ N * and -∞ < r 1 < r 2 < • • • < r m < ∞.

Number of old families

We now consider the number families in the oldest clan alive at time 0. This correspond to the number of individuals involved in the last coalescent event of the genealogical tree. To this end, we take the representation (12) for Z.

Definition 5.1. The number of oldest families alive at time 0 (excluding the immortal particle) is defined by: (37)

N A = j∈J 1 {A=-t j , Y j -t j >0} = j∈J 1 {A=-t j , ζ j >-t j } .
We have N A ≥ 1. In the particular case π = 0 and β > 0, we have J = J 2 and N A = 1.

The following proposition give the joint law of A, N A and Z.

Proposition 5.2. We have for a

∈ [0, 1], λ ≥ 0, t ≥ 0, E a N A e -λZ |A = t = ψ ′ (c(t)) -ψ ′ ((1 -a)c(t) + au(λ, t)) ψ′ (c(t)) e -t 0 ψ′ (u(λ,r)) dr .
and

E a N A |A = t = ψ ′ (c(t)) -ψ ′ ((1 -a)c(t)) ψ′ (c(t)) = 1 - ψ′ (1 -a)c(t)
ψ′ c(t) .

Proof. Recall notations from Section 3.1. For i ∈ I, we set

J * i = J 1,i if i ∈ I and J * i = {i} if i ∈ J 2 .
Given any non-negative function f , we have, using [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF] and ( 16):

E a N A e -λZ f (A) = E e -λ k∈I Y k -t k i∈I a j∈J * i 1 {ζ j >-t i } f (-t i ) 1 {Y i -t i =0} 1 k ′ ∈I,t k ′ <t i 1 {Y k ′ -t i >0} =0 = ∞ 0 ds f (s) E e -λ k∈I Y k -t k 1 {t k >-s} P k∈I 1 {t k <-s, Y k s >0} = 0 × 2βN a e -λYs 1 {Ys>0} + (0,+∞) ℓπ(dℓ) E ℓ a j∈J 3 1 {Y j s >0} e -λ j∈J 3 Y j s 1 { j∈J 3 Y j s >0}
,

where j∈J 3 δ Y j (dY ) is under E ℓ a Poisson point measure with intensity ℓN[dY ]. We have E e -λ k∈I Y k -t k 1 {t k >-s} P k∈I 1 {t k <-s, Y k s >0} = 0 = e -s 0 dr ψ′ (u(λ,r))-∞ s dr ψ′ (c(r)) .
We also have

N e -λYs 1 {Ys>0} = N[Y s > 0] -N[1 -e -λYs ] = c(s) -u(λ, s).
and

E ℓ a j∈J 3 1 {Y j s >0} e -λ j∈J 3 Y j s 1 { j∈J 3 Y j s >0} = E ℓ a j∈J 3 1 {Y j s >0} e -λ j∈J 3 Y j s -P ℓ   j∈J 3 Y j s = 0   = exp -ℓN[(1 -a e -λYs )1 {Ys>0} ] -exp (-ℓN[Y s > 0]) = exp -ℓN[Y s > 0] + ℓaN[e -λYs ]1 {Ys>0} ] -exp (-ℓN[Y s > 0]) = exp -ℓ (1 -a)c(s) -au(λ, s) -exp (-ℓc(s)) .
Thus, we get:

2βN a e -λYs 1 {Ys>0} + (0,+∞) ℓπ(dℓ) E ℓ a j∈J 3 1 {Y j s >0} e -λ j∈J 3 Y j s 1 { j∈J 3 Y j s >0} = ψ ′ (c(s)) -ψ ′ ((1 -a)c(s) + au(λ, s)).
Putting things together, we obtain:

E a N A e -λZ f (A) = ∞ 0 ds f (s) e -s 0 dr ψ′ (u(λ,r))-∞ s dr ψ′ (c(r)) ψ ′ (c(s)) -ψ ′ ((1 -a)c(s) + au(λ, s)) .
Then, use [START_REF] Li | Asymptotic behaviour of continuous time and state branching processes[END_REF] for the density of A to get the result.

