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Calculation of the long range interactions

for interfacial properties.

Florent Goujon, Christine Bonal and Patrice Malfreyt†

a Laboratoire de Thermodynamique et Interactions Moléculaires,
FRE CNRS 3099, Université Blaise Pascal, 63177 Aubière Cedex, France

Abstract:
The molecular simulation of heterogeneous systems cannot be performed routinely. The
results of such systems depend on the truncation procedures, size effects, long range cor-
rections to the thermodynamic properties and on the way of calculating the Coulombic
interactions. We propose here to illustrate the impact of the truncation procedures on the
mechanical equilibrium of the liquid-vapor interface of alkanes. The importance of the long
range corrections to the surface tension is established in alkanes, water, carbon dioxide and
hydrogen sulfide liquid-vapor interfaces. The calculation of the electrostatic interactions
in a slab geometry using a two-dimensional method and the standard three-dimensional
Ewald summation technique is also reported.

Keywords: Heterogenous systems, molecular simulations, long range corrections, Coulom-
bic interactions.
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1 INTRODUCTION

Most of the phenomena in surface science (adhesion, wetting, and lubrication) involve the

combination of liquid-liquid, liquid-vapour, and liquid-solid interfaces. Many important

fundamental problems in chemistry and biology lead to practical applications in ion sepa-

ration and extraction, drug delivery, oil recovery, and detergents. Due to the difficulties of

experimental probes to access the molecular level structure of the interface, direct molec-

ular simulation methods have become powerful techniques to examine the nature of the

interface region and to calculate interfacial properties.

However, the molecular simulation of heterogeneous systems cannot be considered as rou-

tine job because the nonuniformity of the local density along the direction normal to the

surface gives rise to important issues. This heterogeneity makes problems concerning the

truncation procedures involved in the calculation of the force and energy equations, the

long range corrections to apply to the macroscopic properties and an accurate treatment of

the Coulombic interactions. Additionally, when the system is modelled by a slab geometry

that is periodic in two of the three directions, the calculation of the long range Coulombic

interactions cannot be applied directly.

We propose to establish the mechanical equilibrium of the liquid-vapour interface of alka-

nes (Figure 1a) in Monte Carlo (MC) and Molecular Dynamics (MD) simulations. This

example shows the importance of the truncation procedures in the force and energy equa-

tions for heterogeneous systems. We also show that the truncation procedures can affect

significantly the results of surface tensions when they are calculated using different routes.

We illustrate this point by calculating the surface tension of alkanes using both a trun-

cated force and a force modified by a cubic spline function. We complete the study of the

liquid-vapour interface by showing the order of magnitude of the long range corrections to

the surface tension in alkanes, water, CO2 and H2S systems.
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In a slab geometry system where periodic boundary conditions can be used in two of the

three directions, the calculation of the long range electrostatic interactions cannot be per-

formed directly using the standard Ewald summation method. It requires to adapt the

dimensions of the simulation box. We propose here to compare a two-dimensional method

(HKE) [1] and the standard three-dimensional Ewald summation (EW3D,EW3DC) tech-

niques for the calculation of the Coulombic interactions. The two-dimensional method

(HKE) [1] is better adapted to systems which are periodic in two directions only but it is

20 times slower than standard three dimensional methods. The comparison between the

different methods is carried out on systems constituted of monolayers of metal-chelating

ligands grafted onto a graphite surface (see Figure 1b). These grafted monolayers are in-

vestigated platforms in the development of applications such as electrochemical biosensors.

2 SIMULATIONS DETAILS

2.1 Liquid-vapour interface

For the molecular simulations of the liquid-vapour interface, the total configurational en-

ergy of the systems formed by N molecules consists of intramolecular and intermolecular

interactions modelled by Lennard-Jones (LJ) 6-12 sites, electrostatic point charges and a

long range correction (LRC) contribution.

U = UINTRA + UINTER + ULRC (1)

The intermolecular interactions due to the repulsion-dispersion interactions are computed

using the truncated LJ potential uLJ(riajb)
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ULJ =

N−1∑
i=1

N∑
j>i

Ni∑
a=1

Nj∑
b=1

uLJ(riajb)

=
N−1∑
i=1

N∑
j>i

Ni∑
a=1

Nj∑
b=1

4εab

[(
σab
riajb

)12

−
(
σab
riajb

)6
]

(2)

where riajb is the distance between atom a in molecule i and atom b in molecule j, εab is

the energy parameter of the interaction and σab is the Lennard-Jones core diameter. Ni is

the number of atoms in the molecule i. The LJ parameters for the interactions between

unlike sites are calculated by using the Lorentz-Berthelot combining rules

εab = (εaaεbb)
1/2 σab =

1
2

(σaa + σbb) (3)

In addition to the LJ interactions, the intermolecular interactions include the total elec-

trostatic potential UELEC calculated using the Ewald sum method [2, 3, 4, 5] technique.

