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The grand-canonical MC (GCMC) technique, which is primarily used to calculate the concentration of a solute for a given activity coefficient, can be inverted and applied to calculate the activity coefficients corresponding to a given concentration of a solute. The changes needed to be introduced in the GCMC algorithm are discussed in the paper. The new method called the inverse GCMC technique (IGCMC) is applied to calculate the mean activity coefficient of 1:1, 2:2, 2:1, 3:1 salts with equal and unequal ion sizes and over a wide range of the electrolyte concentrations. The results for equal ion sizes are compared with the corresponding data obtained from the GCMC of Valleau and Cohen. It is shown that the IGCMC technique, after some extensions, can be used to compute the individual ionic activity coefficients. A comparison is made with the Sloth and Sørensen individual activity results and with the theoretical predictions for the 1:1 electrolyte with unequal ion sizes.

Introduction

Since the formulation of the Debye-Hückel theory [START_REF] Debye | The theory of electrolytes. I. Lowering of freezing point and related phenomena[END_REF] the activity coefficients of an electrolyte have been the subject of different theoretical approximations. Recent works are based on the mean spherical approximation [START_REF] Vericat | Theoretical single-ion activity of calcium and magnesium ions in aqueous mixtures[END_REF][START_REF] Humffray | Comment on "Theoretical single-ion activity of calcium and magnesium ions in aqueous mixtures[END_REF][START_REF] Ebeling | On the estimation of theoretical individual activity coefficients of electrolytes[END_REF][START_REF] Corti | Prediction of activity coefficients in aqueous electrolyte mixtures using the mean spherical approximation[END_REF][START_REF] Sanchez-Castro | Explicit approximation for the unrestricted mean spherical approximation for ionic solutions[END_REF][START_REF] Sørensen | Experimental activity coefficients in aqueous mixed solutions of KCl and KF at 25 o C compared to Monte Carlo simulations and mean spherical approximation calculations[END_REF], the hypernetted chain equations [START_REF] Sloth | Single-ion activity coefficients and structure of ionic fluids. Results for the primitive model of electrolyte solutions[END_REF] and the Poisson-Boltzmann theory [START_REF] Molero | Individual ionic activity coefficients from a symmetric Poisson-Boltzmann theory[END_REF][START_REF] Outhwaite | Primitive model electrolytes in the modified Poisson-Boltzmann theory[END_REF][START_REF] Outhwaite | Corrigendum to Primitive model electrolytes in the modified Poisson-Boltzmann theory[END_REF]. The molecular simulation methods are complementary to the theory and give exact results for an assumed model. The chemical potential and other entropy-related thermodynamic functions cannot be evaluated directly from the MC simulation of the canonical ensemble [START_REF] Allen | Computer Simulation of Liquids[END_REF]. The problem can be relatively simply overcome by application of the Gibbs-Helmholtz equation [START_REF] Allen | Computer Simulation of Liquids[END_REF]. According to it, the Gibbs energy (related to temperature) can be obtained by integrating the enthalpy of a system determined at different temperatures. The integration should start from the temperature at which the Gibbs energy is known exactly and the method requires a large set of enthalpy results. To our best knowledge this method has not been applied to electrolytes yet. The Widom's 'test particle' formula [START_REF] Widom | Some topics in the theory of fluids[END_REF] used in the canonical ensemble MC simulation is a simple method for calculating the chemical potential. It has been applied by Sloth and Sørensen [START_REF] Sørensen | Experimental activity coefficients in aqueous mixed solutions of KCl and KF at 25 o C compared to Monte Carlo simulations and mean spherical approximation calculations[END_REF][START_REF] Sloth | Monte Carlo simulations of single-ion chemical potentials. Preliminary results for the restricted primitive model[END_REF][START_REF] Sloth | Monte Carlo simulations of single ion chemical potentials. Results for the unrestricted primitive model[END_REF] to calculate the individual activity coefficients assuming the primitive model of electrolyte. However, the results quite strongly depended on the number of particles in the simulation box and the extrapolation to the thermodynamic limit was needed. The method has been improved by Svensson and Woodward [START_REF] Svensson | Widom's method for uniform and non-uniform electrolyte solutions[END_REF] and by Sloth and Sørensen [START_REF] Sloth | Monte Carlo calculations of chemical potentials in ionic fluids by application of Widom's formula: correction for finite-system effects[END_REF][START_REF] Sørensen | Error in the Debye-Hückel approximation for dilute primitive model electrolytes with Bjerrum parameters of 2 and ca. 6.8 investigated by Monte Carlo methods[END_REF] by neutralising the charge of the test particle.

