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Reply to Reviewer: 
 
We want to thank the reviewers for their comments and very pertinent suggestions. The 
manuscript has been revised according to their recommendations as shown in the following. 
 
1) Reviewer’s comment point 1: 
 
Response: We agree with the reviewer comment, there is typographic error in equation (1):  
Considering the corresponding signs of in (1-R)/(1+R), we obtain: 
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2) Reviewer’s comment point 2: 
 
Response:  Figure 6.a illustrates the impact of the channel length on the oscillation frequency. 
For the smallest length the oscillation frequency increases due to SCE/DIBL. But for long 
channel case the transport (ballistic or quasi-ballistic) is predominant, thus oscillation 
frequency decrease in quasi-ballistic case because this depends on the channel length and is 
constants for ballistic transport as the Ion. But, effectively we suspect that the increase of the 
oscillation frequency in the ballistic case is not realistic due to numerical noise in our code. In 
fact this is not really important for the objective of our study, which is dedicated to the 
simulation of short length. 
 
3) Reviewer’s comment point 3: 
 
Response: The figure 9 has been corrected to include the structural parameter of the DG 
MOSFET: 
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ABSTRACT 

 

In this paper we present a compact model of Double-Gate MOSFET architecture 

including ballistic and quasi-ballistic transport down to 20 nm channel length. In 

addition, this original model takes into account short channel effects (SCE/DIBL) by a 

simple analytical approach. The quasi-ballistic transport description is based on 

Lundstrom’s backscattering coefficient given by the so-called flux method. We also 

include an original description of scattering of processes by introducing the “dynamical 

mean free path” formalism. Moreover, we implemented our model in a Verilog-A 

environment, and applied it to the simulation of circuit elements such as CMOS 

inverters and Ring Oscillators to analyze the impact of ballistic/quasi-ballistic transport 

on circuit performances. Finally, in order to validate our work, we confronted this 

model with numerical simulation of CMOS and Ring Oscillator in ballistic case. 

 

Keywords: Double-Gate MOSFET, ballistic/quasi-ballistic transport, compact model, 

Ring Oscillator. 
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1. Introduction 

As the MOSFET continues to shrink rapidly, emerging physical phenomena, such as 

ballistic transport, have to be considered in the modelling and simulation of ultra-scaled 

devices. Future Double-Gate MOSFETs (DGMOS Fig. 1), designed with channel 

lengths in the decananometer scale, are expected to be more ballistic or quasi-ballistic 

than diffusive. At this level of miniaturisation is essential to directly evaluate the impact 

of ballistic and quasi-ballistic transport at circuit level through simulation of several 

circuit demonstrators. The implementation of compact models in Verilog-A (Smartspice 

[1]) environment offers the opportunity to describe as accurately as possible the physics 

of transport and to analyze its impact on various circuit elements. 

Several analytical models based on the Drift-Diffusion formalism demonstrate that it is 

possible to introduce the diffusive transport in compact modelling. However, when the 

channel length approaches the value of mean free path, the mobility definition can no 

more strictly explain the electronic transport in the device [2]. In this case we use the 

flux theory and the main parameter of this approach is the backscattering coefficient, 

which expresses the ballistic and the quasi-ballistic transport. Some well-known works 

performed by Lundstrom et al [3-5] demonstrate the usefulness of the flux theory in 

qualitatively describing quasi-ballistic transport in compact modelling. 

More recently several works [6-8] proposed some accurate solution to describe transport 

for nanoscale DG MOSFETs including quantum confinement or the effect of tunneling 

through the source-drain potential barrier on devices characteristic. But few works [9-

10] exposed the influence of ballistic/quasi-ballistic transport on the operation of circuit 

demonstrator. 
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In this work we demonstrate the feasibility of a simulation study of ballistic/quasi-

ballistic transport at circuit level and we show the impact of this advanced transport on 

the switch of CMOS inverter and the oscillation frequency of ring oscillator. This paper 

is organized as follows: the section I explains the model physics and the corresponding 

assumptions. In part II, we explain our device simulation in ballistic and quasi-ballistic 

case. The part III highlights the qualitative connection between physics of quasi-

ballistic transport and its impact on circuit performance. Finally, we compare our model 

with numerical simulation in terms of CMOS switch and oscillation frequency. 

 

2. DG MOSFET model 

A. Ballistic and quasi-ballistic transport 

The proposed analytical model (implemented in Verilog-A environment) is based on the 

well-known work of Natori [10] and Lundstrom [3]. This formula describes the ballistic 

and quasi-ballistic current: 
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(1) 

where W is the gate width, Cox is the gate oxide capacitance, VGS is the gate to source 

voltage, VDS is the drain to source voltage, VT is the threshold voltage, k is the 

Boltzmann constant, q is the electron charge and T is the lattice temperature. 

