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A metadynamics based approach to sampling crystallisation

events

D. Quigley and P. M. Rodger

Dept. of Chemistry and Centre for Scientific Computing,

University of Warwick,

Gibbet Hill Road, Coventry,

United Kingdom, CV4 7AL.

∗

(Dated: November 14, 2008)

Abstract

We discuss the practicalities of applying the metadynamics method to sampling crystallisation

events in molecular systems. Suitable choices for collective coordinates are presented along with

criteria for their parameterisation. Issues arising from finite-size effects are discussed with particular

reference to the generation of multiple clusters when biasing global order parameters. We also

consider the applicability of two methods for enhancing the accuracy of the reconstructed free

energy landscape. The discussion is illustrated with example data from freezing in the Lennard-

Jones and ice-water systems.

∗Electronic address: D.Quigley@warwick.ac.uk
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I. INTRODUCTION

A range of problems in manufacturing, chemical processing, geology and biology involve

crystallisation events. Molecular simulation of these processes is not, however, feasible us-

ing conventional methods. Often the process of interest takes place where the free energy

preference for crystallisation is small (e.g. weak subcooling of a melt) and the energy barrier

to forming a critical nucleus from which a bulk crystal can grow is substantial. The chance

of such an event occurring within the computer time available for conventional molecular

simulations methods is therefore vanishingly small. Routine simulation of crystallisation

therefore requires specialist methods.

The method of Frenkel and coworkers [1, 2] has been applied to crystallisation in a variety

of systems. In this approach, umbrella sampling [3] Monte-Carlo (MC) is used to reconstruct

the free energy as a function of a suitably chosen reaction coordinate, or order parameter,

typically the Q6 order parameter of Steinhardt [4]. While successful, this approach can

be problematic. For example, sampling the transition state requires a biased sampling

of configurations corresponding to the critical nucleus; while the system is restrained at

the corresponding order parameter, the nucleus may anneal to a lower energy structure,

potentially preventing selection of metastable polymorphs. From a practical standpoint,

implementations of umbrella sampling are generally restricted to various bespoke codes that

are not usually employed outside of the author’s own research group.

The increasingly popular metadynamics [5] method has recently been adapted for crys-

tallisation studies [6–8]. This has some advantages over the umbrella sampling method,

particularly in the case of multidimensional free energy landscapes. In particular crystallisa-

tion is not restricted to occur on an adiabatic free energy surface and so polymorph selection

is more readily accessible. Metadynamics also has the advantage of naturally fitting into

the framework of a molecular dynamics code, facilitating its use with a range of standard

force-fields and simulation algorithms. We have recently developed an implementation of

the metadynamics method with emphasis on crystallisation. This is based on versions 2.19

(replicated data, functional parallelism) and 3.09.3 (distributed data with parallel domain

decomposition) of the versatile DL POLY [9, 10] simulation package and is therefore poten-

tially useful or adaptable for the study of crystallisation in a variety of molecular systems.

In this paper we describe our implementation. The metadynamics method is reviewed

2
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in section II. In section III we describe the various order parameters which our implemen-

tation uses for collective coordinates. Finite size effects are discussed in section IV while

computational details and parameterisation of the scheme are considered in section V. Two

methods for improving the accuracy of free energy estimates are discussed in section VI.

II. METADYNAMICS

Here we briefly review metadynamics (metaD) as applied in our implementation. For

a more detailed description and justification of the method we refer the reader to refs [11]

and [12] and in particular to chapter 10 of ref [13]. We employ the ‘direct’ variant of the

metadynamics scheme, although we note that ‘discrete’ metadynamics using the density as

a collective coordinate has been applied to crystallisation by Prestipino and Giaquinta [14].

Metadynamics is used to map a free energy landscape as a function of M collective

variables, or order parameters, which we represent as the vector s
(

rN
)

. A history dependent

bias potential V
[

s
(

rN
)]

is used to drive the system away from previously visited values of

the collective variables. The bias ultimately pushes the system over free energy barriers and

into previously unexplored local minima. In the ‘direct’ variant of metadynamics [11] the

history dependent potential augments the Hamiltonian of the system without being coupled

via an extended system variable.