Corollary 5.3. We have:

(38) P(N A = n|A = t) = (-1) n+1 c(t) n ψ (n+1) (c(t)) n! ψ′ (c(t)) , n ∈ N * . Suppose that ψ ′′ (0+) < ∞ (that is E[Z] < +∞)
. Then, we have

E[N A |A = t] = ψ ′′ (0) c(t) ψ′ (c(t))
.

Furthermore the function t -→ E[N A |A = t] is non-increasing.
Proof. The first two assertions are straightforward consequences of Proposition 5.2. To get the monotonicity of t -→ E[N A |A = t], we simply notice that both t -→ c(t) and

x -→ ψ′ (x)

x = 2β + ∞ 0 π(dℓ)ℓ 1 -e -xℓ x
are non-increasing.

Remark 5.4. Suppose that ψ ′′ (0+) < ∞. We deduce from [START_REF] Öhle | The coalescent in population models with time-inhomogeneous environment[END_REF] that

lim t→+∞ P(N A = 1|A = t) = 1.
Thus, the distribution of N A conditionally on {A = t} converges as t goes to infinity to 1. So roughly speaking N A is likely to be equal to 1 if the TMRCA (or age of the oldest clan alive) is large. Notice that if ψ ′′ (0+) = +∞, this result may be false (see the next Remark).

Remark 5.5. Let us consider the stable cases, ψ(λ) = αλ + c 0 λ 1+α 0 , with c 0 > 0 and α 0 ∈ (0, 1]. We deduce from Corollary 5.3 that

E[a N A |A = t] = 1 -(1 -a) α 0 .
In particular N A is independent of A. The case α 0 = 1 correspond to the quadratic branching mechanism and we get that a.s. N A = 1. For α 0 ∈ (0, 1), we deduce from ( 38) that: for

n ∈ N * P(N A = n|A = t) = 1 n! α 0 n-1 k=1 (k -α 0 ).
For α 0 ∈ (0, 1), we have ψ ′′ (0+) = +∞ and the result of Remark 5.4 does not hold.

Asymptotics for the number of ancestors

The number N -s,0 defined by [START_REF] Lambert | Coalescence times for the branching process[END_REF] of clans born before time -s and alive at time 0 is nondecreasing and is distributed as a Poisson random variable with parameter Λ(s) given by [START_REF] Lambert | Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct[END_REF]. As Λ(s) goes to infinity as s goes down to 0, we deduce that N -s,0 tends to infinity almost surely as s ↓ 0+. A natural question is then how fast the numbers N -s,0 tend to infinity. It follows from the definition of the Poisson random measure N 3 in (13) that {N -Λ -1 (s),0 ; s ≥ 0} is Poisson process with parameter 1, and by the strong law of large numbers for Lévy processes (see [START_REF] Bertoin | Lévy processes[END_REF]), we deduce that

lim s↓0+ N -s,0 Λ(s) = 1 almost surely.
One can also ask how fast the number M s of ancestors at time -s of the current population living at time 0 tends to infinity. To answer this question, we need to introduce the genealogy of the families. Notice the genealogy of a CB is a richer structure than the CB itself.

6.1. Genealogy of CB. We recall here the construction of the Lévy continuum random tree (CRT) introduced in [START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF][START_REF] Gall | Branching processes in Lévy processes: Laplace functionals of snake and superprocesses[END_REF] and developed later in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] for critical or sub-critical branching mechanism. The results of this section are mainly extracted from [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], except for the next subsection which is extracted from [START_REF] Gall | Random real trees[END_REF].

Real trees and their coding by a continuous function.

Let us first recall the definition of real trees. Definition 6.1. A metric space (T , d) is a real tree if the following two properties hold for every v 1 , v 2 ∈ T .

• (Unique geodesic.) There is a unique isometric map

f v 1 ,v 2 from [0, d(v 1 , v 2 )] into T such that f v 1 ,v 2 (0) = v 1 and f v 1 ,v 2 (d(v 1 , v 2 )) = v 2 .
• (No loop.) If q is a continuous injective map from [0, 1] into T such that q(0) = v 1 and q(1) = v 2 , we have

q([0, 1]) = f v 1 ,v 2 ([0, d(v 1 , v 2 )]).
A rooted real tree is a real tree (T , d) with a distinguished vertex v ∅ called the root.