The activity coefficient can also be calculated from a grand-canonical Monte Carlo (GCMC) simulation. In the grand-canonical ensemble the volume, V, temperature, T, and the chemical potential, µ, are constant, while the number of molecules, N, fluctuates. For a given activity coefficient one calculates the average number of molecules and then the bulk concentration. Valleau and Cohen [START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF][START_REF] Valleau | Primitive model electrolytes. II. The symmetrical electrolyte[END_REF] applied the GCMC technique to evaluate the mean activity coefficient of electrolyte.

The disadvantage of the GCMC method is that the concentration is calculated for a given activity, while we would like to know the activity coefficient corresponding to the concentration in question. In this paper we describe the changes needed to be introduced into the standard GCMC program to invert the problem and to calculate the activity coefficient for a given electrolyte concentration. To distinguish this method from the standard GCMC method, and from the reverse MC (RMC) technique introduced by McGreevy and Pusztai [START_REF] Mcgreevy | Reverse Monte Carlo simulation: a new technique for the determination of disordered structures[END_REF] to generate molecular configurations from a radial distribution function or structural factor, we will call it the inverse GCMC (IGCMC). We will show that the IGCMC technique allows us to calculate not only the mean activity coefficient but also the individual ionic activity coefficients.

The model

In the present paper we consider the primitive model (PM) of electrolyte. The ions are represented by hard spheres of diameter d s [s =+ (cations), -(anions)] with the electric charge z s e embedded at the centre (e is the elementary charge and z s -its charge number). The hard spheres are immersed in a homogeneous medium of relative electrical permittivity, ε r . Its value is typical of the solvent considered. The potential of interaction between the ion i and j is given by
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where r ij is the distance between the centres of interacting ions.

Although in the PM the short range interactions are reduced to the hard sphere interactions and the solvent molecules are not considered, the model is frequently used both in theoretical studies and molecular simulations. This allows verification of theoretical predictions by simulations.

Inverse grand-canonical MC simulation

Mean activity coefficient

In the grand-canonical MC simulation there are three equally-probably moves of a molecule: displacement, creation (insertion) and destruction (removal). When considering an electrolyte a compound M p X q is dissolved to give p cations and q anions. Thus the molar concentrations of anions and cations are c -=qc, and c + =pc, respectively, where c is the molar concentration of a compound. Let us introduce the reference number o s N of species s (s =+ , -) which depends on the concentration c s and the volume V of the simulation box

V N c N A s o s 1000 = (2) 
where N A is the Avogadro constant. The first move is analogous to that of an electrically neutral molecule: an ion selected at random is displaced to a new random position in the box. The displacement is accepted with the probability
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where u i is the potential energy of the i-th configuration, indexes m and n indicate the configurations before and after the ion displacement, and k is the Boltzmann constant. Creation and destruction moves require a group of p cations and q anions to satisfy the condition of overall electrical neutrality. All these ions are inserted at random positions or they are selected at random from the ions present in a box and removed. Expressions for the probability of acceptance of creation and destruction are given in the work of Valleau and Cohen [START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF]. After some transformations these expressions take the following form convenient for numerical coding: 
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In these expressions ∆u c and ∆u d are the potentials of creation and destruction, respectively, N + and Nare the current numbers of ions before the insertion or removal attempts, and γ ± is the mean activity coefficient defined by the individual coefficients γ + and γ -:
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The replacement of the individual by the mean activity coefficient means that all the deviations from ideality are shared equally by anions and cations.