H =

N
∑

i=1

p2
i

2mi
+ U

(

rN
)

+ V
[

s
(

rN
)

, t
]

(1)

The force on each particle is then modified by the bias potential directly

fi = −∇ri
U

(

rN
)

−
M

∑

j=1

∂V

∂sj
∇ri

sj

(

rN
)

(2)

This bias potential may be ‘grown’ by adding a Gaussian of height w and width δh, centred

on the current collective variables, at periodic intervals of time τG,

V
[

s
(

rN
)

, t
]

= w

NG
∑

k=1

exp

[

− |s (kτG) − s (t)|2

2δh2

]

(3)

where the integer k runs over all NG = int (t/τG) previously deposited Gaussians. Provided

the deposition rate w/τG is sufficiently slow, the motion of the collective variables s is

adiabatically separated from that of the molecular dynamics. In the limit of long simulations

3
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times the bias potential counter balances the underlying free energy landscape so that the

free energy surface can easily be recovered as

FG (s) = − lim
t→∞

V
[

s
(

rN
)

, t
]

. (4)

The accuracy of this estimate is discussed in detail by Laio et al. [11] and is dependent on

the deposition rate and the diffusion constant associated with movement of the collective

variables. This error is typically of order w. Further improvement in accuracy are discussed

in section VI.

III. ORDER PARAMETERS

.

To generate crystallisation events with metadynamics we must first define a suitable

set of collective variables. As with any metadynamics simulation the choice of collective

variables is key. In the case of crystallisation our collective variables are order parameters

which distinguish between the disordered (amorphous or liquid) state and one or more

crystal structures. For example the Q6 function of Steinhardt et al. [4] has been extensively

used in biased Monte-Carlo studies of Lennard-Jones and soft-sphere systems. As a single

order parameter, this has the advantage of not separating the metastable bcc polymorph

from the close-packed fcc structure known to be energetically preferable, and so may be

used to bias crystallisation without biasing polymorph selection. This does however carry

the disadvantage of making it difficult to probe the factors that determine this polymorph

selection.

In the general case it is desirable to use multiple order parameters so that as few con-

straints as possible are placed on the reaction pathway. This is the approach we adopt.

One may wish to distinguish between different crystalline forms and resolve separate path-

ways from the liquid to each of the available polymorphs, or indeed between polymorphs.

This cannot be accomplished with a single collective variable where all such paths would

be superimposed. It can also be expected that increasing the number of collective variables

(provided that they are mutually independent) will improve the resulting description of the

crystallisation pathway and free energy landscape. Unfortunately a significant drawback of

the metadynamics method is the exponential increase in simulation time required to fully

4
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explore landscapes of increasing dimension. In practice this restricts the number of tractable

order parameters to a handful, although various methods are available to alleviate this cost

[15, 16].

In order to facilitate the selection of an appropriate set of order parameters we have

developed the following protocol. Having identified a set of candidate order parameters

we first plot the equilibrium distribution of these from standard molecular dynamics (MD)

simulations in the disordered state and any accessible crystalline polymorphs. Sets for which

these distributions overlap are rejected and alternate sets are investigated until a suitable set

with which to describe the known states is found. We stress that this criterion ensures only

that the relevant structures are realisable and distinct within the collective variables space.

Any routes found between these states are not guaranteed to be the dominant pathways of

the unbiased system, but they will at least lead to upper bounds for the corresponding free

energy barriers.

The following order parameters are available within our implementation. These have been

successfully used in various combinations to crystallice ice 1 from supercooled liquid water

[7], and calcium carbonate nanoparticles in water [8]. Other order parameter functions can

easily be incorporated into the program provided routines for evaluating the corresponding

gradient and stress tensor contributions are available.

A. Steinhardt order parameters

We define a smoothly varying version of the Steinhardt order parameter to ensure con-

tinuity of energy and force as required within a MD-based code. This can be computed for

all combinations of atom type α with atom type β as

Qαβ
l =

[

4π

2l + 1

l
∑

m=−l

∣

∣

∣

∣

1

NcNα
Q̄αβ

lm

∣

∣

∣

∣

2
]1/2

, (5)

where

Q̄αβ
lm =

Nb
∑

b=1

fc (rb) Ylm (θb, φb) (6)

The index b runs over all Nb vectors connecting atoms of type α to those of type β. The

spherical harmonic is computed on the polar angles of each vector measured with respect

to an arbitrary choice of reference axis. Contributions are restricted to short range by the

5
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tapering function

fc (r) =



















1 if r ≤ r1;

1
2

{

cos
[

(r−r1)
r2−r1

π
]

+ 1
}

if r1 < r ≤ r2;

0 if r > r2.

, (7)

which decays smoothly from one to zero between r1 and r2. Choices for r1 and r2 are dis-

cussed in section V. Approximate correspondence between this order parameter and the

discontinuous version typically employed in MC studies is achieved by setting the constants

Nα and Nc to the number of atoms of type α included in the sum, and the average number

of β atoms within r2 of each α respectively. Note that the order parameter is not scale

invariant: increasing the system size, and hence Nα, introduces a shift in the order param-

eter. Comparison of values between different system sizes should be made by scaling Ql by
√

Nα/N ref
α .