Let (T , d) be a rooted real tree. The range of the mapping

f v 1 ,v 2 is denoted by [[v 1 , v 2 
]] (this is the line between v 1 and v 2 in the tree). In particular, for every vertex v ∈ T , [[v ∅ , v]] is the path going from the root to v which we call the ancestral line of vertex v. More generally, we say that a vertex v is an ancestor of a vertex

v ′ if v ∈ [[v ∅ , v ′ ]]. If (v k ∈ K) is a set of vertex of T , there is a unique a ∈ T such that [[v ∅ , a]] = k∈K [[v ∅ , v k ]].
We call a the most recent common ancestor of (v k ∈ K). A leaf is a vertex which is the ancestor of itself only. We say that d(∅, v) is the level (or generation) of the vertex v.

We now recall the coding of a compact real tree by a continuous function g : [0, +∞) -→ [0, +∞) with compact support and such that g(0) = 0. We also assume that g is not identically 0. For every 0 ≤ s ≤ t, we set

m g (s, t) = inf u∈[s,t]
g(u) and d g (s, t) = g(s) + g(t) -2m g (s, t).

We then introduce the equivalence relation s ∼ t if and only if d g (s, t) = 0. Let T g be the quotient space [0, +∞)/ ∼. It is easy to check that d g induces a distance on T g . Moreover, (T g , d g ) is a compact real tree (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], Theorem 2.1). We say that g is the height process of the tree T g .

For instance, when g is a normalized Brownian excursion, the associated real tree is Aldous' CRT [START_REF] Aldous | The continuum random tree III[END_REF]. 6.1.2. The underlying Lévy process. We present now how to define a height process that codes a random real trees describing the genealogy of a CB using a Lévy process with Laplace exponent given by the branching mechanism ψ. We shall consider only the case of the subcritical branching mechanism ψ given by [START_REF] Abraham | A continuum-tree-valued Markov process[END_REF].

Let X = (X t , t ≥ 0) be a R-valued Lévy process with no negative jumps, starting from 0 and with Laplace exponent ψ under the probability measure P (and E the corresponding expectation): for λ ≥ 0, E e -λXt = e tψ(λ) . Since we assume that β > 0 or π((0, 1)) = +∞, we get that a.s. X is of infinite variation.

We introduce some processes related to X. Let I = (I t , t ≥ 0) be the infimum process of X, I t = inf 0≤s≤t X s , and let S = (S t , t ≥ 0) be the supremum process, S t = sup 0≤s≤t X s . We will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t]:

I s t = inf s≤r≤t X r .
The point 0 is regular for the Markov process X -I, and -I is the local time of X -I at 0 (see [START_REF] Bertoin | Lévy processes[END_REF], chap. VII). Let N be the associated excursion measure of the process X -I away from 0. Let σ = inf{t > 0; X t -I t = 0} be the length of the excursion of X -I under N. We have X 0 = I 0 = 0 N-a.e. Since X is of infinite variation, 0 is also regular for the Markov process S -X. The local time, L = (L t , t ≥ 0), of S -X at 0 will be normalized so that

E[e -λS L -1
t ] = e -tψ(λ)/λ , where L -1 t = inf{s ≥ 0; L s ≥ t} (see also [START_REF] Bertoin | Lévy processes[END_REF] Theorem VII.4 (ii)). 6.1.3. The height process and the Lévy CRT. For each t ≥ 0, we consider the reversed process at time t, X(t) = ( X(t) s , 0 ≤ s ≤ t) by: X

(t) s = X t -X (t-s)-if 0 ≤ s < t,
and X(t) t = X t . The two processes ( X(t) s , 0 ≤ s ≤ t) and (X s , 0 ≤ s ≤ t) have the same law. Let Ŝ(t) be the supremum process of X(t) and L(t) be the local time at 0 of Ŝ(t) -X(t) with the same normalization as L. As assumption (A1) is in force, there exists a continuous modification H = (H t , t ≥ 0) of the process ( L(t) , t ≥ 0), see Theorem 1.4.3 in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. The process H is the so-called height-process and (T H , d H ) is the corresponding Lévy tree. Notice that N-a.e. we have H t = 0 for t ≥ σ.

