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Resistance measurements and weak localization in long SWNTs

                         P. G. Gabrielli*°,  S. Gabrielli** and N. Lisi* 
 

                                        *ENEA, Centro Ricerche Casaccia, via Anguillarese 301 Rome Italy 
                                                 **Dip. di fisica, Univ. degli Studi  di Roma “Tor Vergata” Rome Italy 

 
In many I-V measurements an evidence has emerged pointing towards the existence of Luttinger liquid behavior in metallic 
SWNT, as expected for strongly interacting electrons in 1-d, such behavior was observed via the power law temperature 
and bias-voltage dependence of the current through tunneling contacts attached to the nanotubes. In particular recent 
advances in the growth of extremely long nanotube ( >1 mm) have allowed for experimental measurements on the scaling 
behavior of resistance in individual, millimeter long SWNT for the temperature range of 1.6-300 K. From the linear scaling 
of resistance, the temperature dependent electron mean free path has been calculated for each temperature and, beyond the 
linear scaling regime, it has been observed that the resistance increases exponentially with length, indicating localization 
behavior. In this work we analyse the results of the resistance measurements of different lengths SWNT indicating the 
weak localization behavior. 
 
Keywords: quantum transport, , weak localization, carbon nanotube, phase coherence 

 
 

 
1 INTRODUCTION 

 
  The rapidly advancing technology of nanometric devices 
has led to the production of smaller and smaller systems: 
among the main items in the design of  these electronic 
devices there are the measurement and understanding of the 
current-voltage (I-V) response of electronic circuits in which  
carbon nanotubes  act as conducting elements. These 
devices, often called mesoscopic systems, are large on the 
atomic scale but sufficiently small that the electron 
wavefunction is coherent over the entire sample: the condi-
tion for coherence is that the electron traverse the wire 
without undergoing any inelastic collision. Indeed in perfect 
single-walled carbon nanotube (SWNT) electrons propagate 
ballistically if the inelastic scattering can be neglected. 
 On the other hand it is also well known that at low-
temperature charge transport in any disordered conductor is 
governed by the interplay between inelastic scattering and 
elastic scattering off static disorder (impurities and defects) 
of electrons, therefore, in low dimensions systems like  
SWNTs, an arbitrarily weak disorder localizes [1,2] all 
single-electron states and there would be no transport 
without inelastic processes (Anderson localization1 of 
electronic states leads to metal-insulator transition at zero 
temperature [3]: note that, for electrons in a given 
conduction band, strong enough disorder can localize the 
whole band; the metal–insulator transition induced by 
disorder is called Anderson transition.).  
Coherent quantum transport in low dimensional systems can 
be investigated with either the Kubo or the Landauer-
                                                
1The localization is a property of the states in random QM  systems  and 
can be interpreted by total back-reflection of particles from potential bar-
riers so that they become localized in a single potential well. 
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Buttiker formalism [4]. The first approach, which derives 
from the fluctuation-dissipation theorem, allows one to 
evaluate the intrinsic conduction regime within the linear 
response and gives direct access to the fundamental 
transport length scales2 such as the elastic mean free path 

† 

l0
 and the localization length x. While 

† 

l0
 results from 

elastic backscattering by static disorder, x denotes the 
scale beyond which quantum conductance decays 
exponentially with the system length 

† 

L  driving the 
system from weak to strong localization. In other words 
the localization length x gives the scale beyond which 
weak localization  are fully suppressed, since the quantum 
interference effects are usually reduced by inelastic 
scattering as decoherence  owing to mechanisms such as  
electron-phonon (e-ph)  or electron-electron (e-e) 
coupling. Within the framework of weak localization 
theory, it has been possible to derive perturbatively the 
relation between the measured conductance becomes 
more appropriate, since it rigorously treats 

† 

G , its 
quantum correction d

† 

G    and the coherence length 

† 

lf  that 
fixes the scale beyond which quantum interference effect 
are destroyed. The estimation of the coherence lengths is 
a central issue in mesoscopic physics, and weak 
localization provides an elegant framework to extract the 
behaviour of 

† 

lf , that mainly depends on the 
dimensionality of charge transport. When 

† 

l0
 becomes 

longer than the length of the nanotube between the leads, 
the carriers propagate ballistically and contact effects 
prevail. In such a situation, the Landauer-Buttiger 

                                                
2 Important length scales: the coherence length 

† 

lf , the energy relaxa-

tion length 

† 

l , the elastic mean free length 

† 

l0 , the Fermi wave 

length

† 

lF of the electron, the sample size 

† 

L : in mesoscopic systems it 

will be

† 

l
F

£ l0 < L < l
j

£ l . Note that 

† 

kF l ≥1 is called the Ioffe-

Regel limit and the atomic Bohr radius 

† 

a0 << l
F
. 
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formalism transmission properties for open systems and 
arbitrary interface geometries. 
 