Forces arising from biasing a Steinhardt order parameter can easily be decomposed into

pairwise additive contributions from each of the spherical harmonics. For the vector rij =

rj − ri, the resulting force is

fij = −r̂ij
∂V

∂Qαβ
l

1

Qαβ
l

4π

2l + 1

(

1

NcNα

)2 l
∑

m=−l

{

ℜQ̄αβ
lm

d

drij
[fc (rij)ℜYml (θij , φij)]

+ℑQ̄αβ
lm

d

drij
[fc (rij)ℑYml (θij , φij)]

}

. (8)

The real (ℜ) and imaginary (ℑ) parts of equation 6 are stored separately during computation

of the order parameters and re-used as above when a second pass though all relevant pairs

is made to compute forces. Crystallisation often involves a substantial density change and

hence it is essential that bulk metadynamics simulations are performed at constant pressure.

When the forces are decomposed in this fashion the required contributions to the stress tensor

σ from each pair are trivially computed as

σab → σab − fa
ijr

b
ij (9)

in the usual way.

Computation of the Steinhardt order parameters is accelerated by making use of the

existing DL POLY neighbour list. This assumes that contributions from excluded atom

pairs are not required, and that r2 is less than the cut-off radius for non-bonded interactions.

6
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B. Tetrahedral order parameters

As has been discussed by Radhakrishnan and Trout [17, 18], the tetrahedral parameter of

Chau and Hardwick [19] provides a means of including second-nearest neighbour effects into

measurements of order. We define a continuous version of this order parameter for angles

involving atoms of the same species α

ζα =
1

NcNα

Nα
∑

i=1

Nα
∑

j 6=i

Nα
∑

k>j

fc (rij) fc (rik) (cos θjik + 1/3)2 . (10)

Here the indices i, j and k run over all atoms of species α while Nc and Nα retain their

previous meanings. The value of ζ is maximised for perfect tetrahedral networks. It should

therefore be considered for crystallisation of solids in which particular species are arranged in

this fashion. A set of these order parameters {ζα} can be also be defined with each member

biased as an independent order parameter.

As with any such three body interaction, the bias forces arising from each triplet i, j, k

can be decomposed into that between i and j and between i and k.

fij = −
∂V

∂ζα

{

2

rij
(cos θjik + 1/3) fc (rij) fc (rik) (r̂ik − r̂ij cos θjik) + (cos θjik + 1/3)2

dfc (rij)

rij
fc (rik) r̂ij

}

fik = −
∂V

∂ζα

{

2

rik

(cos θjik + 1/3) fc (rij) fc (rik) (r̂ij − r̂ik cos θjik) + (cos θjik + 1/3)2
dfc (rik)

rik

fc (rij) r̂ik

}

(11)

The contribution to the stress tensor arising from biasing these order parameters can then

be computed as for other three body interactions as

σab → σab − fa
ikr

b
ik − fa

ijr
b
ij (12)

Again the DL POLY neighbour lists are used in computing these order parameters. In

the parallel decomposition of DL POLY 3 each processor must compute these forces for all

atoms within its own subdomain, including those arising on atom k from triplets in which

the central atom i and its neighbour j are in a neighbouring domain. It is possible for values

of r2 greater than half the simulation cut-off that j will not lie in the halo of atomic positions

stored on the current subdomain. For simplicity our implementation restricts choices of r2

such that this cannot occur.

7
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C. Potential Energy

The use of the potential energy as a biasing order parameter was first demonstrated by

Donadio et al. [20] and has since been employed in a study of Lennard-Jones nucleation

[6], and by the present authors in the freezing of water [7] and crystallisation of calcium

carbonate nanoparticles [8].

The potential energy U is a smooth and continuous function of all coordinates and is

likely to take distinctly different values across multiple crystal structures and disordered

states. It is therefore an ideal order parameter. Compared with the above order parameters

it is functionally very complex and expensive to compute, although this is of no consequence

since both its value and gradient are already computed at every molecular dynamics step.

Forces and stress tensor contributions resulting from biasing this order parameter are also

trivial to compute,

fi →

(

1 +
∂V

∂U

)

fi

σ →

(

1 +
∂V

∂U

)

σ (13)

Defining a local potential energy can be advantageous and requires somewhat more

thought. For example, when studying crystallisation of a mineral nanoparticle in a large

volume of water, biasing of the global potential energy will generally result in uninteresting

re-arrangement of the water solvent. For such applications our implementation defines a

local potential energy comprising contributions from specific atom types only, namely those

involved in computation of any other order parameter (e.g. Steinhardt or tetrahedral). Any

bond stretching, angle bending or long range Van der Waals interactions which include at

least one atom involved in another order parameter are included. In our implementation

we have chosen to include only the real space pairwise contributions to the electrostatic

energy, as the reciprocal space part of the Ewald summation cannot easily be separated into

local contributions. Use of the local potential energy requires separate accumulation of the

force and stress contributions arising from the relevant interactions which replace fi and σ

in equation 13 above.

