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Information Theory (IT) in conjugated and in Hilbert spaces is employed to analyze the growing behavior of nanostructures. Shannon entropies in position and momentum spaces require costly and time-consuming computations as the size of the molecules increases in contrast with information entropies in Hilbert space, which are shown to be highly advantageous for analyzing large molecules. In this work, ab initio electronic structure calculations at the HF, MP2 and B3LYP levels of theory were performed to analyse the initial steps towards growing nanostructured molecules of Polyamidoamine (PAMAM) dendrimers, starting from the monomers, dimers, trimers, tetramers up to generations G0 (with 84 atoms), G1 (228 atoms), G2 (516 atoms), and G3 (1092 atoms). This is achieved by using selected physical descriptors such as the radius of gyration, the asphericity factor, the moments of inertia, the dipole moments, the total energies and chemical reactivity indices such as the hardness, softness and the electrophilicity index at the HF/3-21G* level of theory. For the chemical indices, higher level calculations at the B3LYP/6-311++G** and MP2/6-311+G* levels were also performed in order to account for the effects of electron correlation. Information-theoretic measures of the Shannon type in conjugated space are employed to characterize the G0-PAMAM precursors and G0. Hilbert space entropies of the Shannon and Kullback type are employed to provide theoretic-information evidence of the validity of the densecore model of PAMAM precursors and dendrimers G0 through G3.

INTRODUCTION

Since their introduction in 1985 by Tomalia et al. [START_REF] Tomalia | A New Class of Polymers: Starburst Dendritic Macromolecules[END_REF], dendrimers have attracted much attention because of their fascinating structure and unique properties [2]. Dendrimers are globular, size monodisperse macromolecules in which all bonds emerge radially from a central focal point or core with a regular branching pattern and with units that repeat and contribute to a branch point. They are defined by three components: a central core, an internal dendritic structure (the branches), and an exterrnal surface with functional surface groups. Not all regularly branched molecules are dendrimers because properties of the dendritic state [2b], such as core encapsulation [START_REF] Hecht | Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science[END_REF]. These macromolecules were first synthesized in the early 1980s with the development of a cascade type of synthetic strategies to give distinct generations (G0, G1, G2, ...) of molecules with narrow molecular weight distribution, uniform size and shape, and multiple (multivalent) surface groups. [START_REF] Janssen | Synthesis of Polymers: Materials Science and Technology Series[END_REF]. Several applications for dendrimers have been proposed in the literature [5], with potential applications in biology as mimetic systems of enzymes or redox proteins [6], in medicine for drug delivery, gene therapy, and biochemical sensors [7], in optoelectronics for transduction of signals or lightharvesting devices [8] and in nanoscience as building units in self-assembled systems or functionalized with groups for molecular recognition and signaling [5a,5b,9].

Poly(amido)amine or PAMAM dendrimers are among the most studied families of dendrimers.

These organic dendrimers contain tertiary amines as branching points, i.e., the respective branching multiplicity is 2. The core multiplicity varies; the original PAMAM dendrimers were synthesized from an amine core and thus had a 3-fold multiplicity [1,6a] whereas recently, ethylenediamine-core PAMAMs became more common and these possess a 4-fold multiplicity where the typical endgroups are primary amines [START_REF] Jockush | Comparison of Nitrogen Core and Ethylenediamine Core Starburst Dendrimers through Photochemical and Spectroscopic Probes[END_REF]. A number of review articles on dendrimers have been reported [5,8a,11]. Most of the reported work was motivated by a dendrimer-model of a hollow core and hence by a dense shell. The basic assumption behind this was that the density of the segments increases from the center to the periphery, supporting the idea of using dendrimers as dendritic boxes or carriers. This dense-shell model became popular since the work of de Gennes and Hervet [START_REF] De Gennes | Statistics of starburst polymers[END_REF] in which they presented the first theoretical treatment of dendrimers by using a modified version of self-consistent field (SCF) method developed by Edwards [START_REF] Edwards | The statistical mechanics of polymers with excluded volume[END_REF] where they obtained a density profile with a global minimum at the center and a monotonic density increasing towards the periphery of the dendrimer. Much of the work on synthesis of dendrimers and applications indicates that most studies are still based on this assumption. On the other hand, Lescanec and Muthukumar performed the first simulations of dendrimers [START_REF] Lescanec | Configurational characteristics and scaling behavior of starburst molecules: a computational study[END_REF]. They used a kinetic growth algorithm of self-avoiding walks to build off-lattice dendrimers and they found, in contrast with Ref. [START_REF] De Gennes | Statistics of starburst polymers[END_REF], density profiles that decreased monotonically towards the edge of the molecule. They were the first to show that a dendritic structure made up from flexible bonds should exhibit its maximum density at the center of the molecule (dense-core model). This pioneering work has been the starting point of a considerable number of theoretical studies which support the early result of Lescanec and Muthukumar, thus firmly establishing the validity of the dense-core model.