   2   QUANTUM TRANSPORT IN SWNT 
 
 
2.1 Conductivity and Transport   
 
The more general formula for actual local current measured 
by experimentalists (generalized Ohm’s law) for 
conductivity in infinite length system is 

                                        

† 

J
a
(r,t) = dr'Ú s

ab
(r,r' ,w)E

b
(r' ,t)

b

Â            (1)                       

 
where  the  (non-local) conductivity 

† 

s
ab

 is response to 
actual (external + induced) electric field and is given by the 
Kubo formula [5] (where periodic boundary conditions  and 
coupling of only the charge degrees of freedom, none spin 
degree of freedom is considered, to external 

† 

E-field are 
assumed) 
 

 

  

† 

s
ab

(r,r' ,w) =
e 2

hw
dteiwt y [ j

a

+

0

•

Ú (r,t), j
b
(r' ,0)]y +

+
ne 2

mw
id

ab
d(r - r' )

   (2) 

                                                                                       
 The wave function 

† 

y  is the ground state of the many-body 
Hamiltonian which contains all possible interactions in the 
solid (except the interaction between the total electric field 
and the particles of the system) and the first term  is called 
retarded current-current correlation function. Kubo first 
derived the equations for electrical conductivity in the solid 
and Kubo formulas are the name applied to the correlation 
function which describes the linear response. 
   But this procedure is physically incorrect as a way of 
defining the conductivity in a finite system in which 
electrons enter from an external electrode at one end and are 
removed at the other end collected by another external 
electrode. In a finite  (ideal) sample if the chemical potential 
is higher at one lead, electrons of the large reservoir with 
constant 

† 

m1
, than at the other lead, with constant 

† 

m2
, the 

current is the response to the gradient of chemical potential 
for electrons not to the electric field; in other words, if 

† 

m1 > m2
 and 

† 

e is the absolute value of the electronic charge, 
the voltage difference  

† 

DV  between the two baths due to 
flow across the sample of the current 

† 

I  is 
 

† 

DV =
I

G
c

=
m1 - m2

e
                              (3) 

where  
 

  

† 

G
c
=

e 2

ph
T(E

f
)                                      (4)        

 
is the irreducible conductance measured between the two 
outside reservoirs being 

† 

T the transmission probability  
for  channel (to go from electrode 1 to electrode 2). The 
inelastic processes (which break the time-reversal 
invariance and the phase coherence of the states at the two 
extremities, dissipate energy and restore equilibrium) in 
this case are assumed to exist only in the two electrons 
baths, so that the ramdomized phase of the injected and 
absorbed electrons through these processes results in no 
phase relation between particles. 
 At low temperature, in presence of only elastic scattering 
for the electrons at the Fermi surface with a linear series 
of random scatterers connecting the two reservoirs, the 
true conductance 

† 

G  due to barrier (including spin 
degeneracy) is correctly given by the transmission and 
reflection coefficients of the sample by the Landauer-
Buttiker , not the Kubo, formula [4,5] 
 

  

† 

G =
e 2

ph

T(E
F
)

1- T(E
F
)
                       (5)     

 
Electronic  transport measurements [6] on individual 
SWNT demonstrate that, in the absence of scattering 
(then the transmission probability is 

† 

T =1), the 
momentum relaxation length  and the localization length x 
are much larger than the wire length and the transport in 
these systems is ballistic: the wavefunction of the electron 
is extended over the total length of the nanotube and there 
are only two channels which contribute to the electronic 
transport giving  