6.1.4.

Local time for the height process and CB. We now check that T H represents the genealogy of a CB with branching mechanism ψ.

The local time of the height process is defined through the next result, see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Lemma 1.3.2 and Proposition 1.3.3. Proposition 6.2. There exists a jointly measurable process (L a s , a ≥ 0, s ≥ 0) which is continuous and non-decreasing in the variable s such that:

• For every t ≥ 0, lim • P-a.s., for every t ≥ 0, L 0 t = -I t . • The occupation time formula holds: for any non-negative measurable function g on R + and any s ≥ 0, s 0 g(H r ) dr = (0,+∞) g(a)L a s da.

Let T x = inf{t ≥ 0; I t ≤ -x}. We have the following Ray-Knight theorem which explains why the Lévy CRT can be viewed as the genealogical tree of a CB. 

1). The process (L a

Tx , a ≥ 0) is distributed under P as Y under P x (i.e. is a CB with branching mechanism ψ starting at x).

We then get the following Corollary. Informally, L a σ counts the number of vertices (in fact leaves) of T H at level a under N. . We give a definition for the number of ancestors, which will be used in the next section. We use formulation [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF] to construct the genealogy of Z. Recall notation N 0 from Section 3.1.

• Conditionally on N 0 , let Ñ1 (dt, dH) = j∈J 1 δ t j ,H j (dt, dH) be a Poisson point measure with intensity ν(dt) N[dH] with ν(dt) = i∈I r i δ t i (dt). • Let Ñ2 (dt, dH) = j∈J 2 δ t j ,H j (dt, dH) be a Poisson point measure independent of (N 0 , Ñ1 ) and with intensity 2β dt N[dH]. We will write Y j for L(H j ) for j ∈ J = J 1 J 2 . Thus notation ( 12) is still consistent with the previous Sections, thanks to Corollary 6.4. And the process j∈J δ t j ,H j allows to code for the genealogy of the families of Z.

Let s > 0. Following Definition 6.6, we consider M s the number of ancestors at time -s of the current population living at time 0, not including the immortal individual: M s = j∈J 1 {t j <-s} R -s-t j ,-t j (H j ). 6.3. Asymptotics for the number of ancestors. We first give a technical Lemma, which proof is postponed to the end of this Section. Lemma 6.7. The joint distribution of M s and Z 0 is characterized by the following equation: for η, λ ≥ 0 s > 0, [START_REF] Moran | Random processes in genetics[END_REF] E e -ηMs-λZ 0 = e -s 0 dr ψ′ (u(λ,r)) E e -Z -s [(1-e -η )c(s)+e -η u(λ,s)] .

In particular, M s has the same distribution as V s Z -s , where V s is a Poisson process with parameter c(s) independent of (Z t , t ∈ R). Remark 6.8. Note that one can replace Z -s by Z 0 for the right hand side of (39) thanks to stationarity. The effect of our presentation is to emphasize the branching property: conditionally on Z -s , the number of families with lifetime larger than s is a Poisson random variable with parameter the product of population size Z -s and the rate c(s) = N(ζ > s) that one family has lifetime lager than s.

The next result is the analogue of the result on the number of ancestors for coalescent process given in [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] and [START_REF] Limic | On the speed of coming down from infinity for X-coalescent processes[END_REF]. Theorem 6.9. The following convergence holds in probability:

lim s→0 M s c(s) = Z 0 .
Proof. Let ρ > 0. We take η = ρ/c(s). We deduce from (39) that:

lim s→0 E e -ρ Ms c(s) -λZ 0 = E e -Z 0 (ρ+λ) .
This implies that M s c(s) , Z 0 converges in distribution to (Z 0 , Z 0 ), which gives the result.

Remark 6.10. Suppose in addition that

∞ 0 x 2 π(dx) < ∞. Set π(dx) = x 2 π(dx).
Then the π-coalescent N µ defined in [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] comes down from infinity by the assumption (A2) (see [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] and the references therein). It was shown in [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] that the speed of coming down from infinity satisfies [START_REF] Mukherjea | A note on moment generating functions[END_REF] lim

t↓0+ N µ t c(t) = 1 almost surely.
From the heuristic duality between coalescence and branching processes, our result in Theorem 6.9 can be seen as a duality to [START_REF] Mukherjea | A note on moment generating functions[END_REF].

