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Abstract

We employ Monte Carlo simulations in a semi-grand canonical ensemble to investigate the impact

of pore deformation on capillary condensation in nanoconfined fluids. The fluid is composed of

“simple” spherically symmetric molecules of the Lennard-Jones type. These molecules are confined

to a slit-pore where the pore walls consist of a single layer of atoms distributed according to the

(100) plane of the face-centered cubic lattice. The atoms are bound to their equilibrium lattice

sites by harmonic potentials such that they can depart to some extent from these sites on account

of their thermal energy and the interaction with the fluid molecules. Under experimentally realistic

conditions our results show that upon filling with fluid the effective average pore size first increases,

then drops sharply at capillary condensation. The pore eventually expands again when the density

of the confined liquid-like phase is further enhanced. Compared with the ideal case of perfectly

rigid substrates deformability of the pore causes capillary condensation to shift to higher bulk

pressures, that is the liquid-like phases are destabilized relative to confined gas-like phases.
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I. INTRODUCTION

If a fluid is exposed to an external field its phase behavior and materials properties will

depend on the specific characteristics of the field. In the context of confined fluids the solid

matrix of a mesoporous material has frequently been treated as such an external field rep-

resenting the walls of tiny pores of nanometer dimensions [1–3]. When adsorbed into these

pores their small size (i.e., the strength of the external field) causes a markedly different

phase behavior, structure, and materials properties of the adsorbate. For example, if the

fluid-substrate attraction is sufficiently strong condensation of the adsorbate occurs under

thermodynamic conditions such that a corresponding bulk fluid is still an undersaturated

gas. This phenomenon known as “capillary condensation” is in principle predicted by the

celebrated Kelvin equation [4] and has received quite a bit of experimental interest [5–10].

However, these early studies were basically concerned with disordered porous media such

as, for example, controlled pore glasses where the pores vary in shape and form an inter-

connected network. In the meantime it has become feasible to synthesize other mesoporous

materials that differ from the ones studied in these earlier works in that they consist of more

regular arrays of individual, disconnected, more or less cylindrical pores [11–13]. These new

materials enable studies of nanoconfined fluids under more controlled conditions.

The experimental advances have also spurred a wealth of theoretical investigations of con-

fined fluids from which a detailed molecular picture of capillary condensation emerged [1–3].

One of the most intriguing theoretical findings in more recent times concerns the prediction

of novel phases in fluids confined between complex chemically decorated or geometrically

sculptured substrates [14, 15]. Here the confined fluids’ structure is imposed by the sub-

strates through a template effect. Thus, these new confined thermodynamic phases have

obviously no counterpart in any bulk system which makes them particularly fascinating.

However, regardless of the specific nature of the model system studied theoretically,

the confining substrates are conventionally treated as an inhomogeneous, anisotropic, but

otherwise static external field. From this perspective characteristic features of a confined

fluid come about by superimposing the external field onto the intermolecular interactions

between fluid molecules. In other words, no matter what changes occur in a confined fluid’s

thermodynamic state or mechanical properties the solid substrates do not “respond” or

adjust themselves to any of these changes.
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However, quite some time ago Diestler and Schoen showed that the mechanical properties

and the structure of a confined fluid may be altered if the confining substrates are coupled

thermally to the fluid phase [16]. The physical situation studied in Ref. 16 is relevant to

experimental work by Namatsu et al. in which the authors show that thin silica plates

separated by a distance of less than 200 nm may deform during the drying process after

having been rinsed by water [17]. More recently, Kowalczyk et al. [18] and Ustinov and Do

[19] considered sorption-induced deformation of porous matrices. In both works the pores

may deform homogeneously, that is the width of the entire pore may change upon increasing

sorption. However, these earlier papers [18, 19] do not explore the relation between capillary

condensation and pore deformation.

Moreover, it was recently demonstrated experimentally that SBA-15 pores may be de-

formed upon capillary condensation. Using in-situ synchrotron X-ray diffraction (SAXD)

and parallel measurements of an adsorption isotherm Zickler et al. demonstrated that a

discontinuous phase transition in a confined fluid may alter the lattice constant characteriz-

ing the (regular) mesoporous matrix [20]. In Ref. 20 the correlation between the associated

sorption strains and capillary condensation is established by comparing form, location, and

intensity of the Bragg peaks determined in the scattering experiments with the steap varia-

tion of the adsorption isotherm at capillary condensation.

Sorption strains of the sort reported in Ref. 20 have also been observed earlier experimen-

tally [21–23] and are discussed in terms of either continuum elasticity [21] or phenomeno-

logical thermodynamics [22]. It is also well-known from solid-solid phase transitions that

elastic strains may cause a shift of the phase boundaries [24]. However, to date a microscopic

analysis of the relationship between sorption strains and phase transitions in nanoconfined

is still lacking.

In the present work we therefore intend to employ Monte Carlo simulations to address

the following questions in conjunction with capillary condensation in a nanopore with locally

deformable pore walls (cf., Refs. 18 and 19):

1. How are sorption strains related to the thermodynamic state of the confined fluid?

2. Do sorption strains have an impact on capillary condensation?

3. What is the relation between sorption strains and the structure of the confined fluid?

3

Page 3 of 29

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

To address these points we organized the manuscript as follows. In Sec. II we intro-

duce our model system and describe its thermodynamic and statistical physical analysis in

Secs. IIIA and IIIB, respectively. A key quantity that we wish to compute is the grand-

potential density ω of the confined fluid. We obtain ω via thermodynamic perturbation

theory as we explain in Sec. IIIC. In Sec. IVA we analyze the relation between substrate

deformation and capillary condensation whereas Sec. IVB is devoted to associated structural

changes in the confined fluid. The paper concludes with a summary of our main findings in

Sec. V.