In addition, Lundstrom et al. developed physical compact models describing the device 

operation in quasi-ballistic regimes using the backscattering coefficient R [4]: 

λ+
=

kT

kT

L

L
R ; 

DS
ckT Vq

Tk
LL

.

.
.=  (2) 

where λ is the mean free path and LkT is the distance over which the channel potential 

drops by kT/q compared to the peak value of the source to channel barrier. Physically, 

Page 5 of 51

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

LkT represents the critical distance over which scattering events modify the current; the 

limit and the demonstration of the backscattering coefficient are exposed [12]. 

We consider here the Dynamical mean Free Path which is a “local free path of ballistic 

carriers” [8]. This characteristic length represents the average distance to be crossed 

before the next scattering event. This approach considers that each carrier is ballistic as 

long as any event does not disturb its trajectory. The dynamic mean free path (dfp) 

connects the ballistic velocity and all interactions (coulomb and acoustic/optical phonon 

interaction) experienced by carriers crossing the channel. The scattering process with 

impurities (τimp) and phonon interactions (τph) are calculated as in [8] and the value of 

dfp used here is 27 nm in the intrinsic silicon channel. In practice, dfp replaces λ to 

describe quasi-ballistic transport: 

totbalvdfp τ.= ;
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where m* is the mass in direction of transport, vbal the ballistic velocity, τtot the total 

scattering rate and εbal the carrier energy. 

B. Short channel effects 

To obtain an accurate model and describe all electrostatic effects, we have also 

introduced Short Channel Effect and Drain Induced Barrier Lowering (SCE/DIBL) 

using the Suzuki’s model [13] for VT. The starting point of this model is the Poisson 

equation, where the depleted and the electron charges are neglected: 
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Supposing a parabolic dependence in the y-direction: 
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where η=ψs(x)-VGS, ψs(x) is the surface potential, εSi and εox are, respectively, the silicon 

and the oxide permittivity. The solution of equation (5.a) is: 
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where the boundary conditions are ηS=ψS(0)-VGS at the source and ηD=ψS(Lc)-VGS at the 

drain. ψS(0) is the built-in potential equal to (k.T/q).ln(ND.NA/ni²), ND and NA are, 

respectively, the doping level in the source/drain regions and in the channel. 

The expression of the threshold voltage shift (∆VT) due to SCE/DIBL depends on the 

value of the minimum potential, given by: 

ληηψ .4
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∆VT is then obtained from the following equation [13]: 

ληη .4...2
cL

DST eV
−

=∆  (9) 

After some algebraic manipulation, we find the analytical expression of ∆VT. Thus, VT 

in equation (1) is modified by ∆VT, as follows: 

TthT VVV ∆−=  (9) 

where Vth and ∆VT are the long channel threshold voltage and its variation due to 

SCE/DIBL, respectively. 
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Finally, the above-threshold regime is linked to the subthreshold regime using an 

interpolation function based on the subthreshold swing S parameter, also defined by 

Suzuki in [13]: 

1

minmin )(
).10ln(.

.
−









=

GS

S

dV

xd

q

Tk
S

ψ
 (10) 

This assures the perfect continuity of our model between on-state regime and off-state 

regime. 

3. Simulation RESULTS 

A. Device simulations 

After implementation in Verilog-A environment, the model has been used to simulate 

the DGMOS structure schematically presented in Figure 1. The source and drain regions 

are heavily doped (1×1020 cm-3) and an intrinsic thin silicon channel is considered. The 

channel length varies from 10 nm to 200 nm; a gate oxide of 1.2 nm thick and a midgap 

metal gate are also considered.  

It is well-known that the ballistic current is independent of channel length [11] except 

when SCE or DIBL appears. In order to clearly confirm this point, simulations have 

been performed for several length (20, 25, 30, 40, 50, 100 and 200 nm) and considering 

two types of transport (quasi-ballistic and ballistic; Fig. 2). Note that for the ballistic 

case, the mean free path value has been chosen to be extremely large compared to the 

channel length. In contrast to the ballistic case, the quasi-ballistic transport has the same 

behaviour as that of diffusive transport and the form of the output characteristics 

depends on Lc. 

Figure 3 shows the drain current versus the gate voltage characteristics for the 

DGnMOS and DGpMOS simulated devices at VDS=0.7V. In this approach, we suppose 

that the transport description (for ballistic and quasi-ballistic case) for holes is identical 

to that of electrons, with uniquely changing the thermal velocity value in non-
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degenerate conditions (Fig. 1b et 1c, [14]). As expected, the ballistic and quasi-ballistic 

current shows a perfect continuity between the above and the subthreshold regime (as 

illustrated on Fig. 3a). Finally, figure 3b shows that the DGnMOS and DGpMOS have 

the same behaviour in terms of transport, with different current levels due to the 

different values of thermal velocity. 