Proof of lemma 6.7. For any η, λ ≥ 0, we have:

E e -ηMs-λZ 0 =E e -λ j∈J 1 {-s≤t j ≤0} Y j -t j E   exp   -ηM s -λ j∈J 1 {t j <-s} Y j -t i     = exp - s 0 dr ψ′ (u(λ, r)) E   exp   - j∈J 1 {t j <-s} ηR -s-t j ,-t j (H j ) + λY j -t i     = exp - s 0 dr ψ′ (u(λ, r)) (41) exp - ∞ 0 da ψ′ (N[1 -exp(-ηR a,a+s (H) -λY a+s )]) ,
where we used that Poisson random measures over disjoint sets are independent in the first equality, Lemma 3.1 in the second equality and a immediate generalization of Lemma 3.1 to genealogies in the third equality.

Using notations from Section 6.1.5 on the Poissonian representation of the height process above level a from Proposition 6.5, we get

N 1 -e -ηR a,a+s (H)-λY a+s = N 1 -e -k∈K η1 {ζ k ≥s} +λY (H k )s = N 1 -e -YaN[1-exp(-η1 {ζ≥s} -λYs)] .
As 1exp -η1 {ζ≥s} -λY s = (1e -η )1 {ζ≥s} + e -η (1e -λYs ), we deduce that N 1e -ηR a,a+s (H)-λY a+s = N 1e -λ ′ Ya = u λ ′ , a , with λ ′ = (1e -η )c(s) + e -η u(λ, s). Then we use (3.6) 

to write exp - ∞ 0 da ψ′ (N[1 -exp(-ηR a,a+s (H) + λY a+s )]) = exp - ∞ 0 da ψ′ u(λ ′ , a) = E e -λ ′ Z -s .
Plugging this in (41), we get (39).

The quadratic branching mechanism

Let (e k ; k ∈ N) be independent exponential random variables with mean 1. 7.1. Preliminaries. In this Section we give some explicit distributions and more precise results for the case of quadratic branching mechanism:

ψ(λ) = βλ 2 + 2βθλ, (42) 
where β > 0 and θ > 0. We have

u(λ, t) = 2θλ (2θ + λ) e 2θβt -λ , c(t) = 2θ e 2θβt -1 , κ * = 2θ.
For every t ∈ R, it follows from Corollary 3.3 that the process {Z s+t ; s ≥ 0} has the same distribution as the strong solution of the following stochastic differential equation

dX s = 2βX s dW s + 2β(1 -θX s )ds,
with initial law P(Z 0 ∈ •), where W is a standard Brownian motion (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] Section XI.3 for the existence of strong solution).

7.2. Joint law of the TMRCA and populations sizes. We have the following representations.

Theorem 7.1. Assume ψ is given by ( 42). (ii) We have for t ≥ 0:

(44) P(A ≤ t) = (1 -e -2θβt ) 2 and A (d) = 1 2θβ
max(e 1 , e 2 ).

(iii) Conditionally on {A = t}, we have the following distribution representation: This gives (i). Using Theorem 4.1, we obtain:

(45) Z A , Z I , Z O (d) = e 1 +
E[e -λZ A -γZ I -ηZ O ; A ∈ dt] = 2β(2θ) 6 e 6θβt (e 2θβt -1) [(2θ + η) e 2θβt -η][(2θ + γ) e 2θβt -γ] 2 [(2θ + λ) e 2θβt -λ] 2 dt.
We then deduce (ii) and (iii).

We then are able to compare more precisely the size of the current population Z = Z I +Z O with the size of the population Z A just before the birth time of the MRCA. As (Z t , t ∈ R) is continuous, notice that that Z A is also the size of the population at the birth time of the MRCA. Recall that Z A is stochastically smaller than Z. The next Corollary indicates that Z A is however not a.s. smaller than Z. Corollary 7.2. Assume ψ is given by [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. We have: a.s.