For a box with orthogonal axis, UELEC is expressed as

UELEC =
1

2εoV

∑
k 6=0

Q(h)S(h)S(−h)

+
1

8πεo

∑
i

∑
a

∑
j 6=i

qia
∑
b

qjb erfc (αriajb/riajb)

− α

4π3/2εo

∑
i

∑
a

q2ia

− 1
8πεo

∑
i

∑
a

∑
b 6=a

qiaqib
riaib

erf (αriaib) (4)

where erfc(x) is the complementary error function and erf(x) is the error function. α is

chosen so that only pair interactions in the central cell need to be considered in evaluating

the second term in Eq.(4). The functions S(h) and Q(h) are defined using Eqs.(5) and

(6), respectively

S(h) =
∑
i

∑
a

qia exp(ih.ria) (5)
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Q(h) =

1
h2

exp(− h2

4α2
) (6)

where the reciprocal lattice vector h is defined as h = 2π(l/Lx,m/Ly, n/Lz) where l,m, n

take values of 0,±1,±2,· · · ± ∞. The reciprocal space sum is truncated at an ellipsoidal

boundary at the vector |hmax|.

As the geometry of the system shows an heterogeneity along the axis normal to the interface

(z-axis), we calculate the long range correction (LRC) to the repulsion-dispersion energy as

a function of zk by splitting the cell into slabs of width δz. The total long range correction

energy ULRC is then calculated by summing up all of the local contributions of each slab.

The long range corrections to the total energy within each kth slab are defined by two

parts [6]

ULRC =
Ns∑
i=1

ulrc(zk) =
Ns∑
i=1

(
u

(1)
lrc (zk) + u

(2)
lrc (zk)

)
with

u
(1)
lrc (zk) =

8π
3
ρ(zk)2Vs

Ni∑
a=1

Nj∑
b=1

εab

[
1/3

(
σ12
ab

r9c

)
−
(
σ6
ab

r3c

)]
(7)

u
(2)
lrc (zk) = πρ(zk)Vs

∫ ∞
rc

dr

∫ r

−r
d∆z

Ns∑
i=1

[ρ(zk+i)− ρ(zk+i−1)] r ULJ,m(r)(8)

where ρ(zk) and Vs are respectively the density and the volume of the slab k. ∆z is defined

as the difference z−zk. Ns is the number of slabs between z and zk. rc is the cutoff radius,

ULJ,m(r) is the intermolecular energy and r the distance between the two centers of mass.

ULJ,m(r) =
Ni∑
a

Nj∑
b

4εab

[(σab
r

)12
−
(σab
r

)6
]

(9)

The first part of the long range contribution has an analytical form identical to the one

associated with a homogeneous system but uses the local density ρ(zk) of the slab. The

second part consists of a double integral which contains a series of density differences which

render this part cumbersome to calculate.
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2.2 Grafted metal-chelating monolayers onto a graphite surface

For the modelling of the grafted monolayers, we use the all-atom (AA) version of the

Cornell force field AMBER [7]. The general potential function is of the form

U =
∑
bonds

kb(r − ro)2

+
∑
angles

kθ(θ − θo)2

+
∑

dihedrals

kφ[1 + cos(lφ+ δ)]

+
N−1∑
i=1

N∑
j=i+1

{
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∞∑
l

′ qiqj
|rij + nL|

}
(10)

where kb, kθ and kφ are the force constants for deformation of bonds, angles and dihedrals,

respectively. The equilibrium values of bond distances and valence angles correspond to

ro and θo, respectively. In the dihedral angle term, l is the periodicity and δ is the phase

factor. The intermolecular and intramolecular interactions consist of a van der Waals

repulsion-dispersion term calculated using the Lennard-Jones (6-12) potential, represented

by the penultimate term in Eq.(10). In the AMBER force field, the nonbonded interac-

tions between atoms separated by exactly three bonds (1-4 van der Waals interactions)

are reduced by a factor of 0.5 [7]. The Lennard Jones potential parameters for the in-

teractions between unlike atoms were calculated by using the Lorentz-Berthelot mixing

rules (quadratic and arithmetic rules for εij and σij parameters, respectively). The water

molecules were represented with the TIP4P/2005 model [8].