II. MODEL SYSTEM

A. The model fluid

In this work we consider a pure fluid consisting of N spherically-symmetric molecules

interacting with each other in a pairwise additive fashion. The fluid-fluid configurational

energy can then be cast as

Uff (R) =
1

2

N∑

i=1

N∑

j=16=i

u (rij) (2.1)

where rij = |ri − rj| is the distance between molecules i and j located at ri and rj , respec-

tively, R ≡ (r1, r2, . . . , rN) represents the configuration of fluid molecules,

u (r) =





ush (r) , r ≤ rc

0, r > rc

(2.2)

and

ush (r) = uLJ (r) − uLJ (rc) +
duLJ (r)

dr

∣∣∣∣
r=rc

(r − rc) (2.3)

is a so-called shifted-force potential. Unlike the full Lennard-Jones (LJ) potential

uLJ (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(2.4)

ush (r) vanishes continuously together with its first derivative (i.e., the intermolecular force)

at the radius rc of a cutoff sphere centered on ri. Throughout this work we use rc = 3.5σ.

Because of its definition ush (r) is explicitly short-range [unlike uLJ (r)] which is advantageous

in the Monte Carlo (GCEMC) simulations on which this work is based [3, 25]. In Eq. (2.4),

σ is the “diameter” of a fluid molecule and ε determines the strength of intermolecular

interactions in the usual manner.
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B. Thermally coupled substrates

sz

FIG. 1: Two-dimensional schematic representation of the model system consisting of spherical

fluid molecules (light grey) confined between two planar solid substrates separated by a distance

sz along the z-axis of the Cartesian coordinate system. In the reference system the substrates are

structureless as indicated by the black vertical line and the area shaded in grey above and below

this line. In the system of interest the homogeneous substrates are replaced by discrete wall atoms

(dark grey) where the equilibrium fcc (100) positions are represented by dashed circles.

Fluid molecules are confined by two planar solid substrates (see Fig. 1). For reasons that

will become clear in Sec. III we need to consider a reference system, in which fluid molecules

are confined between two stuctureless, planar substrates. In the system of ultimate interest

the walls are thermally coupled to the confined fluid such that the walls can respond to

whatever change in the thermodynamic state of the confined fluid may occur. In this latter

case the substrates are atomically structured and thermally corrugated as indicated by the

sketch in Fig. 1.

In both cases there is a fluid-solid contribution to the total configurational energy. For

the reference system this contribution may be expressed as

U ref
fs =

2∑

k=1

N∑

i=1

ϕ[k] (zi) (2.5)
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where the fluid-solid interaction potential is given by

ϕ[k] (z) = 2περsσ
2

[
2

5

(
σ

z ± sz/2

)10

−
(

σ

z ± sz/2

)4
]

(2.6)

In Eq. (2.6), k = 1 ↔ + and k = 2 ↔ −, respectively and we assume the solid substrates to

be located at z = ±sz/2. Equation (2.6) is derived on the basis of the assumption that the

substrate is composed of a single layer of solid atoms. These atoms are positioned according

to the (100) structure of the face-centered cubic (fcc) lattice such that the nearest-neighbor

distance between the atoms corresponds to the minimum of u (r). This implies a lattice

constant ℓ/σ = 3
√

4 such that the areal density ρsσ
2 = 2/ℓ2. The solid atoms have been

“smeared” over the plane while the position of a fluid molecule is fixed at a point ri [3].

Moreover, we take the parameters σ and ε to be the same for fluid molecules and wall atoms

during the course of a simulation.

To realize walls that can respond to the confined fluid we introduce our model of interest.

Again the substrates consist of individual solid atoms initially distributed according to the

(100) plane of the fcc lattice at the areal density given above. The planes are initially in

registry, that is a specific atom in the upper substrate is exactly opposite its counterpart

in the lower one and vice versa. This way the confined fluid can only be subjected to

compressional strains (by changing, for example, sz through external agents) but not to any

shear deformation. Taking fluid molecules and substrate atoms to be identical (i.e., taking

σ and ε to be the same for both species) we replace Eq. (2.5) by

Ufs (R, Rs) = ζ

2∑

k=1

N∑

i=1

Ns∑

j=1

u
(∣∣∣ri − r

[k]
j

∣∣∣
)

(2.7)

where Ns = 2n2 is the total number of substrate atoms located in one wall and n is an

integer specifying the number of unit cells of the fcc (100) plane. In Eq. (2.7), Rs =(
r

[1]
1 , . . . , r

[1]
Ns

, r
[2]
1 , . . . , r

[2]
Ns

)
represents the configuration of substrate atoms. The potential

u in Eq. (2.7) is given in Eq. (2.2). The dimensionless parameter ζ in Eq. (2.7) is introduced

to vary the strength of the fluid-substrate interaction [see Eqs. (2.2) – (2.4), Eq. (2.7), and

Sec. IVB]. If not stated otherwise results in Sec. IV are obtained for the case ζ = 1.0

referring to equally strong fluid-fluid and fluid-substrate interactions. In any event, the

distribution of the solid atoms and the rigidity of the substrates is such that fluid molecules

cannot penetrate into the confining substrates as we have checked for all the simulations

reported here.
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In addition to Ufs we include interactions between the substrate atoms themselves. The

corresponding solid-solid energy is composed of two contributions and may be expressed as