B. Circuit simulations 

In addition to the simulation of single device operation, we have simulated different 

circuit elements such as CMOS inverters and ring oscillators (Fig. 1b and 1c) to show 

the impact of ballistic/quasi-ballistic transport at circuit level. 

The output voltage (Vout) of the CMOS inverter switches more sharply from the “1” 

state to the “0” state in the ballistic case than in quasi-ballistic transport (Fig. 4). The 

switch of the CMOS inverter depends on the limit between linear and saturation region, 

which controls the switch between transistors. When SCE/DIBL occur, the transition 

between linear and saturate regime is modified, and the switch from the “1” state to the 

“0” state is less sharp. In the quasi-ballistic case, the abruptness of the CMOS 

characteristic is strongly deteriorated. In conclusion, these results prove that the ballistic 

transport improves the switch and the static performances of the CMOS inverter. 

Figure 5 shows the oscillation frequency as a function of the charge capacitance for two 

channel lengths: 100 and 30 nm. As expected the oscillation frequency is reduced when 

the charge capacitance increases, due to variation of the propagation time through the 

inverters. We can also note the strong influence of short channel effects that increase the 

current value and reduce the difference between the oscillation frequencies in quasi-

ballistic transport compared with ballistic transport. 

Moreover, we thoroughly studied the influence of parasitic elements and phenomena on 

circuit performances. Figure 6.a illustrates the impact of two charge capacitances on the 

oscillation frequency versus the channel length. Figure 6.b shows the Ion current and VT 
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versus the channel length. This last figure demonstrates the strong influence of 

SCE/DIBL effect on the transient performance. The explanation is that when 

SCE/DIBL effects occur: 

- Firstly, the benefit of ballistic transport (versus quasi-ballistic) on the switch of 

the CMOS inverters is hidden (inset (a) and (b) of Fig. 4). 

- Secondly, the Ion current strongly increased (Fig. 6.b).  

Consequently the oscillation frequency in ballistic and quasi-ballistic case is less 

influenced by the value of the dynamic mean free path. 

These results show that the oscillation frequency is directly influenced by the type of 

transport (ballistic versus quasi-ballistic) which changes strongly the static and the 

transient performances. However, parasitic phenomena such as interconnect 

capacitances or SCE/DIBL are essential parameters in the analysis of circuit 

performances even when the intrinsic behaviour of transistors is dominated by ballistic 

transport. 

4. Comparison with numerical Simulation 

A. Numerical simulation of ballistic transport using the quasi-ballistic mobility concept 

In a previous work we enhanced the pioneering approach of quasi-ballistic mobility 

proposed by Rhew et al [15] and we introduced it into TCAD simulator, in order to 

numerically simulate the ballistic/quasi-ballistic transport using a TCAD tool. This 

approach, extensively presented in [9], is used here to validate our analytical model. In 

the following, we shortly remind the basic equations of this approach, based on the flux 

theory or McKelvey’s flux method [2], [15].  

Figure 7 shows the schematics of the flux evolution in the channel (in the direction of 

transport). The two flux densities, FD and FS, incident on a semiconductor slab with 

thickness dx, transmit or reflect with the corresponding backscattering probabilities per 

length r [15]: 
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where r is the scattering probabilities in the presence of an electric field and the symbols 

“→” and “←” of scattering probabilities represent the carrier’s velocity components 

that are parallel or anti-parallel, respectively, to the electric field direction. Adding 

equations (11) and (12) and considering F=FD-FS and n=(FD+FS)/vth (where vth is the 

thermal velocity) we obtain: 
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We use here the expression of scattering probabilities proposed in [15] (with the 

assumption of non-degenerate gas) for the negative charge carrier: 

1−

←
= mfpr ; 

Tk

xEq
mfpr

.

)(.1 −= −

→  
(15) 

where k is the Boltzmann constant, T is the lattice temperature, q is the electron charge, 

mfp is the mean free path and E is the electric field in the direction of transport. By 

analogy to the classical drift-diffusion approach, we obtain the Einstein relation; we 

define then a new mobility-like parameter, µqb, called quasi-ballistic mobility [7]: 

)(
.

