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Abstract 

A series of Molecular Dynamics (MD) simulations has been carried out to investigate 

the interaction between peptides and a calcite ( )4110  surface   in water. A 16-amino 

acid and a 17-amino acid peptide have been built and three different configurations 

for each peptide are used as starting configurations. The dynamic behaviour of these 

peptides has been investigated by calculating their radii of gyration and distribution of 

dihedral angles. For comparison, the simulations of peptides in vacuum and water 

have also been carried out. The simulations indicate that these peptides generally have 

strong interactions with the calcite surface and the peptides changed their 

configuration to favour this interfacial interaction. Continuum electrostatic 

calculations based on the Poisson-Boltzmann equation (PBE) have also confirmed 

strong electrostatic interactions between peptides and the calcite surface. The results 

suggest that peptides can control calcite crystallisation and that strong electrostatic 

interactions between peptides and calcite surfaces dominate the interfacial 

interactions. 

                         
* Corresponding author. Tel: +45 35 32 01 56. Email: mjyang@nano.ku.dk. 
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1111.... Introduction 

 

Knowledge of the interactions between proteins and calcite surfaces is a key to 

understanding biomineralization. Progress in experiment has greatly improved our 

understanding of the role of peptides and proteins in the mechanism of 

biomineralization and shows that the structure of these biomolecules is very important 

in controlling crystal growth. A study on mollusk shell proteins AP7 and AP24 

indicates that some structural features of these proteins will greatly influence their 

kinetic behavior in mineralization [1]. Again, the control of crystal growth by proteins 

is demonstrated in the formation of eggshell. Recently, ovocleidin-17 has been 

identified as the major protein of calcified eggshell, and the three-dimensional 

structure of this protein is believed to closely relate to its functionality in the 

biomineralization process [2]. Ajikumar and colleagues have used charged peptides to 

mimic the function of eggshell proteins and the results show that these peptides were 

able to facilitate the nucleation and growth of polycrystalline calcium carbonate[3]. 

Metzler and colleagues used X-ray absorption near edge spectroscopy (XANES) to 

study the electronic structure of crystalline calcium carbonate and peptides at the 

surface, and hence the mutual effects of calcite on peptides and peptides on calcite 

during biomineralization [4]. A study on mollusk shell proteins AP7 and AP24 

indicates that some structural features have an important influence in their kinetic 

behavior during mineralization, which suggests protein structure plays a very 

important role in controlling biomineralization [1].  

 

However, current understanding of the interaction between biomolecules and minerals 

during biomineralisation is far from complete. Here, computer simulations can be an 
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effective tool to explore the mechanism of biomineralisation. Computer simulations 

can be used to obtain the atomistic details at the interface between biomolecules and 

mineral surfaces; hence we can have a better understanding of the mechanisms by 

which the biomineralisation is controlled.  

 

Potential-based molecular dynamics (MD) simulations are increasingly used in the 

study of calcite biomineralization. Normally, a set of potentials is only used for 

specific type of molecule models, and potentials used in simulations of 

macromolecules are usually different from those for crystals. In the case of 

biomineralization, potentials for biomolecules, mineral, solutes and their cross-terms 

are needed. The competitive adsorption among organic molecules with different 

functional groups to calcite surfaces has been examined with a combination of 

potentials [5]. Freeman et al. have systematically developed a method to generate a 

set of potentials for modelling biomineralization [6]. The potentials have been applied 

to simulate the interaction between polysaccharides and calcite, and facilitate the 

simulations of biomolecules and inorganic surfaces [7]. Peptides are highly charged 

molecules so the electrostatic interactions between peptides and mineral surfaces 

dominate the interfacial interactions. 

 

The Poisson-Boltzmann equation (PBE) has been proposed as an effective continuum 

model to evaluate the electrostatic properties [8]. This model uses implicit solvent and 

can determine the contribution of electrostatic to the forces and energies of a 

molecular system. 

 

In this study, we used MD simulations to simulate the dynamical behaviour of 
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peptides on calcite. The adsorption of peptides on calcite ( )4110  has been calculated 

and electrostatic interactions between the peptides and calcite surface have been 

examined with PBE continuum electrostatic calculations.  

 

2222.... Methods 

 

A 16-amino acid peptide (Arg Arg Glu Glu Trp Trp Asp Asp Arg Arg Glu Glu Trp Trp 

Asp Asp) and a 17-amino acid peptide (Arg Arg Glu Glu Trp Trp Asp Asp Pro Arg 

Arg Glu Glu Trp Trp Asp Asp) were built with the Amber 9 program [9]. These two 

peptides have been reported to facilitate the nucleation, growth and aggregation of 

calcite crystal [3]. A peptide can have a variety of configurations; each configuration 

may have a different influence on calcite crystal growth. Therefore, for each peptide 

simulated, we generated three configurations, alpha-helix, extended and beta-turn. 