Uss =

2∑

k=1

[
1

2

Ns∑

i=1

Ns∑

j=16=i

u
(∣∣∣r[k]

i − r
[k]
j

∣∣∣
)

+κ
Ns∑

i=1

∣∣∣r[k]
i − r

[k]
i0

∣∣∣
2
]

(2.8)

where u is again given by Eq. (2.2). On account of their interaction with both fluid molecules

and other substrate atoms each of the latter is free to depart from its equilibrium position

(r
[k]
i0 ) in the fcc (100) plane. In other words, substrate atoms are coupled thermally to

the confined fluid and may move because of their kinetic energy. The first term on the

right side of Eq. (2.8) is necessary because substrate atoms must not approach each other

arbitrarily (and therefore unrealistically) close. To prevent the substrates from “melting”

we bind each one of them to its equilibrium lattice site by introducing a harmonic potential

[see second term in brackets in Eq. (2.8)] where κ > 0 determines the binding strength

(i.e., the “stiffness” of a harmonic spring). In other words, κ is a measure of rigidity of

the substrates. Hence, in the system of interest the total configurational energy may be

expressed [see Eqs. (2.1), (2.7), and (2.8)] as

U (R, Rs; κ) = Uff (R) + Ufs (R, Rs) + Uss (Rs; κ) (2.9)

and depends on R, Rs, and κ as a parameter.

III. THEORETICAL CONSIDERATIONS

A. Thermodynamics

To mimic a situation frequently encountered in sorption experiments we treat the confined

fluid as a semi-open system within the framework of phenomenological thermodynamics.

This perception is motivated by the fact that in parallel sorption experiments the fluid

confined to some mesoporous matrix is assumed to be in thermodynamic equilibrium with

a (quasi-infinite) bulk reservoir with which it may exchange fluid matter and heat. Under

these conditions and for a quantitative discussion of phase behavior of the confined fluid the

semi-grand potential Ω turns out to be the relevant thermodynamic potential. Following
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the treatment of Ref. 3 the exact differential of Ω may be cast as

dΩ (T, µ, Ns, σ) = −SdT − Ndµ + 2µsdNs

+V0Tr (τdσ) (3.1)

where T denotes temperature, S entropy, µ and µs are the chemical potentials of fluid

molecules and substrate atoms, respectively, and V0 = sx0sy0sz0 is the volume of a finite

rectangular lamella of the confined fluid in an (yet to be specified) unstrained reference state

where sα0 is the side length of the lamella in the (Cartesian) α-direction; the remainder of

the infinitely large confined fluid constitutes the surroundings of the lamella in the usual

thermodynamic sense.

In Eq. (3.1) the mechanical work contribution is expressed in terms of the trace Tr of a

product of stress τ and conjugate (infinitesimal) strain tensors dσ [3]. As demonstrated in

Ref. 3 these quantities can be represented by symmetric 3×3 matrices. Employing Cartesian

coordinates and in the absence of shear strains we have

τ =
1

2




2τxx τxy τxz

τxy 2τyy τyz

τxz τyz 2τzz


 (3.2a)

σ =




σxx 0 0

0 σyy 0

0 0 σzz




=




s̃x/sx0 − 1 0 0

0 s̃y/sy0 − 1 0

0 0 s̃z/sz0 − 1


 (3.2b)

where s̃α denotes the side lengths of a rectangular lamella of the fluid in a strained state.

Equations (3.1)–(3.2b) apply to the system of interest, namely a slit-pore with thermally

corrugated walls as the most general case. These expressions become somewhat simpler for

the reference system. Because in this latter case the walls lack any distinct atomic structure

the fluid is isotropic in the x–y plane perpendicular to the confining substrates. We may

exploit this isotropy and define

τ‖ ≡ τxx = τyy (3.3a)

σ‖

2
≡ σxx = σyy (3.3b)
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Moreover, we may reexpress V0 as

V0 = sx0sy0sz0 = A0sz0 (3.4)

where A0 is the area of the z-directed face of the lamella in the unstrained reference state.

Introducing A = σ‖A0 as the z-directed area of the lamella in a strained state it is straight-

forward to verify from Eqs. (3.2)–(3.4) that

dΩ (T, µ, Ns, A, sz) = −SdT − Ndµ + 2µsdNs

+τ‖sz0dA + τzzA0dsz (3.5)

It is then also clear that the confined fluid is homogeneous across each of the x–y planes

stacked along the z-direction. Therefore, Ω in Eq. (3.5) turns out to be a homogeneous

function of degree 1 in its extensive (natural) variable A. We may therefore employ Euler’s

theorem (see Appendix A.3 of Ref. 3) and introduce the semi-grand potential density of the

reference system via

ωref ≡ Ωref

Asz0
=

Ωref

V
= τ ref

‖ , T, µ, Ns, sz = const (3.6)

A similar expression does not obtain for the system of interest because the discrete (atomic)

structure of the substrates destroys homogeneity and isotropy of the confined fluid in the x–y

plane. However, regardless of the validity of Eq. (3.6) the (exact) thermodynamic relations
(

∂ω

∂µ

)

{·}

= −ρ < 0 (3.7a)

(
∂2ω

∂µ2

)

{·}

= −ρ2κT < 0 (3.7b)

hold where ρ ≡ 〈N〉 /V is the mean (number) density of the fluid, κT is its isothermal

compressibility, and {·} is shorthand notation to indicate that the differentiation is to be

performed with T , Ns, and σ being held fixed. Because of equations (3.7a) and (3.7b) we

conclude that curves ω (µ) are monotonously decaying and concave.