Several theoretical approaches have been applied to the problem of the conformation of isolated dendrimers, the Self-Consistent Field method (SCF) [START_REF] De Gennes | Statistics of starburst polymers[END_REF][START_REF] Boris | A Self-Consistent Mean Field Model of a Starburst Dendrimer: Dense Core vs Dense Shell[END_REF], the Gaussian variational approximation (GVA) [START_REF] Ferla | Conformations and dynamics of dendrimers and cascade macromolecules[END_REF] and the Gaussian self-consistent theory (GSC) [START_REF] Timoshenko | Conformations of dendrimers in dilute solution[END_REF]. Except for the work of de Gennes and Hervet [START_REF] De Gennes | Statistics of starburst polymers[END_REF], all of them support the dense-core model. Furthermore, a great deal of progress in the understanding of the conformations of dendrimers has been achieved through computer simulations at various levels of description, from the microscopic (atomistic) to the oversimplified ones with different methodologies: Monte-Carlo (MC), molecular dynamics (MD), and Brownian dynamics (BD) [START_REF] Allen | Computer Simulation of Liquids[END_REF]. Recently, Maiti et al [START_REF] Maiti | Structure of PAMAM Dendrimers: Generations 1 through 11[END_REF], performed a systematic series of fully atomistic MC-MD simulations on PAMAM-ethylenediamine (PAMAM-EDA) cored dendrimers from G0 through G11, to characterize the structure and properties of these molecules. They reported the cartesian coordinates for a snapshot of the trajectory for each dendrimer from generation 3 to generation 11. On the electronic structure (ES) side, only a few Hartree-Fock (HF) and density functional theory (DFT) studies have addressed to study some structural, thermodynamic, electronic and vibrational aspects of low order generation dendrimers (G0 and G1) [START_REF] Tarazona-Vasquez | plexation of the Lowest Generation Poly(amidoamine)-NH 2 Dendrimers with Metal Ions, Metal Atoms, and Cu(II) Hydrates: An ab Initio Study[END_REF]. To the best of our knowledge, there are no ab initio studies of the ES type which address the problem of understanding the structural properties of PAMAM dendrimers of higher generations and the issue is not a simple one since these molecules possess an enormous number of energetically permissible conformations and a large number of atoms (EDA-PAMAM dendrimers grow from 84 atoms for G0 up to 294852 atoms for G11) which are beyond the present capabilities for the ES packages and present computers to attempt high level ab initio calculations, notwithstanding it remains a major goal of quantum chemistry to design strategies and methodologies which could be applied to dendrimers of higher generations. These molecules have now become an important issue in the fields of polymer theory, the physics of soft matter and supramolecular chemistry.