The configurations of the two peptides are thus denoted as PI(A), PI(B), PI(C) and 

PII(A), PII(B), PII(C). The three-dimensional structures are presented in Figure 1.  

 

Calcite has a rhombohedral crystal structure, space group cR3  where a=b= 4.988 Å, 

061.17=c  Å, °== 90βα  and °= 120γ  [10]. The calcite ( )4110  surface shown in 

Figure 2 was built with Materials Studio 4.0 [11].  

 

In the modeling, we put water and a peptide molecule on a calcite surface as shown in 

Fig. 3. Because all the peptides under study were negatively charged with -4e, two 

calcium ions were added to each peptide in order to neutralize the system. The 

temperature was 300 K and a three-dimensional periodic boundary was used. All the 

MD simulations were carried out using the DL_POLY 2.18 code[12] with a set of 
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force fields designed for use at bio-inorganic interfaces [6]. Full details about the 

force fields between the organic molecule and the mineral are given in that reference. 

The interaction potentials used for CaCO3 were those derived by Pavese et al. [13] for 

modeling a range of properties of calcite and aragonite crystals. The potentials for 

peptides were obtained from the ff03 force field in AMBER; the flexible TIP3P 

potential was used for water [14]. 

 

The coordinates of both peptides and the calcite surface obtained from the final 

configuration of MD simulations were used as input for PBE calculations. After 

taking away all the water molecules, PBE calculations were performed with the APBS 

program [8]. In the calculation, the solute intramolecular interactions were computed 

by the usual molecular mechanics mothods, while the solute-solvent and solvent-

solvent interactions were computed by a mean-field approximation through the use of 

PB electrostatic theory. The dielectric constant for water was set to 80.0, and 8.0 for 

the calcite surface and peptides.  

 

3333.... Results and Discussion 

 

3.1 Peptides in vacuum 

 

The MD simulations of peptides in vacuum were carried out at 300 K for 2 ns. From 

Fig. 4 we can see that after the initial equilibration period, the configurations of the 

peptides became stable, as characterized by their radii of gyration. The potential 

energy underwent variance during the simulations. The results show that the potential 

energy of a peptide in vacuum is closely linked to its specific configuration. 
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Configurations with coiled structure (smaller gyration radius) are energetically 

favourable since molecules with this kind of configuration are able to interact with 

themselves so their potential energy is lowered by these intramolecular interactions. 

PI(A ) and PII(B) have the largest gyration radius in all of the PI and PII 

configurations during the simulations, and as a result, their potential energies are the 

largest. The change of peptide configuration as indicated from the gyration radius will 

induces a change of potential energy of the peptide. For example, the gyration radius 

of PII(A) decreased sharply (about 10%) at t=1300 ps and accordingly, its potential 

energy increased from around -2100 to -2400 kJ/mol. 

 

3.2 Peptides in water 

 

The simulations of peptides in water were carried out at 300 K for 2 ns. The potential 

energy and gyration radius for the peptide molecule were examined for each 

simulation, and results are shown in Fig. 5. The solvation of peptides by water 

molecules can greatly stabilize peptide molecules. There is no obvious difference in 

potential energy between the peptides. Their larger gyration radius in water indicates 

that they tend to maintain an extended structure such as PI (B) and PII (B). The 

difference in dynamic behaviour of peptides with and without water molecules, as 

seen from the gyration radius calculations, implies that the presence of water 

molecules has great influence on the functionality of peptides during 

biomineralization. 

 

3.3 Peptides on calcite surfaces in water 
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These simulations were used to simulate adsorption of peptides on the calcite surface. 

To make sure that the adsorption of peptides onto the calcite surface is that for a low 

energy (if possible the equilibrium) configuration, the following procedure was used 

to build the system. First, the peptide was put about 4 Å away from the surface and 

the MD simulation ran for 2.5 ns, to allow adsorption to be complete. Second, water 

molecules were added to the system and a series of stepwise MD simulations were 

used to relax the system. After the system has equilibrated, the potential energy and 

the radius of gyration of the peptide could be obtained from production simulations of 

2 ns, and results are shown in Fig. 6. The results suggest that although there are 

differences in the gyration radius, the variability of potential energy among the 

peptides is insignificant. The adsorption energy could be obtained by comparing the 

potential energy of the system before and after adsorption using the method described 

by Yang et al. [7]. The results are shown in Table 1. Low negative adsorption energy 

means strong adsorption between the peptide and the surface. 