Thus, under favorable thermodynamic conditions one anticipates phase coexistence at

intersections µαβ
x at which

ωα
(
µαβ

x

)
= ωβ

(
µαβ

x

)
(3.8)

for a pair of phases α and β. Suppose ρα < ρβ it follows that phase α is thermodynamically

stable for µ < µαβ
x whereas phase β is stable if the inequality µ > µαβ

x holds.

9
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B. Statistical thermodynamics

The connection with a microscopic level of description is established by statistical ther-

modynamics. To that end

Ω (T, µ, Ns, σ) = −kBT ln Ξ (T, µ, Ns, σ) (3.9)

is the key expression where kB is Boltzmann’s constant and

Ξ (T, µ, Ns, σ) =
∞∑

N=0

exp (βµN)Q (T, N, Ns, σ) (3.10)

is the semi-grand canonical partition function where β ≡ 1/kBT [26].

In the classical limit, with which we are exclusively concerned in this work, the canonical-

ensemble partition function may be cast as

Q =
Z

Λ3(N+2Ns)N !
(3.11)

where

Λ =
h√

2πmkBT
(3.12)

is the thermal de Broglie wavelength. The specific form of Eq. (3.11) results from an inte-

gration over momentum subspace formed by the N fluid molecules and 2Ns substrate atoms

each of which possess three translational degrees of freedom. Substrate atoms, which are

bound to their equilibrium lattice sites [see Eq. (2.8)], are distinguishable such that only the

factor 1/N ! arises for the (indistinguishable) fluid molecules in the denominator of Eq. (3.11).

For our system of interest the configuration integral in Eq. (3.11) is given by

Z (T, N, Ns, σ) =

∫
dR

∫
dRs exp [−βU (R, Rs; κ)] (3.13)

where the dependence on the (compressional) strains σ is buried in the limits of integration

with respect to fluid-particle coordinates. The integration over substrate-atom configura-

tions reflects the thermal coupling between the substrate and the confined fluid. In other

words, for finite κ the substrates cannot be treated as an external field but are part of the

system in the same spirit in which the configuration of a disordered porous matrix enters the

statistical physical analysis of quenched-annealed models of complex mesoporous materials

(see, for example, Chap. 7.2 of Ref. 3). From Eqs. (2.9), (3.1), and (3.9)–(3.13) all micro-

scopic expressions for thermomechanical properties of the system of interest can be derived

[16].
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However, in this work we are concerned with the phase behavior of the confined fluid.

As we will explain shortly (see Sec. IIIC) this requires a computation of the stress τ‖ acting

in directions perpendicular to the substrate normal in the reference system. According to

Sec. II B the substrates in the reference system are both structureless [see Eqs. (2.5) and

(2.6)] and rigid. Because of these features we may replace Z (T, N, Ns, σ) by the simpler

expression

Zref (T, N, A, sz) =

∫
dR exp

[
−β

(
Uff + U ref

fs

)]
(3.14)

In Eq. (3.14), U ref
fs depends only on the z-coordinates of the fluid molecules. Thus, U ref

fs may

be interpreted as the potential energy due to a static, inhomogeneous, external field acting

on a configuration of fluid molecules in the z-direction. From Eqs. (3.5), (3.9), (3.11), and

(3.14) it is then a simple matter to verify that

τ ref
‖ =

1

sz0

(
∂Ωref

∂A

)

{·}

= −kBT

sz0

(
∂ ln Ξref

∂A

)

{·}

= −〈N〉 kBT

V
+

1

4V

〈 N∑

i=1

N∑

j=16=i

u′ (rij) rij

×
[
(r̂ij · êx)

2 + (r̂ij · êy)
2]

〉
(3.15)

where r = rr̂, and êα is a unit vector along the α-axis of the (Cartesian) coordinate system.

In Eq. (3.15) angular brackets denote ensemble averages in the grand canonical ensemble

such that together Eqs. (3.6) and (3.15) provide a “mechanical” molecular route to the

grand-potential density.

C. Perturbation theory

Unfortunately, such a “mechanical” expression for ω does not exist for the system of

interest (see Sec. IIIA and Ref. 27). To compute ω for our system of interest despite this

deficiency in symmetry we employ thermodynamic perturbation theory as suggested by

Zwanzig back in 1954 [28] (see also Refs. 3 and 26) and write

U (λ) = Uff + (1 − λ)U ref
fs + λ (Ufs + Uss)

≡ Uff + U ref
fs + λΦ (3.16)

for the total configurational energy where λ ∈ [0, 1] is a dimensionless parameter serving as

a (continuous) “switch” between the reference system (λ = 0) and the system of interest
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(λ = 1). The function Φ is introduced in Eq. (3.16) merely for notational convenience.

Through Eqs. (3.9)–(3.11), (3.13), and (3.16) it is then evident that the (semi-) grand po-

tential formally becomes a function of the coupling parameter λ. Thus, we may differentiate

Ω (λ) with respect to the coupling parameter and obtain

dΩ (λ)

dλ
=

1

Ξ (λ)

∞∑

N=0

exp (βµN)

Λ3(N+2Ns)N !

×
∫

dR

∫
dRsΦ (R, Rs; κ) exp [−βU (λ)]

= 〈Φ (R, Rs; κ)〉λ (3.17)

In Eq. (3.17) the angular brackets denote an average in the (semi-) grand canonical ensemble

in which the distribution of microstates is governed by U (λ) for a particular value of the

coupling parameter λ. We may formally integrate this last expression which gives

ω (λ) = ω (0) +
1

V

λ∫

0

dλ′ 〈Φ (R, Rs; κ)〉λ′

= τ ref
‖ +

1

V

λ∫

0

dλ′ 〈Φ (R, Rs; κ)〉λ′ (3.18)

The expression on the second line of Eq. (3.18) follows because λ = 0 corresponds to the

reference system [see Eq. (3.16)] where Eq. (3.6) holds.