A most challenging problem for Chemistry and Physics resides in characterizing and measuring the interactions between the different parts of a quantum system which are thought as those essential pieces of the whole system which may explain the chemical reactivity and how to construct the formalism of more complex systems through the interplay of its constituting parts. In Quantum Chemistry, the concept of Atoms in Molecules (AIM) has been the focus of great deal of attention [21] since it provides a natural framework to study chemical reactivity of complex molecules by means of the interactions between atoms or functional groups and between different molecules when small density changes are produced. The real space partitioning of a molecule into subsystems is still a challenging problem in theoretical chemistry [21,[START_REF] Lin | Divergence measures based on the Shannon entropy[END_REF], not only because of the arbitrary chemical frontiers that separate subsystems but also because of the high computational cost that is involved in the calculations. Atomic orbital-based population analyses are very popular in chemistry and though they allow for the partition of the molecular wave function into atomic contributions, they are not rotationally invariant and may produce negative populations [23]. However, there exist alternative schemes which avoid these drawbacks, for instance the natural atomic orbital scheme of Weinhold [START_REF] Reed | Natural population analysis[END_REF] or the one of . For this purpose, Löwdin symmetric orthogonalization on the atomic orbitals of the same atom has been considered most useful [START_REF] Löwdin | Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction[END_REF]. In defining these schemes one can preserve to a maximum extent the information content of ground state atoms to obey physical principles such as the N-and v-representability. Further, informationtheoretic principles can be employed to define suitable natural probabilities for analyzing interactions between molecular units or fragments in a molecule, which in turn allow for more involved chemical studies such as reactivity, conformational analysis, similarity, reactions, dissociation processes, etc. [START_REF] Carrera | Natural Atomic Probabilities in Quantum Information Theory[END_REF]. To the best of our knowledge and notwithstanding that there has been a great interest in the last years in applying Information Theory (IT) measures to the electronic structure of atoms and molecules in a wide variety of fields [START_REF] Parr | On the quantum-mechanical kinetic energy as a measure of the information in a distribution[END_REF], no

IT studies have been performed on nanostructures of the dendrimer type.

Through the present investigation we will show that despite the limitations of quantum chemistry methods, it is possible to apply chemical concepts to elucidate some of the structural features of dendrimers. One of the goals is to support the validity of the core-dense model for dendrimers from a theoretic information point of view. Besides, we will employ some selected polymer science properties of dendrimers to reveal the growing behavior of PAMAM precursors and the G0 dendrimer at the HF level of theory along with several chemical reactivity parameters within the context of conceptual DFT. Higher level calculations at the DFT-B3LYP and MP2 levels of theory will be attempted to take into account the effects of electron correlation on the chemical indices. Finally, we will show that information entropies in Hilbert space are able to reveal the growing behavior of PAMAM-EDA nanostructures up to G3 with significant computational advantages as compared to the calculation of standard Shannon entropies in position and momentum spaces.

THEORETICAL DETAILS

Throughout the study we will employ several physical descriptors commonly used in polymer science and in theoretical chemistry which will be defined in this section. The principal moments of inertia Ix, Iy and Iz are calculated through the eigenvalues of the shape tensor G describing the mass distribution:
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where p,q = x,y,z, and r pi is the position of the ith atom relative to the R p components of the center of mass of the molecule, M is the mass of the molecule and m i is the mass of the atom. The sum of The ratio of these three principal moments is a measure of eccentricity (minor-major axes ratio) of the shape ellipsoid of the dendrimers and hence the shape of the dendrimer can be assessed from the values of the ratio of the three principal moments of inertia of the molecules I z /I y and I z /I x . Rudnick

and Gaspari [START_REF] Rudnick | The aspherity of random walks[END_REF] introduced a better definition of asphericity frequently used in the literature as
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where I i are the respective invariants of the gyration tensor and are given by 

We have also evaluated some reactivity parameters that may be useful to analyze the chemical properties of the precursors. Parr and Pearson proposed a quantitative definition of hardness (η) within conceptual DFT [START_REF] Parr | Absolute hardness: companion parameter to absolute electronegativity[END_REF]:
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is the electronic chemical potential of an N electron system in the presence of an external potential ν(r), E is the total energy and, in the context of density functional theory, "S" is called the softness. Using finite difference approximation, Eq. ( 9) would be ( )
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where N E ,

1 - N E and 1 + N E
are the energies of the neutral, cationic and anionic systems, and I and A, are the ionization potential (IP) and electron affinity (EA), respectively. Applying Koopmans' theorem [START_REF] Koopmans | Ueber die Zuordaung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms[END_REF] Eq. ( 6) can be written as:
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where ε denotes the frontier molecular orbital energies. In general terms, hardness and softness are good descriptors of chemical reactivity, the former measures the global stability of the molecule (larger values of η means less reactive molecules), whereas the "S" index quantifies the polarizability of the molecule [START_REF] Ghanty | Correlation between hardness, polarizability, and size of atoms, molecules, and clusters[END_REF], thus soft molecules are more polarizable and possess predisposition to acquire additional electronic charge [START_REF] Chattaraj | Electrophilicity Index[END_REF]. The chemical hardness "η" is a central quantity for use in the study of reactivity and stability, through the hard and soft acids and bases principle [START_REF] Pearson | Hard and Soft Acids and Bases[END_REF]. On the other hand, Parr et al. [START_REF] Parr | Electrophilicity Index[END_REF] have defined another descriptor in order to quantify the global electrophilic power of the molecules, namely the electrophilicity index ω, which defines a quantitative classification of the global electrophilic nature of a molecule within a relative scale.