P(Z A < Z|A) = 11 16 and E[Z A |A] = 2 3 E[Z|A]
as well as

P(Z A < Z) = 11 16 and E[Z A ] = 2 3 E[Z].
Proof. We have P(Z A < Z|A) = P(e 1 + e 2 < e 3 + e 4 + e 5 ) = 11 [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] .

The other equalities are obvious.

There is also an interesting result (which is not valid for general branching mechanism) which can be interpreted by time reversal. Recall ζ is the extinction time of Y . Proposition 7.3. Assume ψ is given by [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. Conditionally on Z, A is distributed as ζ under P Z : for all t ≥ 0 (46) P(A > t|Z) = e -c(t)Z = P Z (ζ ≤ t).

Proof. We deduce from ( 43) and ( 44) that the densities of Z and A are:

(47) f A (t) = 4θβ e -2θβt (1e -2θβt )1 {t>0} and f Z (z) = (2θ) 2 z e -2θz 1 {z>0} .

We also deduce from [START_REF] Roelly-Coppoletta | Processus de Dawson-Watanabe conditionné par le futur lointain[END_REF] the density of Z conditionally on A = t:

f Z|A=t (z) = (2θ + c(t)) 3 z 2 e -(2θ+c(t))z 1 {z>0} .

Using Bayes' rule, we get the density of A conditionally on Z = z: for z, t > 0 f A|Z=z (t) = f Z|A=t (z) f A (t) f Z (z) = z(2θ) 2 β (e 2θβt -1) 2 e 2θβt exp -2θz e 2θβt -1 = -c ′ (t)z e -c(t)z .

We obtain P(A ≤ t|Z) = e -c(t)Z . Then, we conclude as P r (ζ ≤ t) = e -rN[ζ≥t] = e -rc(t) ,

where we used the Poissonian representation of Y given by [START_REF] Berestycki | The prolific backbone for supercritical superdiffusions[END_REF].

Notice that [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF] implies that P(c(A)Z ≥ c(t)Z|Z) = P(A ≤ t|Z) = e -c(t)Z .

We obtain that c(A)Z is independent of Z and c(A)Z

= e 1 . We thus deduce the following Corollary.

Corollary 7.4. Assume ψ is given by [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. We have the following representation: , and the size-biased distribution of A n is the maximum of n independent exponential random variables with mean 1:

(Z, c(A), Z A ) (d) = e 1 +
E Z n 1 {A n ∈[0,t]} = E[Z n ](1 -e -2βθt ) n .
We can compute explicitly the distribution of A 1 . See also [START_REF] Lambert | Coalescence times for the branching process[END_REF], section 3, for similar computations in a slightly different setting.

Proposition 7.7. Assume ψ is given by [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. We set s = 1e -2βθt . We have: In particular c(A 1 )Z is independent of Z.

Notice that P(A ≤ t) = s 2 so that we recover from (48) the trivial inequality P(A 1 ≤ t) ≥ P(A ≤ t) as A ≥ A 1 .

Proof. Applying Theorem 4.7, we get

E[e -λZ 1 {A 1 ≤t} ] = ∞ λ dη E[Z e -ηZ 1 {A 1 ≤t} ]
=2(e 2θβt -1) 2 1 (e 2θβt -1)

2θ 2θ + λ -log 1 + 1 (e 2θβt -1) 2θ 2θ + λ . (49) 
In particular, the distribution of A 1 is given by P(A 1 ≤ t) = 2(e 2θβt -1) 2 1 (e 2θβt -1)

log 1 + 1 (e 2θβt -1)

.

Applying inverse Laplace transforms to (49) and using the density of Z given in [START_REF] Wright | Evolution in Mendelian populations[END_REF], we get that the conditional law of A 1 given Z:

P(A 1 ≤ t|Z) =
2(e 2θβt -1) 2 (2θ) 2 Z 2θ e 2θβt -1 + e -2θZ/(e 2θβt -1) -1 Z , which implies that P(2θZ/(e 2θβA 1 -1) > x) = 2 x -2

x 2 (1e -x ).

7.4. Fluctuations for the renormalized number of ancestors. Finally, we complete Theorem 6.9 by giving the fluctuations for the renormalized number of ancestors.