IV. RESULTS

Henceforth, all quantities are expressed in suitable dimensionless (i.e., “reduced”) units.

For example, energies are given in units of ε, temperature in units of ε/kB, and length in

units of σ. Other quantities like stress, density, or the binding parameter are expressed in

terms of combinations of these “basic” units such as ε/σ3, σ3, or ε/σ2, respectively. Unless

otherwise stated all the simulations are carried out at a sufficiently subcritical temperature

T = 1.0.

A. Phase behavior and substrate “softness”

Equation (3.18) permits numerical access to the grand-potential density of the system

of interest ω (λ = 1). Operationally speaking we need to compute τ ref
‖ via Eq. (3.15) and
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〈Φ (R, Rs; κ)〉λ in a sequence of (typically 10–20) individual Monte Carlo simulations for

discrete values 0 ≤ λ ≤ 1. The integral in Eq. (3.18) is then evaluated numerically by means

of a standard quadrature algorithm [29].

To illustrate this procedure we plot in Fig. 2, ω (λ) for κ = 104 and 30. A binding strength

of κ = 104 is large enough to prevent substrate atoms from departing appreciably from their

equilibrium lattice sites during the course of the simulation. In other words, κ = 104

corresponds to the limiting case of a perfectly rigid substrate for all practical purposes. This

is because even vanishingly minute deviations of the actual position of any substrate atom

from its equilibrium lattice site are associated with a substantial potential-energy penalty

[see Eq. (2.8)].

As can be seen from respective plots in Figs. 2(a) and 2(b) data sets coincide for λ =

0 corresponding to the reference system as they must. At the lower value κ = 30 the

substrate may be deformed on account of the interaction with neighboring substrate atoms,

the coupling to the confined fluid, and the thermal energy of each substrate atom. However,

plots in Fig. 2 shows that regardless of κ, ω (λ) is a monotonically decreasing function of the

coupling parameter where the magnitude of the grand-potential is the smaller the more rigid

the substrate is. The deviation between both data sets increases slightly with increasing λ.

The monotonicity of ω (λ) is an important prerequisite for the perturbational approach

described in Sec. IIIC. A monotonic variation of ω with λ implies that the confined fluid

does not undergo a first-order phase transition during the course of the transformation.

The perturbational procedure described in Sec. IIIC and illustrated by plots in Fig. 2

now permits us to compute ω (µ) along an isotherm that is subcritical with respect to the

critical point of the fluid in confinement. To this end we need to choose two initial values

of the chemical potential µin corresponding to the one-phase region of confined gas- and

liquid-like phases. These values of the chemical potential are not known a priori so that

some trial and error is required at this point.

We may then use µin in the reference system and compute ω (µin) in the system of interest

via Eq. (3.18). Once this value of the grand potential is known we may use Eq. (3.7a) in its

integrated form

ω (µ) = ω (µin) −
µ∫

µin

dµ′ρ (µ′) , T = const (4.1)

for different values of µ. The mean (number) density ρ (µ) appearing in the integrand in
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FIG. 2: Plot of ω as a function of the coupling parameter λ [see Eq. (3.18)] for κ = 104 (◦) and

κ = 30 (•). (a) gas-like phases, µ = −11.6, (b) liquid-like phases, µ = −11.3.
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Eq. (4.1) is computed as an ensemble average in semi-grand canonical ensemble Monte Carlo

(SGCMC) simulations.

To analyze confinement effects and in particular the impact of substrate “softness” on

capillary condensation it is necessary to determine first the location of the gas-liquid phase

transition in the bulk. For a given subcritical temperature this can be done in a straight-

forward fashion by computing the grand-potential density in SGCMC simulations from

ω = −P = −〈N〉 kBT

V
+

1

6V

〈
N∑

i=1

N∑

j=16=i

u′ (rij) rij

〉
(4.2)

This expression follows by noting that in a homogeneous and isotropic bulk phase the

mechanical-work term in Eq. (3.1) can be simplified to V0Tr (τdσ) = −PdV where P is

the (scalar) bulk pressure [3]. By manipulations similar to those leading to Eq. (3.15) one

may then derive the molecular expression for the bulk pressure on the far right side of

Eq. (4.2) (see, for example, Appendix E.3.3 of Ref. 3).

As expected from the discussion in Sec. IIIA a plot of ω (µ) consists of two branches.

According to Eq. (3.7a) the one with the smaller (magnitude of the) slope (at smaller values

of the chemical potential) along a subcritical isotherm T = 1.0 corresponds to gas whereas

the one with the larger (magnitude of the) slope pertains to liquid phases. Both branches

intersect at the chemical potential of gas-liquid coexistence µgl
x ≃ −11.16. At this point the

slope of ω (µ) changes discontinuously because the densities of gas ρg
x ≃ 0.059 and liquid

phases ρl
x ≃ 0.634 are different at coexistence [see Eq. (3.7a)].

If one confines the fluid to a slit pore with a substrate separation sz = 6.8 one expects a

shift of gas-liquid phase coexistence to smaller bulk pressures because of the additional fluid-

substrate attraction. Indeed defining a reduced pressure P/P0 (P0 pressure of the saturated

bulk gas at µgl
x ≃ −11.16 and T = 1.0) the bulk phase transition occurs at P/P0 = 1 which is

outside the range of (reduced) pressures plotted in Fig. 3(b). Therefore, the plot in Fig. 3(b)

reveals such a shift to a reduced pressure P/P0 ≃ 0.69 as far as the (quasi-)rigid substrate

at κ = 104 is concerned.