Due to the essentially ‘free’ nature of the potential energy order parameter, it is recom-

mended that it be tested for suitability in all applications. However we have avoided its use

8
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in some of the examples which follow to maintain consistency with previous results.

IV. FINITE SIZE EFFECTS

In the case of a bulk first-order phase transition, crystallisation proceeds via a process

of nucleation and growth. Computation of reliable free energy barriers to nucleation by

metadynamics or any other method requires some consideration of finite size effects. It

must be stressed that the size of the critical nucleus, which must be correctly sampled to

measure the free energy barrier, increases closer to coexistence. Any attempts to compute

barriers from simulations too small to accommodate the relevant critical nucleus size will be

inaccurate.

A. Constant density effects

As already stated, for crystallisation events which involve a density change, simulations

which sample the isothermal-isobaric ensemble are essential. The consequences of simulating

at constant density have recently been investigated by Wedekind et al. [21]. If generating

crystallistion events at constant density, any increase (or decrease) in density of the crys-

tallised region must be compensated by an unphysical change of density in the surrounding

medium. The severity of this change will be determined by the overall volume of the sys-

tem and will ultimately become significant in all systems as the crystallised region becomes

comparable in size to the simulation cell.

The consequences of this density change can be understood in terms of classical nucleation

theory. Here the rate at which new material ‘attaches’ to a growing crystallite is known from

kinetic theory to be a function of the density in the surrounding medium. If this density

is continually changing as the crystal grows then the attachment rate will be substantially

altered leading to unphysical growth mechanisms. We have previously suggested [7] that

this effect is responsible for the two-stage growth process observed by Matsumoto et al. [22]

in their ‘brute-force’ simulations of ice growth.

9
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B. Periodic boundary effects

For small systems, the critical nucleus can often span the periodic domain. The surface

area of this nucleus, and hence the interfacial free energy is minimised by forming an infinite

cylinder rather than the expected closed spherical nucleus, leading to an underestimate

of the free energy barrier as discussed in ref [7]. For systems above a threshold size, the

surface area (per simulation cell) of a sphere with the same volume becomes smaller and the

expected picture from nucleation theory is recovered. We should emphasise that the critical

nucleus is not always spherical and indeed is not unique. Its actual shape will depend on

anisotropy in the interfacial free energy as well as the rate at which new material attaches to

the growing cluster. However, it is, in principle possible, to estimate this threshold system

size and ensure that the simulated system is sufficiently large.

In figure 2 we present free energy barriers as a function of Q6 for a series of system sizes in

order to demonstrate this dependence. Each barrier is computed from a series of N Lennard-

Jones particles at a reduced temperature of 0.92 and reduced pressure of 5.76. An example of

a cylindrical domain spanning crystallite belonging to the transition state ensemble is shown

in figure 1. It should be stressed that the freezing curve of the Lennard-Jones fluid is highly

sensitive to truncation of the pair potential. We truncate at rc = 3.5σ to ensure consistency

with the coexistence curve of Agrawal and Kofke [23]. The degree of sub-cooling at this

temperature is approximately 17%, however these results cannot be directly compared to

other studies which employ shorter rc [24–26]. Each barrier is computed using a combination

of coarse metadynamics (δh = 0.006, w = 7.5 kBT ) and umbrella sampling Monte-Carlo

initialised using configurations from the metadynamics trajectory. The umbrella sampling

procedure employed 15 overlapping windows across the range of Q6. Simulations of 120, 000

MC sweeps were conducted in each window. We stress again that the size of the critical

cluster increases dramatically as coexistence is approached. The influence of this finite size

effect will therefore be much greater at weaker supercoolings.

Using an estimate of the critical nuclear size from Trudu et al. [6] we calculate the

threshold system size for spherical critical nucleus formation as approximately 1, 200 particles

under these conditions. Lack of convergence beyond this size is a consequence of generating

multiple crystallites and is discussed in the following section.
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C. Multiple crystallite generation

In a system where the penalty associated with forming an order-disorder interface is high

(e.g. liquids under moderate supercooling) the probability of multiple large nuclei forming

within a small volume is expected to be negligible. However it has long been recognised [24]

that biasing a global order parameter such as Q6 can lead to the growth of multiple crystalline

regions within the simulated system. This is inconsistent with the classical nucleation theory

of nucleus formation and warrants some discussion.