† 

G = 2G
c
 . However, as already outlined, 

in presence of some mechanism of scattering the 
conductance is described by the Landauer formula (4) and 
the conductance is no longer exactly quantized. 
Because the electron can lose energy and equilibrate with 
heat bath only via inelastic collisions  it is necessary to 
reexamine the conventional concept of energy dissipation 
in a quasi 1-d resistor systems. In the theory of the 1-d 
electron systems, called Luttinger-liquid (LL)[7,8] (see 
AppendixA), the correlated electron state is characterized 
by a parameter g that measures the strength of the 
interaction between the electrons (g=1 for non-interacting 
electrons gas). The most important feature of the LL, in 
contrast to Landau Fermi-Liquid theory3 (FL), is the 
absence of the fermion quasiparticle branch at low 
energy: excited states of the system must be described by 
the bosonic fluctuations of the charge and spin densities 
dispersing with different velocities, which correspond to 
many-body electron state with a huge number of the 
electron-hole pairs. This have a pronounced effect on the 
tunneling into a LL conductor: the I-V curve of a tunnel 

                                                
3 Landau Fermi-Liquid theory is concerned with the properties of 
many-fermion system at low temperature (much lower than Fermi 
energy) in the normal state, i.e. in the absence or at least at temperatures 
above any symmetry breaking phase transition (superconduction, etc). 
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junction between a normal FL and a LL conductor is 
expected to be non-ohmic and described by a power law 
with an exponent depending on interaction strength. 
Not only, in [9] Bockrath et al. observe a  Luttinger-liquid 
behavior in (rope of)  SWNT’s in measurements of  the 
electrical transport as a function of temperature resulting in a 
power laws for linear response conductance  

 
 

   

† 

G(T ) µT a                           (6) 
 

where 

† 

a = f (g)  and 

† 

g = 1+
2U
D

È 

Î Í 
˘ 

˚ ˙ 

-1/ 2

(

† 

U  is the charging 

energy of the tube and 

† 

D  [10] is the single-particle level 
spacing). 
 
2.2   Weak localization  
 
When the temperature is so high that the conductivity  can 
be treated as local quantity, like in Anderson localization 
which deals with wave function of the single electron in 
presence of impurities, the conductance  is obtained by 
combination of  smaller parts of materials. But when the 
temperature is low or the sample is small the dephasing 
length 

† 

l
j
 is greater than the sample linear dimensions 

† 

L  so 
that the quantum corrections to the conductivity are non-
local and the conductance can no longer be treated as a self-
averaging quantity. Since the lack of self-averaging of the 
conductance is a feature of mesoscopic conductors, in 
SWNT it is necessary to analyze the effects of weak disorder 
and the inelastic scatterings on charges transport.  
Due to the existence of the impurities the transport is more 
diffusive than ballistic (the existence of scattering is possible 
in both regimes but in diffusive one we have that 

† 

l = v
F
t << L  so that the material is characterized by a 

relatively low mobility) though the elastic scattering of the 
electrons, if these impurities are equivalent to static defects, 
can modify the interference terms but does not cause 
decoherence [4]. At low temperature the conduction take 
place mainly with electrons at Fermi energy and, due to 
some gate potential, the Fermi point upon which the 
electrons travel can be shifted slightly, therefore it is 
possible that an electron that moved on one side (path) of an 
impurity begins to move on the other side (path) after the 
shift. This process (analogous to Aharonov-Bohm effect in 
the presence of some magnetic field) induced a quantum 
fluctuation of the conductance of the order of 

† 

2e 2 / h  and 
depends on the exact configuration of scattering centers 
within the sample: these two paths  are time-reversed with 
respect to one another and since the electron return to its 
original position it can interfere with itself creating an 
additional resistance called weak localization [11,12]. Then 
the weak localization is caused by the quantum interference 
effect on the diffusive motion of a single electron. 

From semiclassical point of view it is possible to 
calculate this additional resistance considering that the 

conductivity is related to the current-current correlation 
function, as in eq. (2), and being 

† 

D = v
F

2t  the diffusion 

coefficient  and 

† 

l
j

= Dt
j
 for 1D we get   

 

           
  

† 

Ds
WL

ª -
e 2

ph
l

j
1- 1+

t
j

t

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1/ 2È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
              (7)  

 
Even though in [13] it has been suggested that zero-point 
fluctuations cause the dephasing in one dimensional 
quantum wire at low temperature (ascribed to finite 
broadening of Fermi surface) and presenting a zero-point-
limited dephasing time 