If one now couples the substrate thermally to the confined fluid by reducing the binding

strength to κ = 30 the plots in Fig. 3(b) show the enhanced deformability of the substrate

that causes a shift of the coexistence pressure to a larger value P/P0 ≃ 0.72. In other words,

a slightly larger bulk pressure (or chemical potential µ) is required to initiate capillary

condensation in the slit-pore if the substrates respond to the phase change in the fluid
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ω
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FIG. 3: (a) The grand-potential density ω as a function of µ in the bulk (T = 1.0). (b) As (a) but

for a fluid confined to a slit-pore (sz = 6.8) as a function of P/P0 in a corresponding bulk system

where P0 = 0.043 is determined from the plot in part (a) of this figure; (◦) κ = 104, (•) κ = 30.

The vertical dashed line demarcates µgl
x (see text).
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material that they confine. Thus, a deformable substrate destabilizes confined liquid-like

phases relative to the perfectly rigid substrate.

If the fluid is confined to a narrower slit-pore of sz = 5.6, capillary condensation occurs

at a lower pressure P/P0 ≃ (κ = 104) and P/P0 ≃ (κ = 30) in accord with one’s physical

intuition [see Fig. 4(a)]. A similar shift is observed if one maintains the pore width at

sz = 6.8 but reduces the temperature to T = 0.8 [see Fig. 4(b)]. However, in both cases

it is noteworthy that µgl
x is always larger for the deformable substrate compared with the

(quasi-) rigid one.

B. Structural aspects

At this point it seems worthwhile to address the associated structural changes both in

the substrate and in the confined fluid that occur on account of capillary condensation. We

begin by considering the local density

ρf,s (z) ≡ 〈Nf,s (z)〉
A0δsz

(4.3)

where the sub- and superscripts “f” and “s” are used to refer to the local density of the

confined fluid and to that of the substrate atoms, respectively. Thus, Nf,s (z) is the respective

number of fluid molecules or substrate atoms located in a parallelepiped of dimensions

sx0 × sy0 × δsz centered on z where we take δsz = 0.02.

A typical plot of the local densities for the (quasi-)rigid (κ = 104) and a thermally

coupled substrate (κ = 30) are presented in Fig. 5 for the case sz = 6.8. In the case of the

(quasi-)rigid substrates

ρs (z) = δ
(
z[1] + sz/2

)
+ δ

(
z[2] − sz/2

)
(4.4)

where δ denotes the Dirac δ-function. As pointed out in Sec. III B at κ = 104 the confining

substrates may be perceived as an inhomogeneous, static external field imposed on the fluid

molecules. As a consequence the fluid appears to be stratified, that is the centers of mass

of fluid molecules arrange themselves preferentially in individual layers parallel with the

substrate surfaces. Stratification of confined fluid phases is a well-known feature that has

been noted many times in previous literature for various systems and confinement scenar-

ios such as hard spheres between hard surfaces [30, 31], or soft spheres between atomically
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FIG. 4: As Fig. 3(b) but for sz = 5.6, T = 1.0 (a) and sz = 6.8, T = 0.8 (b), respectively.
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FIG. 5: Plots of ρs (z) and ρf (z) as functions of position z/sz (sz = 6.8); quasi-rigid, atomically

structured substrate, thermally coupled substrate at κ = 104 (· · · ) and κ = 30 (—). The portion

of ρ (z) centered on |z| /sz = 0.5 refers to ρs (z) whereas the remainder of the curves corresponds

to ρf (z); (a) µ = −11.6 (P/P0 ≃ 0.58), (b) µ = −11.3 (P/P0 ≃ 0.84).
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smooth [32] or structured substrates [33, 34]. In addition, the substrates may be chemically

patterned [15, 35] or nonplanar [36–38]. Even in more complex fluids consisting of non-

spherical molecules stratification has been reported [39–42]. However, compared with fluids

composed of spherically symmetric molecules stratification appears to be diminished in the

former cases on account of internal degrees of freedom.

In the present case stratification diminishes as the substrate becomes increasingly de-

formable as one can see by comparing plots of ρf (z) for the (quasi-) rigid substrate (κ = 104)

with the corresponding data for the “softer” substrate at κ = 30 [see Figs. 5(a) and 5(b)].

For this latter set of data maxima are generally lower and minima less shallow than for

κ = 104. The effects are more pronounced in Fig. 5(b) than in Fig. 5(a) on account of the

higher density of liquid-like confined fluids compared with gas-like states. However, stratifi-

cation in general diminishes as the distance from both walls becomes larger because of the

decreasing importance of fluid-substrate interactions. This effect is also confirmed by the

plots in Fig. 5.

Moreover, an inspection of Fig. 5 also shows that ρs (z) for the thermally coupled substrate

(κ = 30) cannot be represented by a δ-function but appears to be broadened because the

substrate atoms possess thermal energy. For the time being, let us assume an ideal situation

in which no fluid molecules are present between the substrates and we have switched off the

coupling between neighboring substrate atoms by setting u
(∣∣∣r[k]

i − r
[k]
j

∣∣∣
)

= 0 [see Eq. (2.8)].