The origins of the effect have been analysed in detail by Tenwolde et al. [24] in the

context of freezing. At a particular solid fraction χ the translational entropy gain of forming

multiple solid clusters competes with the energy cost of forming multiple interfaces. Below

a particular solid fraction χc this entropic gain dominates. Therefore any bias imposed to

promote global order will initially result in growth of several crystallites. Tenwolde et al.

showed that the value of χc varies with the inverse fourth power of the system volume

and hence for small systems may artificially exceed the solid fraction corresponding to a

single critical nucleus in a given simulation. This results in a transition state ensemble

containing a critical cluster plus multiple smaller crystallites. A typical distribution of these

solid clusters is illustrated in figure 1. Metadynamics (or umbrella sampling) will therefore

overestimate the free energy barrier. This error is often associated with the choice of a global

order parameter but is in fact demonstrated to be a finite size effect (which can be artificially

circumvented with the use of local order parameters - see below) by the analysis of Tenwolde

et al.. In principle it is possible to remove the effect altogether by simulating sufficiently

large systems (i.e. several orders of magniture larger that those in figure 2) although this

has not been explicity demonstrated to our knowledge.

Further examination of the expression for χc reveals that the decrease with respect to

order-disorder interfacial free energy, γ, is exponential and can easily dominate over the

entropic gain of forming multiple clusters. If γ is large this finite-size effect will therefore be

very much reduced. For this reason we suggest that problems associated with biasing global

order are greatly exaggerated by the Lennard-Jones system. In contrast, both our [7] and

other work [17, 27] on nucleation of ice 1, show formation of a single nucleus when biasing

global order parameters. To clarify this issue we have simulated nucleation trajectories for

the freezing of liquid water to ice 1 in considerably larger systems than those previously
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reported. These simulations follow the procedure given in ref [7] and are parameterised

according to the criteria detailed in section V. In figure 3 we plot the total number of solid

particles and the number of particles within the largest cluster during the first formation of

a critical nucleus. The system size is 2496 molecules. In this particular case the biased order

parameters are QOO
4 , QOO

6 , ζO and the potential energy. The cluster itself is shown in figure

4. To within the noise inherent in the identification process, the increase in solid fraction

is entirely due to growth of the largest cluster and we do not see formation of multiple

crystallites. Analysis of still larger simulations is underway to confirm this.

For the purposes of nanoparticle crystallisation we stress that the volume accessible to

ordered regions within such a particle is exactly reproduced within the simulation and hence

any propensity to form multiple crystalline regions within such a particle would be entirely

physical, although we have yet to observe any examples of such multiple nucleation in our

simulations.

Nethertheless for simulations of bulk crystallisation, one may wish to ensure multiple

cluster generation is prevented by biasing local order parameters. This circumvents the

finite size effect in χc. Two methods have been used in the literature to enforce this locality:

1. As an alternative to biasing order parameters, the size of the largest solid cluster is

biased [28].

2. The calculation of order parameters is restricted to a subset of the system. This subset

can be defined as a geometrical region (usually a sphere of fixed radius) [29, 30] or the

Nsub nearest neighbours of a randomly selected particle [6].

The first approach has proven very effective for spherical particles. However, an unambiguous

method for identifying solid clusters in the general case is lacking and this method effectively

precludes growth from clusters by aggregation which could conceivably provide a lower free

energy route to formation of the precritical nucleus. The effect of enhanced cluster entropy

might therefore be overcompensated. Within an MD simulation, this method might also

create anomalies if natural fluctuations change the identity of the largest cluster. While

discontinuities in the forces could be avoided by smoothing, this would introduce unphysical

non-local forces into the simulation.

Provided one is able to choose a suitable subset, and that the size of this subset is just

sufficient to favour critical nucleus formation, the second method can be effective in com-
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puting free energy barriers. The problem of critical nuclei coexisting with smaller clusters

is removed; however multiple smaller clusters are still generated (with artificially high prob-

ability) within the subset when close to the liquid regime. We note that the definition

of a suitable subset becomes more difficult in heterogeneous nucleation or when chemical

additives are present. In these cases all choices are no longer equivalent.

To highlight the difference between these approaches we draw attention to the region of

positive curvature in the free energy profile at low solid fraction seen in figure 1 of ref [29].

This profile was computed by biasing a spherical subset of molecules. This positive curvature

is also visible in figure 2 of this paper and other studies using global order parameters [25, 31].