.
1

.2 xE
q

Tk

mfp

vth
qb

+
=µ  (16) 

This quasi-ballistic mobility is introduced in TCAD software [9] (ATLAS SILVACO 

[16]). This approach represents an enhanced Drift-Diffusion-like approach to include 

quasi-ballistic and ballistic effects in the TCAD simulator. The quasi-ballistic mobility 

model is implemented using an explicit C-interpreter function describing the relation 

between the mobility and the parallel electric field (equation (16)). All other quantities 
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(such as the electrostatic potential, electric field, carrier concentration, current densities 

...) are computed as usual in TCAD simulation, by solving the Poisson equation coupled 

to drift-diffusion transport equation. The details and the validation of this approach are 

explained in [9] and illustrated with simulations of small circuits based on DGMOS 

technology. 

B. Comparison between numerical and analytical simulations 

In order to validate the analytical model, we have compared our results with numerical 

simulation. Figure 8 compares the switch of the CMOS inverter in ballistic case for 

different channel lengths and illustrates the difference between our analytical model and 

numerical simulation. 

For the long channel case (Lc=100 nm), the ballistic switch for numerical and analytical 

simulation perfectly matches. But for short channel (Lc=20 nm) a small error is found in 

the comparison with numerical data. This is due to the fact that for Lc=20 nm we 

approach the validity limit of our analytical model (which is Lc=2.tSi in the description 

of ∆VT). Finally, the numerical simulations confirm the previous remark (exposed in 

paragraph 3) that short channel effects deteriorate the switch of the CMOS inverter. 

Figure 9 compares the analytical and numerical oscillation frequency (for tSi = 5 nm, 

tox = 1.2 nm, Lc=25 nm) in the ballistic case for different charge capacitances. We note 

that an identical behaviour is obtained for the numerical and the analytical data, which 

confirms the result of paragraph 3. Although, a small error exists (error attributed to the 

Ion value, which is not exactly the same in analytical and numerical case), our analytical 

model shows a good agreement with the numerical simulation. 

5. Conclusion  

In this work, a compact model for DGMOS taking into account ballistic and quasi-

ballistic transport has been proposed and implemented in Verilog-A environment. Short 

channel effects and an interpolation function to link the above and the subthreshold 
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voltage have been included to obtain a complete description of current characteristics. 

The dynamical mean free path definition was used to describe scattering processes with 

impurities and phonons. Finally, the model has been used to simulate two different 

small-circuits (CMOS inverter and ring oscillators) and to show the significant impact 

of ballistic/quasi-ballistic transport on the switch of CMOS inverter and the oscillation 

frequency of ring oscillator. Our simulation results prove that the ballistic transport 

improves the switch and the static performances of the CMOS inverter, and increases 

the oscillation frequency of ring oscillators. Finally, we have compared this model with 

numerical simulation in ballistic case; this comparison also validates our conclusions on 

the influence of short channel effects and ballistic transport on the operation of circuit 

elements. 

This work also demonstrates the feasibility of a simulation study of ballistic/quasi-

ballistic transport at circuit level and highlights the direct relation between the type of 

transport and static or transient performances of small-circuits. 
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Figure captions 

 

Figure 1. Double-Gate MOSFET (a), CMOS inverter (b), ring oscillator (c) and 

definition of the main geometrical and electrical parameters. 

 

Figure 2. Drain current versus VDS for Lc=200, 100, 50, 40, 30, 25 and 20 nm and 

VGS=0.7 V. 

 

Figure 3. Drain current ((a) log and (b) lin scale) versus VGS for Lc=100, 30 and 20 nm. 

Solid line for ballistic transport and dashed line for quasi-ballistic transport. 

 

Figure 4. Vout versus Vin in a CMOS inverter. [Inset (a) and (b): transfer curve in 

ballistic and quasi-ballistic case for Lc=100, 30 and 20 nm]. 

 

Figure 5. Oscillation frequency versus the charge capacitance for Lc=100 and 30nm 

 

Figure 6. (a) Oscillation frequency versus the channel length for C=0.2 and 0.3 pF. (b) 

Drain current at VDS=VGS=0.7 V and threshold voltage versus the channel 

 

Figure 7. Description of the flux method parameters. 

 

Figure 8. Vout versus Vin in a CMOS inverter for tSi = 5 nm and tox = 1.2 nm. 

Comparison between numerical simulation (diamond) and our analytical model (solid 

line). 
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Figure 9. Oscillation frequency versus charge capacitance for tSi = 5 nm, tox = 1.2 nm, 

Lc=25 nm. Comparison between our analytical model (solid line) and numerical 

simulation [9] (circle). 
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Figure 2. Martinie et al. 
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Figure 3. Martinie et al. 
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Figure 4. Martinie et al. 
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Figure 5. Martinie et al. 
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Figure 6. Martinie et al. 