When the last term in Eq.(10) is calculated with Eq.(4), the method is called EW3D

and refers to the standard Ewald summation technique. When Eq.(4) is changed by the

addition of 1
2εoV

M2
z , the method is called EW3DC. Mz is the net dipole moment of the

simulation cell given by
∑N

i=1 qiri. This contribution is the correction term from Yeh and

Berkowitz [9] which results by the plane-wise summation method proposed by Smith [3].
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Adding this term to the total energy amount to using a z-component force for each atom

given by

Fi,z = − qi
εoV

Mz (11)

The EW3DC method differs from the standard EW3D method only by the presence of

this dipole correction. However, these two three-dimensional method require to change the

primary simulation box by adding two empty spaces between the periodic image in order

to dampen out the interslab interactions [9, 10, 11].

The total Coulombic interactions for a two-dimensional periodic system which is finite in

the z-dimension can be calculated using the Hautman and Klein method [1]. This method

is in fact an adaptation of the Ewald technique for systems which are periodic in two di-

mensions only. The operational expressions of the total electrostatic interactions can be

found elsewhere [1] for completeness.

The computational procedures of the molecular simulation of the liquid-vapour interface

can be found in previous papers [12, 13, 14, 15, 16, 17]. The force-field used in the molecular

modelling of the grafted system and the description of the computational procedures can

be also found elsewhere [11]. Figures 1a and 1b show typical configurations of the liquid-

vapour interface of the n-pentane and of the NTA grafted system, respectively. In these

snapshots, z refers to the direction of the heterogeneity.

3 RESULTS AND DISCUSSIONS

We propose here to illustrate the importance of the truncation procedures for the mechan-

ical equilibrium of the liquid-vapour interface of alkanes. The impact of the discontinuities

in the force and energy equations is also studied for the different definitions of the sur-

face tension. The long range corrections to the surface tension are reported for systems

involving both electrostatic and dispersion-repulsion energy contributions. We finish by
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the calculation of the electrostatic interactions in a slab geometry system.

3.1 Calculation of the normal and tangential pressure components

In the case of a planar liquid-vapour surface lying in the x,y plane where the heterogeneity

takes place along the z direction normal to the surface, the calculation of the normal

and tangential pressure components along this axis is meaningful for the validation of the

mechanical equilibrium. The components of the pressure tensor calculated from the Irving

and Kirkwood definition [18, 19, 20] are expressed by

pαβ(zk) = 〈ρ(zk)〉 kBT I

+
1
A

〈
N−1∑
i=1

N∑
j>i

(rij)α(Fij)β
1
|zij |

θ

(
zk − zi
zij

)
θ

(
zj − zk
zij

)〉
(12)

where I is the unit tensor and T is the input temperature. α and β represent x, y or z

directions. θ(x) is the unit step function defined by θ(x) = 0 when x < 0 and θ(x) = 1

when x ≥ 0. A is the surface area normal to the z axis. The distance zij between two

molecular centers-of-mass is divided into Ns slabs of thickness δz. Following Irving and

Kirkwood, the molecules i and j give a local contribution to the pressure tensor in a given

slab if the line joining the centers-of-mass of molecules i and j crosses, starts or finishes

in the slab. Each slab has 1/Ns of the total contribution from the i − j interaction. The

normal component pN(zk) is equal to pzz(zk) whereas the tangential component is given by

1
2(pxx(zk) + pyy(zk)). Fij in Eq.(12) is the intermolecular force between molecules i and j

and is expressed as the sum of all the site-site forces acting between these two molecules.

Fij =
Ni∑
a=1

Nj∑
b=1

(fiajb)

= −
Ni∑
a=1

Nj∑
b=1

riajb
riajb

dU(riajb)
driajb

(13)

For the simulation of the liquid-vapour interface of alkanes, the total intermolecular energy

U is calculated by using the LJ potential ULJ because no electrostatic interactions are

8

Page 8 of 26

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
involved in the model. In our MC simulations, the LJ potential is truncated at the cutoff

radius (rc = 12 Å) according to UT

UT(riajb) =
{
ULJ(rij) riajb < rc
0 riajb ≥ rc

(14)