No such region is observed in studies which bias the size of the largest cluster [28]. Within a

classical nucleation theory (CNT) description, it is possible to determine the criteria required

for this positive curvature. The free-energy G of forming a solid volume V is

G (V ) = γA (V ) − ∆µV (14)

A (V ) is the total surface area of the solid region(s), γ is the free-energy penalty per unit

area of forming the solid-liquid interface and ∆µ is the free-energy reduction per unit volume

of solid. Within this description a positive curvature in G can only be obtained for one of

the following reasons:

1. Negative value of γ.

2. Solid region(s) for which A/V increases with volume.

3. Solid region(s) for which A decreases with V .

Possibilities 1 and 2 can be discounted as unphysical. The third possibility can however be

realised by the aggregation of multiple growing crystallites. We can therefore see that biasing

order within a subset merely removes the problem of critical nuclei coexisting with smaller

clusters, with any artificially high entropic favourability of forming multiple precritical clus-

ters unaffected. It this context it is interesting to note that in a study of Lennard-Jones

nucleation using transition path sampling (TPS) techniques [26] (which do not bias an or-

der parameter) no such region of positive curvature was observed. However, results for

the barrier height are in agreement with simulations which biased a global Q6 at the same

temperature and pressure [31].
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Of the two local biasing schemes, the subset method is most easily incorporated within

our implementation. Other methods of avoiding the multiple cluster problem are also under

investigation.

V. PARAMETERISATION

In this section we discuss the approach taken in choosing the various parameters required

for efficient operation of metadynamics for sampling crystallisation.

A. Tapering function

Before computing equilibrium order parameters, the tapering function (equation 7) must

be parameterised by defining r1 and r2. These two radii must be chosen carefully. Poor

choices can result in forces dominated by ‘bond’-stretching [38] when the system is biased.

To minimise this effect we define two criteria. Firstly, the range r1 → r2 should correspond as

closely as possible to minima in the relevant pair correlation function for the disordered and

ordered states. This ensures any spurious bond stretching is eliminated from the equilibrium

states and for most cases restricts computation of order parameters to nearest neighbours

only. As discussed by Radhakrishnan and Trout [18] the influence of second nearest neigh-

bour effects is implicitly included in a tetrahedral order parameter, whereas the potential

energy order parameter included contributions from all neighbours upto the simulation cutoff

radius. The second criteria maximises r2 − r1 within the limits of the first. This minimises

any residual spurious forces

It should be noted that this parameterisation should be performed based on equilibrium

simulations at the temperature and pressure at which the crystallisation is to be sampled.

Application to higher pressures in particular may shift neighbour distances significantly and

warrant a revision of these parameters.

B. Preconditioning

The number of Gaussians needed to fill the initial basin can be considerably reduced by a

simple preconditioning of the problem. Each order parameter is scaled by a constant factor
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such that the initial basin of attraction is approximately spherical in the collective variable

space. This becomes particularly important when employing many collective variables, or

when fluctuations in the collective variables differ by several order of magnitude.

The scaling constants are identified by monitoring the order parameters during an equilib-

rium simulation in the disordered state. The distribution of samples for each order parameter

is then approximated by a Gaussian distribution of width σ. Each collective variable is then

scaled by a constant 1/σ throughout the metadynamics simulation.

C. Gaussian deposition rate and width

As discussed in some detail in ref [11] the accuracy of a metadynamics calculation is

determined by the properties of the history dependent bias potential. In particular the

deposition rate w/τg and width δh of the Gaussian augmentations should be chosen carefully.

Narrow Gaussians can be expected to reconstruct a more detailed free energy landscape, but

require longer simulation times to saturate the available minima. Wider Gaussians will fill

basins rapidly, but may simultaneously increase the effective height of barriers leading to

overfilling and a reduction in efficiency.

A natural choice when using collective variables scaled as above is to set δh = 1. This

then corresponds to Gaussians with a width in each direction matching the equilibrium

fluctuations. If, however, the curvature of the initial basin is small (as if often the case

for liquids), this choice quickly becomes inefficient as the system explores higher energies

and wider fluctuations. Choices of δh = 2-3 offer a reasonable compromise, performing an

efficient exploration of space at the expense of some lost detail at the basin minimum (which

is easily explored with equilibrium simulations). We have experimented with a scheme using

adaptive Gaussian widths based on fluctuations during the previous metadynamics step.

The necessary averaging required a large interval between depositions which offset any gain

in efficiency. We note that in this limit the metadynamics method effectively reduces to the

adaptive umbrella sampling scheme described by Mezei [32].

Choosing an optimal deposition rate can be difficult without an a-priori estimate of the

energy scales involved in the problem. Typical energy barriers to crystallisation can be

estimated from classical nucleation theory provided data is available on bulk and interfacial

free energies. These can range from a few tens to several hundreds of kBT in magnitude.
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If no such data is available one must resort to performing coarse simulations with large

Gaussians to obtain an initial estimate before repeating with a more appropriate choice. In

our simulations we employ Gaussian with w ≈ 1−5% of the largest expected barrier height.