2 109

3 109

4 109

5 109

6 109

7 109

0 20 40 60 80 100

O
sc

ill
at

io
n 

fr
eq

u
en

cy
 (

H
z)

Channel length (nm)

C=0.3pF

C=0.2pF

Ballistic
Quasi-Ballistic

2000

2500

3000

3500

4000

4500

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120

D
ra

in
 c

u
rr

en
t 

( µµ µµ
A

/ µµ µµ
m

) T
h

resh
o

ld
 vo

ltag
e (V

)

Channel length (nm)

Ballistic
Quasi-Ballistic

(b)

(a)

Page 23 of 51

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Martinie et al. 
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Figure 8. Martinie et al. 
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Figure 9. Martinie et al. 
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ABSTRACT 

 

In this paper we present a compact model of Double-Gate MOSFET architecture 

including ballistic and quasi-ballistic transport down to 20 nm channel length. In 

addition, this original model takes into account short channel effects (SCE/DIBL) by a 

simple analytical approach. The quasi-ballistic transport description is based on 

Lundstrom’s backscattering coefficient given by the so-called flux method. We also 

include an original description of scattering of processes by introducing the “dynamical 

mean free path” formalism. Moreover, we implemented our model in a Verilog-A 

environment, and applied it to the simulation of circuit elements such as CMOS 

inverters and Ring Oscillators to analyze the impact of ballistic/quasi-ballistic transport 

on circuit performances. Finally, in order to validate our work, we confronted this 

model with numerical simulation of CMOS and Ring Oscillator in ballistic case. 

 

Keywords: Double-Gate MOSFET, ballistic/quasi-ballistic transport, compact model, 

Ring Oscillator. 
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1. Introduction 

As the MOSFET continues to shrink rapidly, emerging physical phenomena, such as 

ballistic transport, have to be considered in the modelling and simulation of ultra-scaled 

devices. Future Double-Gate MOSFETs (DGMOS Fig. 1), designed with channel 

lengths in the decananometer scale, are expected to be more ballistic or quasi-ballistic 

than diffusive. At this level of miniaturisation is essential to directly evaluate the impact 

of ballistic and quasi-ballistic transport at circuit level through simulation of several 

circuit demonstrators. The implementation of compact models in Verilog-A (Smartspice 

[1]) environment offers the opportunity to describe as accurately as possible the physics 

of transport and to analyze its impact on various circuit elements. 

Several analytical models based on the Drift-Diffusion formalism demonstrate that it is 

possible to introduce the diffusive transport in compact modelling. However, when the 

channel length approaches the value of mean free path, the mobility definition can no 

more strictly explain the electronic transport in the device [2]. In this case we use the 

flux theory and the main parameter of this approach is the backscattering coefficient, 

which expresses the ballistic and the quasi-ballistic transport. Some well-known works 

performed by Lundstrom et al [3-5] demonstrate the usefulness of the flux theory in 

qualitatively describing quasi-ballistic transport in compact modelling. 

More recently several works [6-8] proposed some accurate solution to describe transport 

for nanoscale DG MOSFETs including quantum confinement or the effect of tunneling 

through the source-drain potential barrier on devices characteristic. But few works [9-

10] exposed the influence of ballistic/quasi-ballistic transport on the operation of circuit 

demonstrator. 
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In this work we demonstrate the feasibility of a simulation study of ballistic/quasi-

ballistic transport at circuit level and we show the impact of this advanced transport on 

the switch of CMOS inverter and the oscillation frequency of ring oscillator. This paper 

is organized as follows: the section I explains the model physics and the corresponding 

assumptions. In part II, we explain our device simulation in ballistic and quasi-ballistic 

case. The part III highlights the qualitative connection between physics of quasi-

ballistic transport and its impact on circuit performance. Finally, we compare our model 

with numerical simulation in terms of CMOS switch and oscillation frequency. 

 

2. DG MOSFET model 

A. Ballistic and quasi-ballistic transport 

The proposed analytical model (implemented in Verilog-A environment) is based on the 

well-known work of Natori [10] and Lundstrom [3]. This formula describes the ballistic 

and quasi-ballistic current: 
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(1) 

where W is the gate width, Cox is the gate oxide capacitance, VGS is the gate to source 

voltage, VDS is the drain to source voltage, VT is the threshold voltage, k is the 

Boltzmann constant, q is the electron charge and T is the lattice temperature. 

In addition, Lundstrom et al. developed physical compact models describing the device 

operation in quasi-ballistic regimes using the backscattering coefficient R [4]: 

λ+
=

kT

kT

L

L
R ; 

DS
ckT Vq

Tk
LL

.

.
.=  (2) 

where λ is the mean free path and LkT is the distance over which the channel potential 

drops by kT/q compared to the peak value of the source to channel barrier. Physically, 
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LkT represents the critical distance over which scattering events modify the current; the 

limit and the demonstration of the backscattering coefficient are exposed [12]. 