The calculation of the pressure components requires the use of the derivative of the poten-

tial. This derivative can be calculated using either the truncated force expressed as

fT(riajb) =

 −
∂ULJ

∂riajb
riajb < rc

0 riajb ≥ rc
(15)

or the truncated force modified by the addition of an impulse contribution [21] defined by

fTC(riajb) =


− ∂ULJ

∂riajb
riajb < rc

+
ULJ(rc)

∆r
rc < riajb < rc + ∆r

0 riajb ≥ rc + ∆r

(16)

where ∆r is equal to 0.05 Å for a cutoff of 12 Å. In the most cases, the MD simulations

used a truncated force and the MC simulations a truncated potential. Figure 2 shows the

profiles of the normal pN and tangential pT components of the pressure tensor calculated

from MC and MD configurations. For a planar surface, the mechanical equilibrium requires

to have pN(z) and pT(z) constant and equal to p in the bulk phases. In the interfacial re-

gion, pT exhibits two negative peaks indicating that the liquid phase is under tension.

The normal and tangential components of the pressure calculated from MD are shown in

Figure 2a. These profiles establish the mechanical equilibrium of these MD configurations

as expected for a method that uses the forces to generate the evolution of the system. On

the other hand, in MC configurations when the forces are calculated from Eq.(15), the

profiles of pN and pT highlight that the configurations are not in mechanical equilibrium.

This can be explained by the fact that MC uses the configurational energy to generate the

configurations and that the pressure is calculated from the derivative of the configurational

9
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energy. When the configurational energy is calculated with a truncated potential which is

not differentiable at the cutoff radius, the truncated force used in the calculation of the

pressure does not correspond to the truncated potential. To match the force and energy

equations, the force must be corrected by an addition term. When the force is corrected

as in Eq.(16), the profiles of the normal and tangential components of Figure 2b show that

the mechanical equilibrium is satisfied within the MC configurations.

Another way of removing the discontinuities in the energy and force equations is to use

the Lennard-Jones potential modified by a cubic spline. The potential and force equations

become

USP(riajb) =


ULJ(riajb)− ULJ(rs) + a riajb < rs
− b

3(riajb − rc)3 − c
4(riajb − rc)4 rs ≤ riajb < rc

0 riajb ≥ rc
(17)

fSP(rij) =


− ∂ULJ

∂riajb
riajb < rs

+b(riajb − rc)2 + c(riajb − rc)3 rs ≤ riajb < rc
0 riajb ≥ rc

(18)

Using such expressions, the potential and its derivative are continuous at the cutoff. The

parameters a, b and c are calculated by requiring that the first and second derivatives of

the uSP potential be continuous at rs and rc.

c = +
∂2ULJ
∂r2

ij

(rs)

(rs−rc)2 − 2
∂ULJ
∂rij

(rc)

(rs−rc)3

b = −
∂2ULJ
∂r2

ij

(rs)

(rs−rc) + 3
∂ULJ
∂rij

(rs)

(rs−rc)2

a = − b
3(rs − rc)3 − c

4(rs−c)4

(19)

Figures 3a and 3b display the profiles of the normal and tangential pressure components

calculated over MC and MD configurations using the potential and force of Eqs. (17)

and (18), respectively. The profiles match very well within the MC and MD methods

and indicates the primary importance of the discontinuity of the potential at the cutoff.

Additionally, the total local chemical potential calculated from Eq.(20) exhibits a flat

profile as expected for a planar liquid-vapour interface at equilibrium:

10
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µ(zk) = kT ln

(〈
Λ3ρ(zk)

exp(−∆U/kBT )

〉
zk,NV T

)
(20)

where Λ is the de Broglie thermal wavelength and U is the potential changed by a cubic

spline function. ∆U represents the energy of the ghost (N + 1) particle with the N parti-

cles. The local expression of the chemical potential was established by Widom [22].

The discontinuity in the force and energy equations was not considered as crucial in the

simulations of a homogeneous fluid where there was a compensation between the forces

affecting a particle from outside is cutoff sphere. In the case of heterogeneous system,

this assumption is not longer valid and the equivalence between MC and MD is recovered

only when the discontinuities are removed. In this case, the MC and MD simulations are

performed with the same potential.