 

The peptides with the beta-turn configuration have the strongest adsorption 

(adsorption energies: -204.4 kJ/mol for PI (C), and -136.8 for PII (C)); those of alpha-

helix configuration have the weakest adsorption, and those of extended configuration 

have adsorption energies between those of the beta-turn and alpha-helix 

configurations. The dependence of adsorption energy on peptide configurations 

indicates that the configuration of peptides plays a key role in biomineralization 

controlled by peptides or proteins. The results agree well with the experiments, which 

showed that peptides with specific configurations can facilitate calcite crystal growth 

[3]. 
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3.4 Changes in dihedral angles of the peptides 

 

The gyration radius of a peptide can not display all the information about a peptide 

configuration. Therefore, the dihedral angles of the peptides have been calculated to 

indicate the change in configuration with more detail. For each residue unit, three 

dihedral angles can be defined as in Figure 7. 

 

The distribution of each type of dihedral angle could be obtained from the trajectory 

of the MD simulations. For example, the distributions of all dihedral angles for PI(A) 

during the former simulations are shown in Fig. 8. 

 

During the simulations, the dihedral angle “omega” hardly changed from around 

180°, which agrees with the expected chemical structure. The figures clearly show 

that the change of peptide configuration can be reflected by the change in the dihedral 

angles “phi” and “psi”. For simulation of PI (A) in water, the distribution of the 

dihedral angle “phi” has a major peak around 290°, and a small peak around 230°, 

while the distribution of the dihedral angle “psi” has a major peak around 340°, and a 

small peak around 230°. The distribution of these dihedral angles shows that peptides 

can keep their configuration in water without significant changes. From simulations of 

peptides on calcite surface, we can see some new peaks and slight shifts of previous 

peaks. The “phi” type of dihedral angle has two new distribution peaks around 80° 

and 170°, while “psi” has peaks around 70° and 160°. The difference in distribution of 

dihedral angles shows the alteration of configuration of peptides after they interact 

with the calcite surface. 
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3.5 Electrostatic potential isosurfaces  

 

From the MD simulations, we are able to investigate the molecular system in 

atomistic detail. It is still instructive to plot the potential isosurfaces of peptide and 

calcite with the PBE calculations. The electrostatic potential isosurfaces represent 

points of electrostatic potential within a volume of space. The results from PBE 

calculations with the APBS program are shown in Figure 9.  

 

From the isosurfaces, we can see that the dominating electrostatic interaction is a key 

factor in peptide interactions with calcite. Two types of strong binding can be 

identified: 1) interactions between carbonate groups of the calcite surface and amino 

groups of the peptides; and 2) interactions between calcium ions in calcite and 

carboxyl groups of peptides. 

 

4444.... Conclusions 

 

Simulations of two kinds of peptides on the calcite ( )4110  surface in water were used 

to investigate the interaction between peptides and this calcite surface. The results 

indicate that the specific configuration of peptides plays an important role in their 

adsorption. The calculated adsorption energies show that beta-turn configuration 

peptides have the strongest interaction with the calcite surface, extended 

configurations have less strong interactions, and alpha-helix configurations have the 

least interaction. From the continuum electrostatic calculations with PBE, two types 

of strong interaction have been identified: 1) interactions between carbonate groups of 

the calcite surface and amino groups of the peptides; and 2) interactions between 
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calcium ions of the calcite surface and carboxyl groups of peptides. This helps to 

explain the biological control in biomineralization. 
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Table 1 Adsorption energies for peptides adsorbed on the calcite ( )4110  surface 

 A B C 

PI (kJ/mol) 6.41 -40.5 -204.4 

PII (kJ/mol) 21.4 -48.6 -136.8 
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Figure Captions 

 

1. Figure 1 Configurations of R2E2W2D2-16 (PI) and R2E2W2D2P-17 (PII). (a) PI 

(A); (b) PI (B); (c) PI (C); (d) PII (A); (e) PII (B); (f) PII (C) 

2. Figure 2  The calcite ( )4110  surface 

3. Figure 3  Simulation model of a peptide molecule on the calcite surface 

4. Figure 4 Peptides in vacuum. (a) Potential energy; (b) Radius of gyration 

5. Figure 5 Potential energy and gyration radius of peptides in water. (a) Potential 

energy; (b) Radius of gyration 

6. Figure 6 Peptides on calcite in water. (a) Potential energy; (b) Radius of gyration 

7. Figure 7 Dihedral angles in a peptide repeating unit 

8. Figure 8 Dihedral angles for peptides  (a) PI (A) in water alone; (b) PI (A) in 

water on a calcite surface 

9. Figure 9 The potential isosurfaces of peptides and a calcite surface. (a) PI (A); (b) 

PI (B); (c) PI (C); (d) PII (A); (e) PII (B); (f) PII (C) 
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Figure 2 Calcite (10.4) surface  
78x34mm (300 x 300 DPI)  
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Figure 3 Simulation model of peptide molecule on calcite surface  
46x44mm (300 x 300 DPI)  
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