Because in this special case

U (Rs) = κ
2∑

k=1

Ns∑

i=1

∣∣∣r[k]
i ± sz

2

∣∣∣
2

(4.5)

the probability of finding any substrate atom at a position z is given by

P (z) =
1

2

√
κ

πkBT

{
exp

[
−βκ (z − sz/2)2

]

+ exp
[
−βκ (z + sz/2)2]

}

≡ P− (z) + P+ (z) (4.6)

that is a distribution consisting of two Gaussians centered at z = ±sz/2 provided that βκ is

sufficiently large. Notice that in the limit κ → ∞, Eq. (4.6) is consistent with Eq. (4.4) if we

employ the definition of the Dirac δ-function via Gaussian distributions (see, for example,

Appendix B.6.1 in Ref. 3).
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FIG. 6: The skewness parameter U as a function of inverse binding strength 1/κ.

For the system of interest in which substrate atoms are coupled to one another and to a

confined fluid of nonvanishing density one anticipates deviations from this “ideal” Gaussian

form of the probability distributions. To quantify these deviations we focus on the central

moments of the distributions P± (z) defined via

〈(
z ± sz

2

)n〉
≡

∞∫

−∞

dz
(
z ± sz

2

)n

P± (z) (4.7)

where P± (z) is either given by P+ (z) or P− (z) defined in Eq. (4.6). Equation (4.7) is

particularly useful for two reasons. First, for even n one can verify by straightforward

manipulations that

U ≡ 3
〈
(z ± sz/2)2〉2

〈
(z ± sz/2)4〉 = 1 (4.8)

if P± (z) are Gaussian. In turn, any deviation of the previous expression from the (ideal)

value of 1 indicates a certain skewness of the probability distribution. Second, if the dis-

tribution possesses such a skewness moments of odd order n do not necessarily vanish. In
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FIG. 7: The compressional stress σzz as a function of reduced bulk pressure P/P0 for a slit-pore

of width sz = 6.8 and T = 1.0. (◦) κ = 30 where the solid line is used to guide the eye, (· · · )

κ = 104.

particular,

〈z〉± ≡
∞∫

−∞

dzzP± (z) (4.9)

such that an effective slit-pore width may be defined via

seff
z ≡ 〈z〉− − 〈z〉+ (4.10)

In the ideal case of Gaussian distributions P± (z), seff
z = sz because it is easy to verify from

the previous expression that then 〈z〉± = ∓sz/2. Plots in Fig. 6 show that deviations from

a Gaussian form of the density profile associated with the substrate atoms are minute but

increase with decreasing “stiffness” (i.e., increasing 1/κ) with which substrate atoms are

bound to their equilibrium lattice sites.

Let us now take the fluid confined between (quasi-) rigid walls (κ = 104) as the unstrained

reference state in the sense of the thermodynamic analysis presented in Sec. IIIA such that
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FIG. 8: As Fig. 7, but for sz = 5.6 (∆), sz = 6.8 (�), and sz = 8.0 (◦); T = 1.0 and κ = 30 for all

data sets and lines are intended to guide the eye.

sz0 = sz. This permits us to define the compressional strain σzz [see Eq. (3.2b)] in the

direction of the substrate normal as

σzz =
seff
z − sz

sz

(4.11)

An inspection of the plot of σzz in Fig. 7 shows that the compressional strain increases at

low pressures indicating that for a confined gas-like phase the slit-pore expands at first.

Then, upon capillary condensation, it suddenly contracts but expands again as the pressure

in the confined liquid-like phase is further raised. That the discontinuous change in σzz is,

in fact, a signature of capillary condensation becomes evident upon comparison with the

plot in Fig. 3(b) which indicates that capillary condensation arises at P/P0 ≃ 0.72. The

sequence of initial expansion, sudden contraction at capillary condensation, and subsequent

expansion of the slit-pore is characteristic and qualitatively independent of both pore width

(see Fig. 8) and temperature over the range of P/P0 studied. From the plots in Fig. 8 one

notices that the value of P/P0 at capillary condensation increases with pore width sz as

23

Page 23 of 29

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

σ z
z
 x

 1
0

-4

P/P0

FIG. 9: As Fig. 7, but ζ = 0.75 (∆), ζ = 1.0 (�), and ζ = 1.5 (◦) [see Eq. (2.7)]; T = 1.0, κ = 30,

and sz = 6.8 for all data sets. Lines are intended to guide the eye.

one would expect. Likewise the magnitude of the discontinuous change in σzz at capillary

condensation shrinks which is again in accord with one’s physical intuition. Thus, both the

variation of σzz with P and that of P/P0 at capillary condensation with κ are generic features

associated with sorption strains. Moreover, the variation of σzz with P plotted in Fig. 7 is

consistent with data obtained in recent SAXD experiments of nonpolar fluids confined to

mesoporous silica [45].

However, qualitative changes in the compressional strain arise if one varies the strength of

the fluid-substrate attraction as plots in Fig. 9 reveal. For example, for weak fluid-substrate

interactions (ζ = 0.75) the plot of σzz increases weakly up to P/P0 ≃ 0.9 where capillary

condensation sets in. The discontinuity in the sorption strain at capillary condensation

is, on the other hand, more pronounced for equally strong fluid-fluid and fluid-substrate

interactions as the plot of σzz for ζ = 1.0 clearly shows. Finally, if the fluid-substrate

interaction exceeds that between a pair of fluid molecules (see plot for ζ = 1.5 in Fig. 9)

the discontinuous change in σzz is replaced by a more continuous variation of the sorption
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strain with pressure. However, comparing all three curves in Fig. 9 one concludes that the

sequence of (weak) initial increase (beyond the pressure range of multilayer adsorption), a

more or less abrupt decrease when the pore fills with liquid, and a subsequent increase of

the sorption strain remains qualitatively unaffected provided the fluid-substrate interaction

is sufficiently strong.