Having made this choice we identify an appropriate deposition interval by monitoring the

evolution of the collective variables after deposition of test Gaussians at random positions

near equilibrium. The time taken to stabilise at new values is then used as the deposition

interval. In our simulations this typically corresponds to a few hundred simulation timesteps.

VI. ACCURACY AND CONVERGENCE

A common criticism of the metadynamics method is lack of accuracy. If the choice of

collective variables is not optimal, or if the deposition rate is large, considerable overfilling

of basins can occur before the simulation finds an escape pathway. If the simulation is

terminated before this overfilling is compensated an undesirable bias is introduced into the

reconstructed free energy landscape. The simulation should therefore only be terminated

when rapid diffusion between basins is identified. In this limit the underlying free energy

landscape is exactly (to within the error computed in ref [11]) compenstated by the bias

potential and the estimate is unbiased.

In the case of crystallisation the transition pathway involves complex rearrangement over

many degrees of freedom. The time associated with transitions can be very long even in

the limit of a perfectly flat landscape. Identifying an optimal time to terminate the simula-

tion can therefore be difficult. In refs [7] and [8] we have erred on the side of caution and

terminated the simulation only after establishing that the proceeding several nanoseconds

of metadynamics produced only a shift in the free energy landcape to within an accuracy

suitable for the energy scale of the problem. For example in ref [7], the simulations were

terminated only after observing that both the height of the nucleation barrier and the rel-

ative depth of the two minima changed by no more than 2kBT (approximately 5% of the

barrier height) over 15 ns. If further accuracy is required then it may be prudent to use

configurations from the metaD trajectory to initialise a one dimensional umbrella sampling

along the reaction pathway identified by metadynamics. Such an approach has been adopted

for biomolecular simulations by Ensing et al. [33]. Similarly candidate metaD pathways can

be used to seed TPS calculations which might be particularly powerfull where pathways
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obtained on the adiabatic free energy surface are not the most probable members of the

transition path ensemble.

Recently various simple methods have been suggested to improve the accuracy of meta-

dynamics itself. We have implemented two of these in the context of crystallisation and

discuss their merits below.

A. The Wang-Landau recursion approach

This approach has been proposed by Min et al. [34]. Here the metadynamics simulation

proceeds as normal, initially using a large Gaussian height w1. A histogram is accumulated

which tracks the number of visits to each square of a grid in the collective variable space.

One this histogram is approximately flat (the authors suggest a criterion that all values are

> 80% of the mean) the height of all subsequent Gaussians is updated as w → w/2. The

histogram is reset and the process is repeated. At the j step the accuracy of the recovered

free energy landscape is increased to order w1/2j and will ultimately reach any desired

accuracy provided the flatness criterion is appropriate. The scheme is therefore similar in

spirit to the Wang-Landau sampling method [35].

As with any Wang-Landau based method, a suitable domain for the histograms must

be defined which covers all areas of physical interest. In the case of a multidimensional

landscape of order parameters this can be be somewhat difficult. In particular a square grid

spanning the accessible range of all order parameters will include combinations which are

not physically realisable. Furthermore the accessible regions are not known a-priori, making

definition of a suitable grid problematic. Our implemention of the recursion approach there-

fore uses a different criterion for updating the Gaussian heights if more than one collective

variable is used. We periodically monitor the evolution of order parameters and identify the

time tc after which several barrier crossing events have occurred. The Gaussian heights are

then updated at multiples of tc and we carefully check that further crossings occur within

these intervals.

This approach has been taken in a recent study of protein controlled nanoparticle crys-

tallisation [36]. In this case the large energy scale of the problem ensures that only one or two

reductions in height are required before the resulting landscape does not change significantly.
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B. Well-tempered metadynamics

An alternative and even simpler method to improve the convergence of metadynamics

calculations has been proposed by Barducci et al. [37]. Rather than controlling the height

of Gaussians based on multidimensional spatial criteria, the well-tempered metadynamics

method uses a maximum energy criterion. A threshold energy Vmax is defined which lies

above the height of the largest anticipated barrier. In the case of crystallisation this can be

estimated from nucleation theory or from a coarse metadynamics simulation. At each step,

the Gaussian deposited is of height

w = exp [−Vaug (s) /Vmax]. (15)

In this manner the augmentations become smaller as the threshold is approached. The

risk of overfilling is therefore substantially reduced. Once all basins accessible below the

threshold level have been filled, further simulation will act to smooth any roughness in the

reconstructed landscape without large shifts in the energy.

C. Comparison

To demonstrate the accuracy of these methods we have recomputed the free energy barrier

to nucleation for the 500 particle Lennard-Jones fluid as a function of the Q6 order parameter.