We consider here the Dynamical mean Free Path which is a “local free path of ballistic 

carriers” [8]. This characteristic length represents the average distance to be crossed 

before the next scattering event. This approach considers that each carrier is ballistic as 

long as any event does not disturb its trajectory. The dynamic mean free path (dfp) 

connects the ballistic velocity and all interactions (coulomb and acoustic/optical phonon 

interaction) experienced by carriers crossing the channel. The scattering process with 

impurities (τimp) and phonon interactions (τph) are calculated as in [8] and the value of 

dfp used here is 27 nm in the intrinsic silicon channel. In practice, dfp replaces λ to 

describe quasi-ballistic transport: 

totbalvdfp τ.= ;
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where m* is the mass in direction of transport, vbal the ballistic velocity, τtot the total 

scattering rate and εbal the carrier energy. 

B. Short channel effects 

To obtain an accurate model and describe all electrostatic effects, we have also 

introduced Short Channel Effect and Drain Induced Barrier Lowering (SCE/DIBL) 

using the Suzuki’s model [13] for VT. The starting point of this model is the Poisson 

equation, where the depleted and the electron charges are neglected: 

0
.),(),(

2

2

2

2

≈=+
Si

ANq

dy

yxd

dx

yxd

ε
ψψ

 (4) 

Supposing a parabolic dependence in the y-direction: 

Page 31 of 51

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

0
)()(

22

2

=−
λ

ηη x

dx

xd
 (5.a) 

ox

oxSiSi tt

ε
ελ ..=  (5.b) 

where η=ψs(x)-VGS, ψs(x) is the surface potential, εSi and εox are, respectively, the silicon 

and the oxide permittivity. The solution of equation (5.a) is: 
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where the boundary conditions are ηS=ψS(0)-VGS at the source and ηD=ψS(Lc)-VGS at the 

drain. ψS(0) is the built-in potential equal to (k.T/q).ln(ND.NA/ni²), ND and NA are, 

respectively, the doping level in the source/drain regions and in the channel. 

The expression of the threshold voltage shift (∆VT) due to SCE/DIBL depends on the 

value of the minimum potential, given by: 

ληηψ .4
minmin ...2)(

cL

DSGSS eVx
−

+=  (7) 
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x

η
ηλ

ln.
22min  (8) 

∆VT is then obtained from the following equation [13]: 

ληη .4...2
cL

DST eV
−

=∆  (9) 

After some algebraic manipulation, we find the analytical expression of ∆VT. Thus, VT 

in equation (1) is modified by ∆VT, as follows: 

TthT VVV ∆−=  (9) 

where Vth and ∆VT are the long channel threshold voltage and its variation due to 

SCE/DIBL, respectively. 
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Finally, the above-threshold regime is linked to the subthreshold regime using an 

interpolation function based on the subthreshold swing S parameter, also defined by 

Suzuki in [13]: 

1

minmin )(
).10ln(.

.
−









=

GS

S

dV

xd

q

Tk
S

ψ
 (10) 

This assures the perfect continuity of our model between on-state regime and off-state 

regime. 

3. Simulation RESULTS 

A. Device simulations 

After implementation in Verilog-A environment, the model has been used to simulate 

the DGMOS structure schematically presented in Figure 1. The source and drain regions 

are heavily doped (1×1020 cm-3) and an intrinsic thin silicon channel is considered. The 

channel length varies from 10 nm to 200 nm; a gate oxide of 1.2 nm thick and a midgap 

metal gate are also considered.  

It is well-known that the ballistic current is independent of channel length [11] except 

when SCE or DIBL appears. In order to clearly confirm this point, simulations have 

been performed for several length (20, 25, 30, 40, 50, 100 and 200 nm) and considering 

two types of transport (quasi-ballistic and ballistic; Fig. 2). Note that for the ballistic 

case, the mean free path value has been chosen to be extremely large compared to the 

channel length. In contrast to the ballistic case, the quasi-ballistic transport has the same 

behaviour as that of diffusive transport and the form of the output characteristics 

depends on Lc. 

Figure 3 shows the drain current versus the gate voltage characteristics for the 

DGnMOS and DGpMOS simulated devices at VDS=0.7V. In this approach, we suppose 

that the transport description (for ballistic and quasi-ballistic case) for holes is identical 

to that of electrons, with uniquely changing the thermal velocity value in non-
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degenerate conditions (Fig. 1b et 1c, [14]). As expected, the ballistic and quasi-ballistic 

current shows a perfect continuity between the above and the subthreshold regime (as 

illustrated on Fig. 3a). Finally, figure 3b shows that the DGnMOS and DGpMOS have 

the same behaviour in terms of transport, with different current levels due to the 

different values of thermal velocity. 