Electrophilicity index of a system in terms of its chemical potential and hardness is given by the next expression:
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In general terms, hardness and electrophilicity are good descriptors of chemical reactivity, the former measures the global stability of the molecule (larger values of η means less reactive molecules), whereas the ω index quantifies the global electrophilic power of the molecules (predisposition to acquire an additional electronic charge) [START_REF] Chattaraj | Electrophilicity Index[END_REF] According to the goals of the present study, the central quantities in real space are the Shannon entropies, either in position or momentum spaces [START_REF] Shannon | A mathematical theory of communication[END_REF]: hence S r is maximal when knowledge of ρ(r) is minimal. The Shannon entropy in momentum space S p is largest for systems with electrons of higher speed and is smaller for relaxed systems where kinetic energy is low. Entropy in momentum space S p is closely related to S r by the uncertainty relation of Bialynicki-Birula and Mycielski [START_REF] Bialynicky-Birula | Uncertainty relations for information entropy in wave mechanics[END_REF] which shows that the entropy sum S T =S r +S p , is a balanced measure and cannot decrease arbitrarily. For one-electron atomic systems it may be interpreted as that localization of the electron's position results in an increase of the kinetic energy and a delocalization of the momentum density.

From a different perspective, we have recently shown [START_REF] Carrera | Natural Atomic Probabilities in Quantum Information Theory[END_REF] that there is an information-theoretic justification for performing Lowdin symmetric transformations [START_REF] Lowdin | On the orthogonality problem[END_REF] on the atomic Hilbert space, to produce orthonormal atomic orbitals of maximal occupancy for the given wavefunction, which are derived in turn from atomic angular symmetry subblocks of the density matrix, localized on a particular atom and transforming to the angular symmetry of the atoms. The advantages of these kind of atoms-in-molecules (AIM) approaches [START_REF] Reed | Natural bond orbital analysis of near-Hartree-Fock water dimmer[END_REF][START_REF] Davidson | Electronic Population Analysis of Molecular Wavefunctions[END_REF] are that the resulting natural atomic orbitals are N-representable, positively bounded, and rotationally invariant [START_REF] Bruhn | Löwdin population analysis with and without rotational invariance[END_REF]41]. In consequence, we have also shown [START_REF] Flores-Gallegos | von Neumann Entropies Analysis in Hilbert Space for the Dissociation Processes of Homonuclear and Heteronuclear Diatomic Molecules[END_REF] that the corresponding "natural atomic probabilities" (NAP) are useful to define von Neumann information entropies in Hilbert space which are able to measure entanglement in the context of Quantum Information Theory [START_REF] Wehrl | General properties of entropy[END_REF].

The uncertainty of a probability distribution p i (A) is measured through the Shannon entropy in

Hilbert space [START_REF] Shannon | The Mathematical Theory of Communication[END_REF]: The relative entropy between two probability distributions p i (A) and p j (B) is defined through the Kullback-Liebler entropy [START_REF] Kullback | On Information and Sufficiency[END_REF] as
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where the p i (A) (and p i (B) ) in Eqs. ( 11) and ( 12) can be determined by use of natural atomic probabilities [START_REF] Carrera | Natural Atomic Probabilities in Quantum Information Theory[END_REF][START_REF] Flores-Gallegos | von Neumann Entropies Analysis in Hilbert Space for the Dissociation Processes of Homonuclear and Heteronuclear Diatomic Molecules[END_REF]. It is worth noting that while Eq. ( 12) represents a distance from a reference probability, it fails to be symmetric.