The heart of inverse grand-canonical MC technique

The solution to the problem of finding the mean activity coefficient for a given electrolyte concentration is similar to the procedure for the automatic adjustment of the maximum displacement of a molecule [START_REF] Allen | Computer Simulation of Liquids[END_REF]. After each m adj configurations the average <N s > of the current number of ions N s of the type s is calculated. It is unimportant whether it is the average of anions or cations. If the average <N s > is greater than o s N then the value of the activity coefficient γ ± is increased by a small amount, exp(k 1 ). Otherwise it is decreased by exp(-k 1 ). The value of the parameter k 1 is close to 0, but positive. The total number of configurations, m max , must be much greater than m adj , so that the adjustment of γ ± could be performed for many times. The lnγ ± results obtained after each adjustment are averaged to give the final mean activity coefficient. The work of this procedure is illustrated in figure 1. We start from any reasonable value of the activity coefficient. One is a good choice. In our case at the beginning of the simulation lnγ ± linearly decreases. After about 100,000 configurations the linear plot changes into oscillations of lnγ ± . These data are used to calculate the mean value of the activity coefficient.

Precision of the results and efficiency of the method depend on the parameters used in the simulation. After checking the influence of the parameters on the standard deviation of lnγ ± and assuming the reasonable time of computations we established the following values for the parameters: k 1 = 0.005, m adj = 20,000, and m max = 45,000,000.

Individual activity coefficient

In the previous method the creation and destruction moves required insertion or deletion of the group of p cations and q anions, so that the system was electrically neutral. Now, let us assume that only one type of ions, s, can be exchanged between the system and its reservoir. Parallel to this the electric charge is exchanged, so that the system as well as the reservoir are usually not neutral. These charge fluctuations give some attraction interactions, u a , between the system and the reservoir. The local charge fluctuations in an electrolyte are physically acceptable. The problem is with the assessment of u a . We can expect that its value is much smaller than the interaction energy between two neighbouring ions, so we assume that u a = 0. We will return to this problem in the next section. The displacement move is exactly the same as described above, while in the creation and destruction moves one ion of the species s is involved. The acceptances of these two moves are given respectively by
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The procedure of adjusting an individual activity coefficient to a given concentration is analogous to that described for the mean activity coefficient.

Results and discussion

In this section we are concentrated mainly on testing the correctness of the new technique, however some new results are presented, too. The first tests were very simple. We calculated the mean activity coefficient for the 1:1 electrolyte at c=1.003 M, d -= d + = 425 pm, T= 298.15 K, ε r = 78.65, and N o = 256. The logarithm of the mean activity coefficient was -0.12422.

Using this value and the same physical parameters we calculated the electrolyte concentration applying our version of the GCMC computer program analogous to that written by Valleau and Cohen [START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF]. We obtained c=1.003299 M. This result is very close to the input concentration. Alternatively the mean value of ions in the simulation box amounted to 256.0764 while the reference number N o was 256.

In the calculation of the individual activity coefficient the fluctuations of the total charge of the whole system take place. The mean number <N s > of ions of type s compared to o s N shows whether or not the average of the system charge is zero. The calculations carried out for the above electrolyte with the same physical parameters gave <N s > = 128.000577 at o s N =128. Let us add that the lowest and the highest N s were 120 and 135, respectively.