V. SUMMARY AND CONCLUSIONS

In this study we employ SGCMC simulations to study structure and phase behavior of a

“simple” fluid confined between two atomically structured solid substrates. The substrate

atoms are coupled thermally to one another and to the fluid molecules. In addition, each

substrate atom is bound to its equilibrium lattice site by a harmonic “spring” where the

binding parameter κ (i.e., the spring “stiffness”) controls the deformability (i.e., the “rigid-

ity”) of the substrate. From a physical perspective thermal coupling between confined phases

and the substrates causes the latter to “respond” to whatever changes there may be in the

thermodynamic state of the former (and vice versa). Therefore, the confining substrates can

no longer be treated as a static, inhomogeneous, external field, an approach taken by the

overwhelming number of theoretical works on confined fluids to date.

Thermal coupling of this sort complicates the statistical physical treatment of such model

systems. This is because the substrate atoms may depart from their equilibrium sites on

account of their thermal energy and as a result of the interactions constituting the thermal

coupling to the confined fluid phase. More specifically, the configuration integral involves

an integration over substrate-atom configurations in excess to the standard integration over

configurations of the fluid phase.

Our results indicate that for a sufficiently deformable substrate (κ = 30) the effective

pore width seff
z changes as the confined fluid undergoes a discontinuous phase transition

from gas- to liquid-like phases. The size change of the pore can be expressed quantitatively

in terms of a compressional strain which changes discontinuously at capillary condensation.

Under experimentally relevant conditions [45] the variation of the compressional strain with

pressure turns out to by quite minute as far as the present subcritical thermodynamic states

are concerned. Because the deformation of the substrate is in a sense determined by the

magnitude of density fluctuations in the confined fluid (at a given rigidity of the substrate) we
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anticipate the effects reported here to be larger as one enters the near-critical regime of the

confined phase. Work along these lines is currently under way [46]. The location of the phase

transition is shifted to higher values of P/P0 < 1 compared with a fluid confined between

rigid solid substrates indicating that the liquid phase is destabilized by pore deformation.

This shift can be rationalized as follows [47]. Consider the limiting case κ = 0 in which

substrate atoms are no longer bound to their equlibrium lattice sites. Because the LJ poten-

tial parameters {ε, σ} are the same for fluid-fluid, fluid-substrate, and substrate-substrate

interactions our system degenerates into a bulk system in the limit κ = 0. Thus, in this limit

one expects the condensation/evaporation of the fluid to occur at the bulk value P/P0 = 1.

on the other hand, for a rigid substrate as the other extreme case capillary condensation

occurs at P/P0 < 1 where the shift of the phase transition relative to the bulk condensation

is maximum. hence, for finite but nonzero values of κ one anticipates P/P0 at capillary

condensation to be somewhere in between the values characteristic of the rigid substrate

and the corresponding bulk system in agreement with plots in Figs. 3 and 4.

In this context it is important to realize that the case κ = 30 complies with a realistic

situation because this binding strength is still large enough so that the substrates are solid-

like in character. This conclusion is drawn on the basis of the Lindemann criterion which

assigns a specific value to the ratio δL between the average root mean square displacement

of solid atoms to the average nearest-neighbor distance at the melting point of the solid.

According to work by Jin et al. δL ≈ 0.12–0.13 at the equilibrium melting temperature of

a bulk crystal [43]. Moreover, as was demonstrated by Zhengming et al. in the one-phase

region of a bulk crystal the surface layer of such a crystal exhibits less solid-like order than

that characteristic of inner layers [44]. Thus, one anticipates a larger Lindemann ratio for

the surface layer of a three-dimensional crystal. In this work we observe a value of δL ≈ 0.16

for the single-layer substrates which is still smaller than δL ≈ 0.2 at which a bulk crystal

becomes thermodynamically unstable [43]. Noticing that the substrates consist only of a

single layer of atoms and in view of Refs. 43 and 44 we conclude that our substrates remain

solid-like under the chosen thermodynamic conditions.

Given that the conditions of this study seem sufficiently realistic what is the significance

of thermal fluid-substrate coupling for parallel experiments? As we shall show in detail

elsewhere [45] the strain measured for a nonpolar fluid adsorbed by mesoporous silica exhibits

a pressure dependence in semi-quantitative agreement with the curve presented in Fig. 7 of
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this work. Therefore, compared with the ideal case of rigid substrate surfaces one expects

a shift of the location of the experimental phase transition similar to the one shown in

Fig. 5(b) of this work. This shift, which should be of the order of a few percent, is large

enough to be accessible experimentally in principle. However, in experiments the ideal case

of rigid substrates can almost never be realized which makes a direct comparison with the

present theoretical results rather challenging.

Nevertheless, the present study demonstrates a synergistic effect, that is the substrate

responds to the thermodynamic state of the confined fluid which in turn affects the fluid’s

phase behavior. This synergistic effect is also expected to affect other types of phase transi-

tions in nanoconfinement. For example, undercooled nanoconfined water does not freeze in

the immediate vicinity of but only at larger distances from the pore walls, presumably on

account of severe strains that prevent such vicinal water from forming solid-like stuctures

[48]. These strains should be capable of deforming the pore walls similar to what is ob-

served here. Another example are nanoconfined mesophases of anisometric molecules where

molecular packing and orientation should exert strains on the pore walls. Implications from

sorption strains on the phase behavior and vice versa might be expected particularly for

fluids in very compliant nanoporous systems. A particular interesting case in this respect is

the action of water in biological tissues, e.g., the movements of plants driven by changes in

humidity [49].
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