Theorem 7.8. Assume ψ is given by [START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. We have

c(s)E[Z] M s c(s) -Z (d) ---→ s↓0+ (Z -Z ′ ),
where Z ′ is distributed as Z and independent of Z.

Proof. We first note that for every λ > 0, Under the current assumption on the exponent ψ, E[e λZ ] < ∞ and E[e λMs ] < ∞ for λ > 0 small enough. Hence, by an analytic continuation argument, we see that [START_REF] Moran | Random processes in genetics[END_REF] implies that for λ > 0 small enough, the following holds for all small s: .

Hence, for all small λ > 0, we have

lim s→0 E e -λ √ c(s)(Z-Ms c(s) ) = E e λ 2 Z/2 = 2θ 2θ -λ 2 /2 2 = E e -λ(Z-Z ′ )/ √ E[Z] ,
since E[Z] = 1/θ. The result is then a consequence of [START_REF] Mukherjea | A note on moment generating functions[END_REF].

( 30 )

 30 N a,b = i∈I 1 {t i <a;b<t i +ζ i } , the number of clans born before a and still alive at time b. Notice N a,b is a Poisson random variable with parameter Λ(ba) : = drµ(dY ) 1 (-∞,a) (r)1 {ζ+r>b} = ∞ b-a dr ψ′ (c(r)) = log ψ(c(ba)) e α(b-a) κ * α ,

  ) = +∞. Hypothesis on β and π imply there exists a constant c 0 > 0 such that αλ ≤ ψ(λ) ≤ c 0 λ 2 and lim λ→+∞ ψ(λ)/λ = +∞. Therefore (33) is in force. The second part of the Proposition is clear by definition of ζ i and representation (16).

Proposition 6 . 3 (

 63 [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Theorem 1.4.

Corollary 6 . 4 .

 64 The process L(H) = (L a σ , a ≥ 0) is distributed under the excursion measure N as Y under its excursion measure N.

Definition 6 . 6 . 2 .

 662 The number of ancestors at time a of the population (coded by H) living at time b is the number of excursions of H above level a which reach level b > a: R a,b (H) = k∈K 1 {ζ k ≥b-a} , where ζ k = max{H k s , s ≥ 0}. 6.Genealogy of Z. Recall notations from Section 6.1.5. In order to simplify notations, we shall write N for N.
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 21 and P(c(A 1 )Z ≥ x|Z) = 2 x e -x ).
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 1 λ c(s), r) dr ≤ sψ ′ λ c(s) ---→ e λ/ √ c(s) )c(s) + e λ/ √ c(s) u(λ c(s), s) = -λ 2 /2.

  ),r)) dr E e -Z (1-e λ/ √ c(s) )c(s)+e λ/ √ c(s) u(λ √ c(s),s)

  6.1.5. Poissonian representation of the height process above a level. Let a > 0 be fixed. We consider the excursions of the height process H above a under the excursion measure N. Precisely, let (u k , v k ), k ∈ K be the excursions of H above a over the time interval [0, σ]. We setH k = (H u k +s∧v ka, s ≥ 0). The nextresult is a consequence of Proposition 4.2.3 in [16]. Proposition 6.5. Conditionally on (L r σ , r ≤ a), the measure k∈K δ H k (dH) is a Poisson point measure with intensity L a σ N[dH]

  + e 2 e 1 + e 2 + e 3 (e 4 + e 5 ) . TMRCA for n individuals. Next, we consider the joint distribution of Z and A n the TMRCA of the immortal individual and n individuals chosen at random among the current population. The next result is a direct application of Theorem 4.7.Proposition 7.6. Assume ψ is given by[START_REF] Pinsky | Limit theorems for continuous state branching processes with immigration[END_REF]. We set s = 1e -2βθt . We have for n ∈ N * : E Z n e -λZ 1 {A n ∈[0,t]} = (n + 1)!s n (2θ + λs) n
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	e 2 e 1 Remark 7.5. It is also easy to check that conditionally on {Z = z}, A is distributed as 2θ , 2θ e 3 e 1 + e 2 , 1 2θ 1 2βθ log 1 + 2θz e 3 . In particular, we deduce that A is distributed as 1 2βθ log 1 + e 1 + e 2 e 3 .
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