RESULTS AND DISCUSSION

The electronic structure calculations performed in this study were carried out with the NwChem suite of programs [START_REF] Bylaska | NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.0[END_REF] at the HF/3-21G* and B3LYP/6-311++G** levels of theory and with the Gaussian/G03 suite of programs [START_REF] Gaussian | [END_REF] for calculations at the MP2/6-311+G* level of theory. The systems under analysis are precursors of PAMAM-EDA G0, i.e., EDA (C 2 H 4 (NH 2 ) 2 ), the PAMAM

monomer (NH 2 -CH 2 -CH 2 -CO-NH-CH 2 -CH 2 -NH 2 )
, the dimer (EDA+monomer), the trimer (EDA+ 2 monomers), and the tetramer (EDA+ 3 monomers) along with some of the conformers of these systems, which were optimized at the levels of theory required for each property as mentioned below. The G0 geometry for the IT study in real space along with the geometries G1 through G3 employed for the IT study in Hilbert space were obtained from Maiti [START_REF] Maiti | Structure of PAMAM Dendrimers: Generations 1 through 11[END_REF][START_REF]The geometric parameters of dendrimers G0 through G3 were obtained from P.K. Maiti[END_REF] and then calculated at the HF/3-21G* level [START_REF] Bylaska | NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.0[END_REF]. In order to determine the information entropies in Hilbert space, H(A) and H(A|B), we employed natural atomic probabilities [START_REF] Carrera | Natural Atomic Probabilities in Quantum Information Theory[END_REF] calculated with the NBO 5.G software [START_REF][END_REF]. The molecular Shannon information entropies in position and momentum spaces were obtained by employing software developed in our laboratory along with the 3D numerical integration routines by Pérez-Jordá et al [START_REF] Pérez-Jordá | A simple, efficient and more reliable scheme for automatic numerical integration[END_REF] and the DGRID suite of programs by Kohout [START_REF] Kohout | program DGRID[END_REF].

Besides, several electronic structure properties were calculated in order to analyze the shape of the polymers, the aspect ratios, the asphericity factor, and the dipole moment components, along with several DFT chemical reactivity properties such as the frontier orbital energies (HOMO and LUMO), hardness, softness and the electrophilicity values. Since these chemical properties might be sensitive to the electron correlation and basis set quality we have performed calculations at the MP2/6-311+G* and B3LYP/6-311++G** levels of theory. Optimized structures at each level were determined in order to obtain reliable values for chemical reactivity parameters.

In Table 1 we have reported the total dipole moment values for all polymeric structures from EDA through G0 along with the dipole moment components which are also shown in Figure 1 from which we can witness an increase of the polarization of the molecular densities in all directions as the molecules grow, with larger effects for G0. This might be indicative of more polarizable densities which in turn may reflect molecular densities that tend to be more delocalized. It is known that flexible-chain dendrimers, although being chemically regular structures, do not assume regular shapes. To quantitatively evaluate the deviation from spherical symmetry, we calculated the shape of the precursors and G0 dendrimer through several physical quantities: the principal moments of inertia I x , I y and I z (Eq. 1), the ratio of the three principal moments of inertia of the molecules I z /I y and I z /I x , the asphericity factor (Eq. 2) and the dendrimer size (measured thorugh the radius of gyration which is the mean-square of the sum of the moments of inertia). The values of the three principal moments of inertia are tabulated in Table 2, along with the radius of to the G0-dendrimer. The shape of the G0-precursors and G0 dendrimer can be assessed from the values of the ratio of the three principal moments of inertia of the molecules I z /I y and I z /I x in Figure 3 from which we observe that all the precursors are more eccentric than the G0 generation, which tend to be more spherical. A quantity which reflects this fact in a more precise manner is the asphericity factor, which is depicted in Figure 4, where it may be observed that dendrimer G0 tend to be more spherical as compared to the rest of the G0-precursors, except for the M4 monomer whose conformeric structure is not linear.