B. Circuit simulations 

In addition to the simulation of single device operation, we have simulated different 

circuit elements such as CMOS inverters and ring oscillators (Fig. 1b and 1c) to show 

the impact of ballistic/quasi-ballistic transport at circuit level. 

The output voltage (Vout) of the CMOS inverter switches more sharply from the “1” 

state to the “0” state in the ballistic case than in quasi-ballistic transport (Fig. 4). The 

switch of the CMOS inverter depends on the limit between linear and saturation region, 

which controls the switch between transistors. When SCE/DIBL occur, the transition 

between linear and saturate regime is modified, and the switch from the “1” state to the 

“0” state is less sharp. In the quasi-ballistic case, the abruptness of the CMOS 

characteristic is strongly deteriorated. In conclusion, these results prove that the ballistic 

transport improves the switch and the static performances of the CMOS inverter. 

Figure 5 shows the oscillation frequency as a function of the charge capacitance for two 

channel lengths: 100 and 30 nm. As expected the oscillation frequency is reduced when 

the charge capacitance increases, due to variation of the propagation time through the 

inverters. We can also note the strong influence of short channel effects that increase the 

current value and reduce the difference between the oscillation frequencies in quasi-

ballistic transport compared with ballistic transport. 

Moreover, we thoroughly studied the influence of parasitic elements and phenomena on 

circuit performances. Figure 6.a illustrates the impact of two charge capacitances on the 

oscillation frequency versus the channel length. Figure 6.b shows the Ion current and VT 
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versus the channel length. This last figure demonstrates the strong influence of 

SCE/DIBL effect on the transient performance. The explanation is that when 

SCE/DIBL effects occur: 

- Firstly, the benefit of ballistic transport (versus quasi-ballistic) on the switch of 

the CMOS inverters is hidden (inset (a) and (b) of Fig. 4). 

- Secondly, the Ion current strongly increased (Fig. 6.b).  

Consequently the oscillation frequency in ballistic and quasi-ballistic case is less 

influenced by the value of the dynamic mean free path. 

These results show that the oscillation frequency is directly influenced by the type of 

transport (ballistic versus quasi-ballistic) which changes strongly the static and the 

transient performances. However, parasitic phenomena such as interconnect 

capacitances or SCE/DIBL are essential parameters in the analysis of circuit 

performances even when the intrinsic behaviour of transistors is dominated by ballistic 

transport. 

4. Comparison with numerical Simulation 

A. Numerical simulation of ballistic transport using the quasi-ballistic mobility concept 

In a previous work we enhanced the pioneering approach of quasi-ballistic mobility 

proposed by Rhew et al [15] and we introduced it into TCAD simulator, in order to 

numerically simulate the ballistic/quasi-ballistic transport using a TCAD tool. This 

approach, extensively presented in [9], is used here to validate our analytical model. In 

the following, we shortly remind the basic equations of this approach, based on the flux 

theory or McKelvey’s flux method [2], [15].  

Figure 7 shows the schematics of the flux evolution in the channel (in the direction of 

transport). The two flux densities, FD and FS, incident on a semiconductor slab with 

thickness dx, transmit or reflect with the corresponding backscattering probabilities per 

length r [15]: 
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where r is the scattering probabilities in the presence of an electric field and the symbols 

“→” and “←” of scattering probabilities represent the carrier’s velocity components 

that are parallel or anti-parallel, respectively, to the electric field direction. Adding 

equations (11) and (12) and considering F=FD-FS and n=(FD+FS)/vth (where vth is the 

thermal velocity) we obtain: 
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We use here the expression of scattering probabilities proposed in [15] (with the 

assumption of non-degenerate gas) for the negative charge carrier: 

1−

←
= mfpr ; 

Tk

xEq
mfpr

.

)(.1 −= −

→  
(15) 

where k is the Boltzmann constant, T is the lattice temperature, q is the electron charge, 

mfp is the mean free path and E is the electric field in the direction of transport. By 

analogy to the classical drift-diffusion approach, we obtain the Einstein relation; we 

define then a new mobility-like parameter, µqb, called quasi-ballistic mobility [7]: 

)(
.

.
1

.2 xE
q

Tk

mfp

vth
qb

+
=µ  (16) 

This quasi-ballistic mobility is introduced in TCAD software [9] (ATLAS SILVACO 

[16]). This approach represents an enhanced Drift-Diffusion-like approach to include 

quasi-ballistic and ballistic effects in the TCAD simulator. The quasi-ballistic mobility 

model is implemented using an explicit C-interpreter function describing the relation 

between the mobility and the parallel electric field (equation (16)). All other quantities 
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(such as the electrostatic potential, electric field, carrier concentration, current densities 

...) are computed as usual in TCAD simulation, by solving the Poisson equation coupled 

to drift-diffusion transport equation. The details and the validation of this approach are 

explained in [9] and illustrated with simulations of small circuits based on DGMOS 

technology. 