† 

t 0
 in good agreement with the 

measured saturation values 

† 

t
j
 found in many 

experiments, in [14] this hypothesis is rejected using 
purely physical arguments. 
A more sophisticated theory [15,16] tells to us that in 
presence of a vector  potential  

† 

A , for 

† 

wt <<1, the 
probability of return path in a disordered SWNT can be 
conveniently obtained by calculating the Cooperon 

† 

C
w
(r,r' ) , which is a retarded classical electron-electron 

propagator satisfying a modified diffusion equation in the 
frequency domain [16] 
 

  
  

† 

-D — r -
2ie
h

A
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

+ iw +
1
t

f

È 

Î 
Í 

˘ 

˚ 
˙ Cw

(r,r' ) = d(r - r' )  (8) 

 
The WL correction to the conductivity is due to enhanced 
probability to return, so that 
 

          
  

† 

Ds
WL

(w) = -
2e 2 D

ph
C

w
(r,r' )                    (9) 

 
 
3 RESISTANCE  IN  LONG  SWNT 
                   
The conductance of metallic SWNT has been shown to 
depend strongly on the nature of the contacts between the 
nanotube and the leads. In a typical experimental setup 
[10] a bias voltage is applied across a nanotube connected 
to metallic leads, while a gate voltage applied to a third 
electrode acts as a chemical potential and modulates the 
charge on the nanotube (see [10] fgg.1,3 and 4). At room 
temperature the main origin of the resistivity at low bias 
in high-quality metallic SWNT is believed to be inelastic 
scattering by acoustic phonon: the scattering is weak 
resulting in long mean-free path in a range from few 
hundred nanometers to several micrometers both in the 
measurements and in the calculations. Then at low bias 
regime we get ballistic transport. When sufficiently large 
bias are applied to drive the electric current, higher energy 
vibrational modes are activated and e-ph coupling limits 
ballistic transport: electrons gain enough energy to emit 
optical or zone-boundary phonons leading to a saturation 
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of the current, in [17] indicated at  ~20mA. The effect of 
electron-(optical) phonon coupling was found to strongly 
affect electronic conductance and to induce some energy 
dependence of the coherence length scale, completely 
similar to the experimental data obtained in the weak  
localization regime [18,19].  
 
 
 
 
4 CONCLUSION 
 

We study the suppression  of the quasi-ballistic 
conduction in long (many 

† 

l
j
) SWNT noting that some 

environmental conditions also at low temperature  introduce 
some dynamic disorder which involves, by means inelastic 
scattering [18-20], a weak localization correction to the 
conductance. 
 
 
 
Appendix A   LUTTINGER LIQUID: VERY BRIEF REVIEW 
 

A Luttinger liquid (LL) is a one-dimensional (Fermi 
liquid) correlated electron state characterized by a parameter 

† 

g that measures the strength of the interaction between 

electrons: strong repulsive interactions have 

† 

g <<1, 
whereas 

† 

g =1 for the non-interacting electron gas 
(remembering that weakly interacting electrons in normal 
metal are described by quasiparticles of the Fermi liquid). 
The LL’s are very special in that they retain a Fermi surface 
enclosing the same 

† 

k -space volume as that of free fermions, 
but there are no fermionic quasi-particles (like in normal 
Fermi liquids), their elementary excitations are bosonic 
collective charge and spin fluctuations dispersing with 
different velocities. An incoming electron decays into such 
charge and spin excitations which then spatially separate 
with time (charge-spin separation): the correlations between 
these excitations are anomalous and show up as interaction-
dependent non-universal power laws in many physical 
properties where those of ordinary metals are characterized 
by universal (interaction-independent) powers. A list of such 
properties includes: 1) a continuous momentum distribution 
function 

† 

n(k) , varying with as 

† 

k - k
F

a

 with an interaction-
dependent exponent 

† 

a , and a pseudogap in the single-
particle density of states 

† 

µ w
a

, consequences of the non-
existence of fermionic quasi-particles; 2) similar power-law 
behavior in all correlation functions (in those for charge or 
spin density wave fluctuations) with universal scaling 
relations between the different non-universal exponents, 

which depend only on one effective coupling constant per 
degree of freedom; 3) finite spin and charge response at 
small wave  vectors and finite Drude weight in the 
conductivity;  4) spin-charge separation; persistent 
currents quantized in units of 

† 

2k
F
. 
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