3.2 Calculation of the surface tension

In the case of the calculation of the surface tension, the discontinuities in the energy and

forces expressions can lead to significant differences between the different routes. Some

definitions use the potential energy in their working expressions. For instance, the test-

area (TA) method [23] recently developed uses the perturbation formalism to express the

surface tension. Other expressions (KB [24]) and (IK [25, 19, 20]) are based upon the

mechanical definition of the surface tension and use the derivative of the potential in their

operational expressions. Table 1 shows that the intrinsic part of the surface tension calcu-

lated from the potential energy (TA) is different with that calculated from the derivative

of the potential energy (IK,KB). However, when the discontinuities are removed in the ex-

pressions of the force and energy with a cubic spline function, the intrinsic part is identical

within IK, KB and TA approaches. The equivalence between the different operational ex-

pressions can be also recovered by making the potential and force equations consistent [14].
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An other important contribution to the surface tension is the long range contribution due

to the fact that interactions are neglected from the cutoff region. The appropriate LRC of

the normal and tangential components of the pressure tensor within the IK defintion have

been derived by Guo and Lu [6] and are composed of two parts as expressed in Eqs. (21)

and (22).

pN,LRC(zk) = p
(1)
N,LRC(zk) + p

(2)
N,LRC(zk) (21)

= −2π
3
ρ2(zk)

∫ ∞
rc

drr3
dULJ,m(r)

dr

− πρ(zk)
∫ ∞
rc

dr

∫ r

−r
d∆z [ρ(z)− ρ(zk)]

dULJ,m(r)
dr

(∆z)2

As concerns the tangential pressure, the first term is identical to the first term of the

normal component whereas the second term is expressed by

p
(2)
T,LRC(zk) = −π

2
ρ(zk)

∫ ∞
rc

dr

∫ r

−r
d∆z [ρ(z)− ρ(zk)]

dULJ,m(r)
dr

[
r2 − (∆z)2

]
(22)

The first term of pN,LRC(zk) and pT,LRC(zk) is identical to that used in homogeneous

molecular simulations by using a local density ρ(zk) instead of a scalar density ρ whereas

the second term takes into account the density differences between the slabs. From these

LRC expressions, it is then possible to calculate the LRC parts relative to the surface

tension. From a mechanical viewpoint, the surface tension can be also calculated from

the integration of the difference of the normal and tangential components of the pressure

tensor [18, 19, 20] across both interfaces according to

γ = γI + γLRC (23)

=
1
2

∫ +Lz/2

−Lz/2
dz (pN(zk)− pT(zk)) +

1
2

∫ +Lz/2

−Lz/2
dz (pN,LRC(zk)− pT,LRC(zk)) (24)

where the first term is related to the intrinsic part of the surface tension and the second

one corresponds to the LRC part.
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Figure 4a shows the profiles of the difference between the normal and tangential compo-

nents as a function of the z direction. We observe that the two profiles are well symmetric

with a well established liquid bulk phase. The integral of the profile is represented on

the right axis. The integral allows to check that the contributions to the surface tension

are the same for the two interfaces with a flat profile between them. Figure 4b plots the

profile of the long range corrections to pN−pT difference with the integral of this property

represented on the right axis. The profile of the long range corrections to the pressure

components indicates that the contribution of each interface is identical and there is no

contribution in the bulk phases. The total value of the long range correction to the surface

tension is far from being negligible: in this case, it represents up to 30 % of the total surface

tension. The calculation of the surface tension requires the use of appropriate long range

corrections; each operational expression of the surface tension must be corrected by specific

long range corrections. This was described in detail elsewhere [14]. Interestingly, Table 2

shows the intrinsic surface tension with its long range corrections for some alkanes, water,

carbon dioxide and hydrogen sulfide. In water, the long range corrections to the surface

tension are small whereas the electrostatic contribution to the surface tension is negative.

In CO2 and H2S, the dispersion-repulsion contributions are greater than the electrostatic

interactions; the long range corrections to the surface tension represents then about 30 %

of the total value.

3.3 Calculation of the electrostatic interactions in a slab geometry

The calculation of the electrostatic interactions in a system represented by a slab ge-

ometry must be carefully undertaken. The use of two-dimensional method such as the

Hautmann-Klein method (HKE) [1] is recommended for systems which are periodic in

two dimensions only. However, the two-dimensional methods are cumbersome and time-

consuming. The HKE method is about 20 times slower than the standard Ewald methods

(EW3D, EW3DC). It is then fundamental from a methodological viewpoint to check that
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the 2D and 3D methods lead to the same energetical, structural and electrical proper-

ties in slab geometry systems. We propose to check these points on a system formed by

negatively charged monolayers of chelating copper (NTA) compounds immobilized onto a