F

On the chemical side we have also evaluated some reactivity parameters that may be of utility to analyze the chemical properties of the precursors. In general terms, hardness and electrophilicity are good descriptors of chemical reactivity, the former measures the global stability of the molecule (larger values of η means less reactive molecules), whereas the ω index quantifies the global electrophilic power of the molecules (predisposition to acquire an additional electronic charge) [START_REF] Chattaraj | Electrophilicity Index[END_REF]. In Table 3 we have reported values for the total energies, the frontier orbital energies HOMO and LUMO, the hardness and the electrophilicity index. These values were calculated at three different levels of theory: HF/3-21G*, B3LYP/6-311++G** and MP2/6-311+G* in order to take into account with the effects of electron correlation. It is worth mentioning that geometry optimization for each precursor was performed at every level of theory. The different values are reported in Table 3 for comparison purposes. Also, we have depicted the values for the hardness and the electrophilicity index in Figures 5 and6, respectively, at the HF, B3LYP and MP2 levels of theory as to analyse the general trends and also the effects for electron correlation. From Table 3 and Figures 5 and6, we may note that hardness values show a clear decreasing tendency as the molecules are sizely bigger for the three levels of theory, which means that as the size of the precursor increases toward G0 the polarizability of the molecules increases, i.e., their corresponding densities tend to be more delocalized and hence more reactive in chemical terms with the G0 dendrimer being the most reactive. It is also interesting to note that hardness values are smaller as correlation increases, which is in agreement with the energy trends observed from Table 3 in that the B3LYP energy values are negatively larger than MP2 ones and these in turn more negative than the HF values. On the other hand, the electrophilicity behavior may be analyzed from Figure 6 which roughly indicates a tendency to acquire electronic charge, i.e., as the size of the precursors increase they are more polarizable and hence more reactive, except for the tetramer precursors (TT1 and TT2) which show smaller values for correlated methods as compared with the rest. It is also worth mentioning that as correlation increases from HF values to B3LYP ones, the electrophilicity values increase, which agrees with Eq. 8 in that electrophilicity is inversely proportional to the hardness, and this is what we observed from Figures 5 and6.

Observations above are in agreement with the results for the dipole moment components in that higher generation dendrimers possess more polarized molecular densities. Further, it is known that less compact molecules are more polarizable, with low hardness values and hence more reactive, and this is indeed the case when comparing the softness values depicted in Figure 7 with the size of the molecules which can be estimated through the radius of gyration R g shown in Figure 2. Next, we examine the Shannon information entropies in real space, Eqs ( 9) and [START_REF] Jockush | Comparison of Nitrogen Core and Ethylenediamine Core Starburst Dendrimers through Photochemical and Spectroscopic Probes[END_REF]. In Fig 8 the entropy sum, S r +S p , and the energy (Table 3) are depicted for the PAMAM G0-precursors and dendrimer G0. It is apparent from Figure 8 that the total entropy follows the opposite behavior as the energy, i.e., as the size of the molecules increases so does the entropy sum. It is also interesting to note that the total entropy distinguishes the different polymeric structures in that isoelectronic systems possess the same entropy value and so does the energy.

Moreover, a similar behavior is shown in Figure 9, where the Shannon entropies in position and momentum spaces are depicted at the HF/3-21G* level. Whereas the momentum space entropies are fairly constant for all systems, the position entropy reveals more structure in that as the size of the precursors increases there is a clear trend to get more delocalized densities, and hence less compact structures which tend to be more polarizable as discussed above (see Fig 7). This observation is in fair agreement with the dense core model as a growing model for dendrimers. In contrast, the momentum space entropy does not show significant changes among the different structures as the dispersion of the values for this measure is very small as compared to the position entropy.

Finally, we investigate the information entropies in Hilbert space, Eqs. ( 11) and ( 12), in connection with the growing behavior of PAMAM dendrimers. It is important to mention that whereas Shannon entropies in real space represent costly and time consuming calculations, Hilbert space entropies do not pose additional computational efforts as to the theoretic-information analyses concerns, of course the obtaining of the wave functions and the NAP values represent a challenge for electronic structure calculations and the present computation capabilities available to us. Thus, we have performed the necessary calculations at the HF/3-21G* level for analyzing additional structures, the trimer conformations T2 trhough T4, along with G1 through G3 dendrimers (G1 with 228 atoms, G2 with 516 atoms, and G3 with 1092 atoms). In Figure 10 we (ii) the global information content of the systems, H(A), which increases monotonically as one would expect from a thermodynamic point of view (entropy). A particular feature that may be noted from Figure 9 is the capacity of H(A) of measuring the atomic and electronic content of the systems, regardless of its conformational structure, which is characteristic of the energy. The relevancy of these results might be assessed by considering that the equivalent information in real space implied the calculation of position and momentum space entropies of the Shannon type which, taking into account the size of the systems (1023 atoms for G3 dendrimer), represents indeed a formidable task to compute, even by taking into consideration that the integration quadratures were guided by promolecular grids [START_REF]The grids obtained by use of AUTOM (Ref. 50) were obtained by using promolecular densities as generating kernel functions. For dendrimers G0 through G3, with a relative tolerance of 1x10 -5[END_REF]. Ongoing research is being undertaken in our laboratories to extend the study to higher generation PAMAM dendrimers mainly on the side of the Hilbert space framework.