B. Comparison between numerical and analytical simulations 

In order to validate the analytical model, we have compared our results with numerical 

simulation. Figure 8 compares the switch of the CMOS inverter in ballistic case for 

different channel lengths and illustrates the difference between our analytical model and 

numerical simulation. 

For the long channel case (Lc=100 nm), the ballistic switch for numerical and analytical 

simulation perfectly matches. But for short channel (Lc=20 nm) a small error is found in 

the comparison with numerical data. This is due to the fact that for Lc=20 nm we 

approach the validity limit of our analytical model (which is Lc=2.tSi in the description 

of ∆VT). Finally, the numerical simulations confirm the previous remark (exposed in 

paragraph 3) that short channel effects deteriorate the switch of the CMOS inverter. 

Figure 9 compares the analytical and numerical oscillation frequency (for tSi = 5 nm, 

tox = 1.2 nm, Lc=25 nm) in the ballistic case for different charge capacitances. We note 

that an identical behaviour is obtained for the numerical and the analytical data, which 

confirms the result of paragraph 3. Although, a small error exists (error attributed to the 

Ion value, which is not exactly the same in analytical and numerical case), our analytical 

model shows a good agreement with the numerical simulation. 

5. Conclusion  

In this work, a compact model for DGMOS taking into account ballistic and quasi-

ballistic transport has been proposed and implemented in Verilog-A environment. Short 

channel effects and an interpolation function to link the above and the subthreshold 
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voltage have been included to obtain a complete description of current characteristics. 

The dynamical mean free path definition was used to describe scattering processes with 

impurities and phonons. Finally, the model has been used to simulate two different 

small-circuits (CMOS inverter and ring oscillators) and to show the significant impact 

of ballistic/quasi-ballistic transport on the switch of CMOS inverter and the oscillation 

frequency of ring oscillator. Our simulation results prove that the ballistic transport 

improves the switch and the static performances of the CMOS inverter, and increases 

the oscillation frequency of ring oscillators. Finally, we have compared this model with 

numerical simulation in ballistic case; this comparison also validates our conclusions on 

the influence of short channel effects and ballistic transport on the operation of circuit 

elements. 

This work also demonstrates the feasibility of a simulation study of ballistic/quasi-

ballistic transport at circuit level and highlights the direct relation between the type of 

transport and static or transient performances of small-circuits. 
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Figure captions 

 

Figure 1. Double-Gate MOSFET (a), CMOS inverter (b), ring oscillator (c) and 

definition of the main geometrical and electrical parameters. 

 

Figure 2. Drain current versus VDS for Lc=200, 100, 50, 40, 30, 25 and 20 nm and 

VGS=0.7 V. 

 

Figure 3. Drain current ((a) log and (b) lin scale) versus VGS for Lc=100, 30 and 20 nm. 

Solid line for ballistic transport and dashed line for quasi-ballistic transport. 

 

Figure 4. Vout versus Vin in a CMOS inverter. [Inset (a) and (b): transfer curve in 

ballistic and quasi-ballistic case for Lc=100, 30 and 20 nm]. 

 

Figure 5. Oscillation frequency versus the charge capacitance for Lc=100 and 30nm 

 

Figure 6. (a) Oscillation frequency versus the channel length for C=0.2 and 0.3 pF. (b) 

Drain current at VDS=VGS=0.7 V and threshold voltage versus the channel 

 

Figure 7. Description of the flux method parameters. 

 

Figure 8. Vout versus Vin in a CMOS inverter for tSi = 5 nm and tox = 1.2 nm. 

Comparison between numerical simulation (diamond) and our analytical model (solid 

line). 
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Figure 9. Oscillation frequency versus charge capacitance for tSi = 5 nm, tox = 1.2 nm, 

Lc=25 nm. Comparison between our analytical model (solid line) and numerical 

simulation [9] (circle). 
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Figure 2. Martinie et al. 
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Figure 3. Martinie et al. 
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Figure 4. Martinie et al. 
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Figure 5. Martinie et al. 

6 108

8 108

109

3 109

5 109

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
sc

ill
at

io
n

 f
re

q
u

en
cy

 (
H

z)

Charge capacitance (pF)

Lc=100 nm

Lc=30 nm

Ballistic
Quasi-Ballistic

Page 47 of 51

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Martinie et al. 
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Figure 7. Martinie et al. 
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Figure 8. Martinie et al. 
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Figure 9. Martinie et al. 
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