The second test concerned the influence of the number of ions, N o , on the mean and individual activity coefficient for the 1:1 electrolyte with the same physical parameters as in the first test. The results are collected in Table 1. We see that apart from the results for N o = 32, the mean activity coefficient shows a small increasing tendency with increasing N o , while the individual activity exhibits a decreasing tendency. At large N o the values of both coefficients are very similar. The change in the logarithm of the mean activity coefficient is relatively small (about 1%) and it is perhaps due to the neglect of the interaction with ions being outside the simulation box, which becomes important when the size of the box is small. Usually, the Ewald sum [START_REF] Ewald | Die Berechnung optischer und elektrostatischer Gitterpotentiale[END_REF] is applied to overcome this problem. The Ewald sum needs the system to be neutral. This condition is not satisfied in the calculation of the individual activity coefficients. That is why instead of applying the Ewald sum we try to determine the minimum number of ions which gives stable and credible results. Analysis of table 1 data suggests that this minimum number could be 500, or even 256, which would be in agreement with the Adams [START_REF] Adams | On the use of Ewald summation in computer simulation[END_REF] result. The influence of N o on the individual activity coefficient is more distinct and the difference between the lowest and the largest value amounts to about 8%. As the electrolyte is symmetrical, the mean activity coefficient should be equal to the individual one. The results are collected in table 1. The values of u a are small which justifies the correctness of our earlier assumption that u a = 0. The literature MC activity coefficient results for unequal ion sizes are scarce. We make use of those of Sloth and Sørensen ones [START_REF] Sloth | Monte Carlo simulations of single ion chemical potentials. Results for the unrestricted primitive model[END_REF] evaluated by means of the Widom's 'test particle' method [START_REF] Widom | Some topics in the theory of fluids[END_REF]. The authors considered the 1:1 electrolyte at d -=106.25 pm, d + =318.75 pm, c = 1.96737 M, T= 298.15 K, ε r = 78.5, and obtained lnγ -= 0.064 and lnγ + = 1.29 while our results for the same physical parameters and N o = 500 are 0.08322 and 1.38379, respectively. The theoretical predictions for the same system are: 0.124 and 1.54 (symmetric Poisson-Boltzmann theory [START_REF] Molero | Individual ionic activity coefficients from a symmetric Poisson-Boltzmann theory[END_REF]), 0.087 and 1.47 (modified Poisson-Boltzmann theory [START_REF] Outhwaite | Primitive model electrolytes in the modified Poisson-Boltzmann theory[END_REF][START_REF] Outhwaite | Corrigendum to Primitive model electrolytes in the modified Poisson-Boltzmann theory[END_REF]) and 0.092 and 1.48 (hypernetted chain equations [START_REF] Sloth | Single-ion activity coefficients and structure of ionic fluids. Results for the primitive model of electrolyte solutions[END_REF]). The agreement is satisfactory, but it is seen that different simulation techniques and theories give slightly different results.

Finally, we compare our mean activity coefficients, lnγ ± , and the mean activity coefficients, we present the results for the 1:1 electrolyte with d -=300 pm and d + =425 pm at the same values of other parameters as for the 1:1 equal-size system. Our mean activity coefficients, lnγ ± , are very similar to those obtained by Valleau and Cohen [START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF]. Some discrepancies, observed mainly at high electrolyte concentrations, are due perhaps to the smaller number of ions (50-130) and configurations used by these authors in their simulations, performed in the early 1980's. The concentration dependence of the mean activity coefficients, lnγ ± , is shown in figure 2. The course of the curves is well known and does not need explanation. Perhaps it is worth noting that the curve for the 1:1 equal-size electrolyte goes above the unequal-size curve and the discrepancy increases with increasing electrolyte concentration. This behaviour can be explained by a lower packing effect due to the smaller size of anions.

In the symmetrical electrolyte the individual activity coefficients of anions and cations are the same and are equal to the mean activity coefficient. This is not the case when considering a non-symmetrical electrolyte. The result of charge asymmetry in ions is shown in figures 3 and 4. The effect of unequal ion size is shown in figure 5. Note that Valleau and Cohen [START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF] did not consider an electrolyte with unequal ion sizes. When looking at the results shown in figures 3-5 it is evident that anions and cations do not share equally the deviations from ideality due to the electrostatic and hard-core interactions.