CONCLUSION

Throughout this investigation we have employed selected polymer science parameters along with chemical reactivity descriptors which show numerical evidence supporting the dense-core model of dendrimers Besides, we have corroborated through higher level calculations which take into account the effects of electron correlation, that the behavior observed at the HF level depicts basically the same physical and chemical features. These results allow us to perform a more demanding computational study at the HF level in order to study the growing behavior of dendrimer precursors from a theoretic-information perspective. Thus, it was shown that Shannon entropies defined in real space, S r and S p , as well as the information measures in Hilbert space, H(A) and H(A|B), are capable of revealing the dense core growing behavior of dendrimers, by showing that bigger molecules possess more delocalized electronic distributions in such a way to span their molecular distributions as the molecular size increases. 
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  I x , I y and I z ) is an invariant of the shape tensor G, giving 2 g R , which is the mean-square radius of gyration that provides a quantitative characterization of the dendrimer size.

  r) and γ(p) are normalized to unity and denote the molecular electron density distributions in the position and momentum spaces, respectively. The Shannon entropy behaves like a measure of delocalization or lack of structure of the electronic density in the position space and

  asphericity factor, while Figures2 through 4show the moment of inertia ratios, the radius of gyration and the asphericity factor, respectively, for the different G0-precursors and the G0 dendrimer.

  Shannon entropy H(A) for all the PAMAM G0-precursors along with the G0 through G3 dendrimers. This measure allows to determine the global information content of the systems and consequently we may observe from Figure10that H(A) shows an increasing behavior as the size of the precursors and dendrimers increases. This again supports the above discussed dense-core model of dendrimers as bigger molecules show more uncertainty in Hilbert space, which corresponds to less compact densities in real space and hence to more delocalized electronic distributions.Furthermore, in Figure11we have plotted the Kullback-Leibler relative entropy in Hilbert space H(A|B), along with the total energy values for all dendrimer precursors and dendrimers G0 through G3, calculated at the HF/3-21G* level. The Kullback-Leibler measure represents a distance from a reference probability distribution, which in this case we have set for the EDA molecule (which is embedded in all the structures). We may observe from the Figure11that as the molecules depart from EDA the Hilbert information distance increases in a monotonically fashion which reflects the core-dense growing behavior of dendrimers by simply measuring the information distance between EDA and the increasingly bigger molecules. Assuming that dendrimers follow a hollow-core model of growth and hence a dense shell model, the H(A|B) trend would have been just the opposite.Interestingly,Figures 10 and 11 show the ability of these quantum measures to reveal and corroborate two simple facts already discussed in the literature[START_REF] Ballauff | Dendrimers in Solution: Insight from Theory and Simulation[END_REF]:(i) the validity of the core-dense model witnessed by the mutual von Neumann entropy of the marginal type, as the H(A|B) Hilbert distance increases monotonically in going from the precursors to higher generation dendrimers, and
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 2 Figure 2. The radius of gyration R g as a function of generation for the G0-precursors and the G0-PAMAM dendrimer calculated at the HF/3-21G* level of theory.
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 3 Figure 3. Moment of inertia aspect ratios I Z /I x (empty cricles), I Z /I y (solid boxes) for the G0precursors and the G0-PAMAM dendrimer calculated at the HF/3-21G* level of theory.
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 4 Figure 4. The asphericity parameter δ as a function of generation for the G0-precursors and the
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 5 Figure 5. The hardness η values for the G0-precursors and G0 dendrimer at the HF(/3-21G*
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 6 Figure 6. The electrophilicity index for the G0-precursors and the G0 dendrimer at the HF/3-
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 7 Figure 7. The softness "S" values for the G0-precursors and the G0 dendrimer at the HF/3-

Figure 8 .