HOPG graphite surface in aqueous solution. The use of a three-dimensional method in a

slab geometry system requires to elongate the simulation box in the z direction in order to

dampen out the interslab interactions. Figure 5a depicts the number of hydrogen bonds

between water molecules in the region close to the surface. The criteria used for the calcu-

lation of the number of hydrogen bonds can be found in a previous paper [11]. This figure

demonstrates that the number of hydrogen bonds between water molecules close to the

grafted surface does not depend on the method used for the calculation of the electrostatic

interactions indicating that KHE, EW3D and EW3DC methods give the same structure

of water. The charge density profiles of water molecules is reported in part b of Figure 5

for each method. This figure tends to establish that the distribution of charges of water

molecules is slightly perturbed close to the surface. This is due to the presence of grafted

molecules that are able to interact preferentially with water molecules to give hydrogen

bonds. However, from 20 Å, the charge density profile recovers an expected zero value.

We observe that the three methods give the same charge density profiles. The analysis of

the electric field profile E(z) (Figure 5c) calculated from the integral of the charge density

profile confirms that the electric field reaches a constant zero from 20 Å. From this value of

z, the distribution of water molecules is isotropic as expected for a bulk-like region. This

indicates that the surface and the grafted molecules do not influence significantly the water

molecules within this region. Additionally, the calculation of these electric properties al-

lows to validate the use of three-dimensional methods for the calculation of the Coulombic

interactions in a slab geometry.
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4 Conclusions

We have shown that the use of truncated potential and truncated force may lead to signifi-

cant differences in the mechanical equilibrium and surface tensions of liquid-vapour systems

governed by dispersion-repulsion interactions. Removing the discontinuities in the poten-

tial and force equations amounts to recovering the equivalence between MC and MD and

to making consistent the different routes of the calculation of the surface tension. Whereas

the effects of these discontinuities are compensated in the simulation of bulk phases, they

must be taken into account in the simulation of two-phase systems.

The simulation of slab geometry system requires to do a compromise between an accurate

treatment of the Coulombic interactions, the use of fully developed system and the number

of steps to obtain a good convergence of the thermodynamic and electrical properties. A

solution consists in using a slight modified three-dimensional Ewald summation method

with the addition of empty space between the primary simulation cell. We have compared

the results between three-dimensional methods and a two-dimensional method. We have

concluded that the standard Ewald summation technique can be used with confidence in

such slab geometries.
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Table 1: Surface tensions of methane (mN m−1) calculated from MC simulations using a
truncated LJ potential and a modified LJ potential using the KB, IK and TA approaches.
The cutoff radius is fixed to 12 Å.

γKB γIK γTA

Truncated potential

9.5 9.5 10.6

Spline potential

8.5 8.5 8.5
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Table 2: Lennard-Jones, electrostatic and long range corrections contributions to the sur-
face tension (mN m−1) calculated from MC simulations in different liquid-vapour systems.

γLJ γELE γLRC γTOT γEXP.

CH4 9.5 3.8 13.3 11.3

nC5 12.0 5.6 17.6 15.3

nC10 6.0 4.3 10.3 10.4

H2O -87.6 117.7 3.5 33.6 36.5

CO2 6.1 2.9 2.5 11.5 12.0

H2S 21.0 9.3 8.0 38.3 37.5

20

Page 20 of 26

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Fig. 1 a) Configurations of the n-pentane liquid-vapour interface at T = 350 K. b)

Snapshot of a MD configuration of 10 grafted NTA-Cu(II) complexed onto the

HOPG surface with the water molecules.

Fig. 2 a) Normal and tangential pressure components calculated in the liquid-vapour

interface of the n-pentane at T = 325 K a) from MC using a truncated potential

and MD using a truncated force; b) from MC using both a truncated force fT

and a truncated force modified by an additional impulse fTC.

Fig. 3 Normal and tangential pressure components calculated in the liquid-vapour

interface of the n-pentane at T = 325 K from a) MC and b) MD using a

Lennard-Jones potential and a force changed by a cubic spline function. c)

Total chemical potential of the liquid-vapour interface of methane at T = 120

K calculated from MC simulations using a LJ potential changed by a cubic

spline function.

Fig. 4 a) Difference between the normal and tangential pressure profiles for the liquid-

vapour interface of the n-pentane at T = 300 K; b) Difference between the

normal and tangential components of the long range corrections to the pressure

tensor. On the right axis, the integral of each difference is plotted as a function

of z.

Fig. 5 a) Profiles of the number of hydrogen bonds between water molecules along

the direction normal to the surfaces. b) charge density and c) electric field

profiles along the direction normal to the surface.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:

25

Page 25 of 26

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 5:
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