Even in this trivially simple system, previous metadynamics calculations of the barrier (figure

2) required refinement with umbrella sampling to achieve a useful accuracy. For both the

Wang-Landau recursion and well tempered schemes we employ an initial Gaussian height of

w = 3 kBT and a width δh equal to the one standard deviation in Q6 at equilibrium. We

have deliberately chosen w to be very large in this case in order to demonstrate ultimate

convergence of the two schemes, regardless of this poor initial choice. Each simulation

employed a deposition interval of 4 ps.

As we are interested only in the barrier to nucleation and not in the relative free energies

of the two states (which can be readily found in the literature) we add an artificial energy

penalty to all states with Q6 > 0.2. This takes the form of a wall which smoothly increases

from 0 to 1000 kBT over an interval of 0.025. This restricts the simulation to the interesting

region and removes the considerable waiting time involved in saturating the crystalline free
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energy minimum. The reconstructed free energy landscape is therefore only valid for Q6 <

0.2.

In the case of well-tempered metadynamics we set Vmax = 30 kBT , i.e. sufficient to

allow transitions to the crystalline state. For the Wang-Landau recursion scheme we use

the stardard flatness criterion modified to disregard the histogram bin adjacent the artificial

wall. Both simulations are terminated after 6000 metadynamics steps. Heights of Gaussians

deposited at each step are plotted in figure 5. In this case the Wang-Landau approach is

most effective in reducing the height of the Gaussians. Alternative (lower) choices of Vmax

may increase the competitiveness of the well tempered metadynamics scheme; however this

choice is not easily made in advance of a simulation.

Free energy barriers computed from these two simulations are compared to the umbrella

sampling result in figure 6. Note that the umbrella sampling result is not precisely compara-

ble due to the need for a continuous definition of Q6 in metadynamics, whereas discontinuous

definitions are normally used in umbrella sampling MC studies. Each profile is adjusted such

that the liquid minimum is at zero free energy. In this case, the well tempered result is liable

to alter on a scale of 0.1 kBT with further simulation whereas the Wang-Landau result is

considerably more converged. Both are within 1 kBT of the umbrella sampling result which

we regard as acceptable agreement within the differing definitions of Q6.

VII. CONCLUSIONS

We have developed an implementation of the metadynamics method applied to crystalli-

sation with broad applicability. The metadynamics method is ideally suited to circumventing

the long-timescale problems associated with generating crystallisation trajectories. As well

as providing seed trajectories for umbrella sampling or TPS calculations it is capable of

recovering the free energy landscape to arbitrary accuracy when combined with the meth-

ods discussed in section VI. Of these methods the Wang-Landau recursion scheme is most

effective at improving accuracy in one dimension. The well tempered metadynamics scheme

is likely to be most effective in higher dimensions.

As with all methods for sampling crystallisation in the bulk, metadynamics suffers from

finite size effects which can lead to unreliable estimates for the free energy barrier to nu-

cleation, and unphysical growth mechanisms. Our implementation of the scheme within
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DL POLY 2 and 3 has potential to simulate systems sufficiently large to overcome these

effects and is applicable to a range of materials. We have also demonstrated that problems

associated with the generation of multiple crystallites do not need to be circumvented with

the use of local order parameters in the case of large solid-liquid interfacial free energy.
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FIG. 1: (a) Approximately cylindrical domain-spanning cluster identified as belonging to the tran-

sition state ensemble in a simulation of Lennard-Jones freezing at 17 % supercooling with 864

particles. (b) Coexistence of the largest solid crystallite with multiple smaller crystallites in a

similar simulation of 10976 Lennard-Jones particles. In both cases particles are identified as solid

according to the criteria described in ref [1]. Liquid-like particles are hidden.

FIG. 2: Free energy barriers to formation of a critical solid nucleus in the supercooled Lennard-

Jones fluid at T
∗ = 0.92, P

∗ = 5.76.

FIG. 3: Total number of solid water molecules, and number within the largest cluster as a function

of time minus the induction time (ti) to the first nucleation event in a metadynamics simulation of

2496 TIP4P water molecules freezing at 180 K. Each value is plotted minus the average equilibrium

(unbiased) background value upto the formation of a critical cluster. The total number of molecules

in the simulation is 2496.

FIG. 4: Growth of a critical nucleus in a metadynamics simulation of 2496 TIP4P water molecules

freezing at 180 K. Hydrogen bonds connecting molecules identified as solid are highlighted. Solid

molecules are identified by the same method used in ref [7]. Times correspond to the x-axis in

figure 3.

FIG. 5: Heights of Gaussians deposited during 6000 steps of metadynamics, simulating nucleation

in a 500 particle Lennard-Jones system. Heights of Gaussians are controlled by the two schemes

described in section VI.

FIG. 6: Free energy barriers to nucleation of the Lennard-Jones solid in a system of 500 particles

at 17 % supercooling.
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