 8 Figure 8. Shannon entropy sum (empty circles) and the total energies in a.u. (empty triangles) for

Figure 9 .

 9 Figure 9. Shannon entropies in position (triangles) and momentum (stars) spaces (Eqs. 9 and 10)

Figure 10 .

 10 Figure 10. Shannon entropy in Hilbert space, H(A) from Eq. 9 (stars), and the total Energy

Figure 11 .

 11 Figure 11. Kullback-Leibler entropy in Hilbert space, H(A|B) from Eq. 10 (stars), and the total

Table 1 .

 1 Values for the total dipole moment and its components [Debye] for the PAMAM-G0 precursors and G0 dendrimer calculated at the HF/3-21G* level of theory.

	Molecule	µ x	µ y		µ z	µ TOTAL
	EDA	0.0	0.0		0.0	0.0
	M1	-0.477	0.745			0.699	3.365
	M2	1.073	0.702			0.594	2.509
	M3	o r 1.073	0.702			0.594	5.826
	M4 M5 D1 D2	0.042 P -0.216 e -0.814 e 0.916 0.644 -1.678 r 1.131 -3.314		0.481 0.969 4.490 -0.221	2.368 2.583 4.479 4.334
	T1	0.164	R 0.893		1.389	2.267
	TT1	3.114	e -0.450	-1.227	3.377
	TT2 G0	4.729 3.041	1.060 -7.293	v i e	1.075 1.488	4.964 3.241
					w
						O n l
						y

TABLE 2 .

 2 Values for the principal moments of inertia Ix, Iy, Iz [a.u.], the radius of gyration (R g )

	[a.u.], and the parameter of asphericity δ for the precursors and dendrimer G0 calculated at the
	HF/3-21G* level of theory.				
	Molecule	I x	I y	I x	R g	δ
	EDA	486	71	495	32.4	0.159
	M1	3001	1044	2823	82.8	0.075
	M2	2089	3218	1571	82.9	0.045
	M3	2090	3218	1571	82.9	0.045
	M4	1762	1574	1813	71.8	0.002
	M5	1721	3028	1965	81.9	0.032
	D1	3152	5286	6231	121.1	0.035
	D2	5174	2142	6782	118.7	0.084
	T1	14936	18993	32820	258.4	0.059
	TT1	21767	26043	42123	300.0	0.043
	TT2	28212	20641	43350	303.6	0.047
	G0	42929	46745	26720	341.2	0.025
	From Table 2 and Figure 2 we may assess the size of the dendrimers through the radius of
	gyration. As expected, R g values show a constant increasing trend in going from the monomers up

TABLE 3 .

 3 Values for the total energies, frontier orbital energies, hardness (η) and the

	electrophilicity index (ω) in atomic units for the G0-precursors and dendrimer G0 at the HF/3-
	21G* (first row), MP2/6-311+G* (second row) and B3LYP/6-311++G** (third row) levels.

  To the best of our knowledge the results presented in this work represent benchmark calculations for ES ab initio studies at three different levels of theory and with the inclusion of electron correlation. Thus, from the present study we may conclude that it is feasible to employ ES ab initio methods to analyze PAMAM-EDA dendrimers, at least for low levels of theory, revealing the same basic features of more thorough studies of Monte Carlo and atomistic Molecular Dynamics type[START_REF] Maiti | Structure of PAMAM Dendrimers: Generations 1 through 11[END_REF]. It is also worth mentioning that chemical reactivity indexes like the ones employed here may provide deeper insights into the structural properties and growing behavior of dendrimers. An important result of this work is the application of Hilbert space information measures to PAMAM-dendrimers, which were shown to reveal the same basic features of equivalent information measures in real space, which require much more expensive computations though[54].DGSCA-UNAM, the Sección de Supercomputacion at CSIRC-Universidad de Granada, and the Laboratorio de Supercómputo y Visualización at UAM is gratefully acknowledged. processor). So that, it is highly desirable to employ large array supercomputers to accomplish this kind of studies in a reasonable time.
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