Conclusions

a Strictly speaking we have selected some of the most representative concentrations. The new simulation technique, called the inverse GCMC method, allows calculation of the mean and individual activity coefficients for a given electrolyte concentration. We have shown in this paper that the application of the new technique to a single-salt primitive model gives correct results. The new method can be simply extended to the mixtures of salts and also to more realistic models of electrolyte which take into account the solvent molecules. We hope that this technique can be applied to more extreme systems like molten salts in which the temperature and ion density are high. 
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  ind ln ± γ , calculated from the individual coefficients lnγ -and lnγ + with the Valleau and Cohen [19] mean coefficients, VC ln ± γ . We consider the same 1:1, 2:2, 2:1 and 3:1 aqueous electrolytes with equal ion diameters d -= d + = 425 pm for the 1:1 electrolyte and 420 pm for other cases. The temperature is 298.15 K and the relative electrical permittivity, ε r , amounts 78.65 for the 1:1 electrolyte and 78.55 for the others. The concentrations are exactly the same as reported by Valleau and Cohen [19] a . The reference number of ions, N o , is 256 (255 for the 2:1 electrolyte). All the simulations were carried out for 15 million of initial and 45 million of main configurations. The results are shown in tables 2-5. Additionally, in table 6

Figure 1 .

 1 Figure 1. Evolution of the mean activity coefficient during the simulation (1:1 electrolyte, c = 1 M, d -= d + = 425 pm, ε r =78.65, T=298.15 K, k 1 = 0.01, m max = 4,000,000, m adj = 10,000).

Figure 2 .

 2 Figure 2. The mean activity coefficient as a function of concentration for the 1:1 electrolyte with d -= d + = 425 pm, ε r =78.65, for 2:2, 2:1, 3:1 electrolyte with d -= d + = 420 pm, ε r =78.55 and for the 1:1 electrolyte with d -= 300 pm, d + = 425 pm, ε r =78.65. In all cases T=298.15 K.
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 3 Figure 3. The individual and mean activity coefficients as a function of concentration for the 2:1 electrolyte with d -= d + = 420 pm, ε r =78.55 and T=298.15 K.

Figure 4 .

 4 Figure 4. The individual and mean activity coefficients as a function of concentration for the 3:1 electrolyte with d -= d + = 420 pm, ε r =78.55 and T=298.15 K.

Figure 5 .

 5 Figure 5. The individual and mean activity coefficients as a function of concentration for the 1:1 electrolyte with d -= 300 pm, d + = 425 pm, ε r =78.65 and T=298.15 K.

Table 1 .

 1 The influence of the number of ions, N o , on the mean and individual activity coefficient for the 1:1 electrolyte with d -= d + = 425 pm, ε r =78.65, T=298.15 K and c=1.003

	M.			
	N o	lnγ ±	lnγ -	u a / J mol -1
	32	-0.12421	-0.11312	-27.492
	108	-0.12498	-0.12040	-11.354
	256	-0.12422	-0.12230	-4.7962
	500	-0.12410	-0.12273	-3.3962
	864	-0.12363	-0.12339	-0.5950
	1372	-0.12377	-0.12333	-1.0908
	2048	-0.12376	-0.12325	-1.2643

Table 2 .

 2 The activity coefficient results for the 1:1 electrolyte with d -= d + = 425 pm, ε r =78.65, T=298.15 K at different molar concentrations, c. The superscript 'VC' denotes the results of Valleau and Cohen[START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF] while 'ind' -the mean from the individual activity coefficients.

	c / M	VC ln ± γ	lnγ ±	lnγ -	lnγ +	ind ln ± γ
	0.01158	-0.087	-0.10481	-0.10425	-0.10410	-0.10417
	0.1002	-0.232	-0.22491	-0.22419	-0.22349	-0.22384
	0.4950	-0.249	-0.24881	-0.24696	-0.24621	-0.24659
	1.0030	-0.127	-0.12407	-0.12039	-0.12229	-0.12134
	1.9940	0.271	0.27284	0.27363	0.27069	0.27216
	3.0450	0.849	0.85799	0.86096	0.85323	0.85709
	3.0520	0.847	0.86451	0.86436	0.86505	0.86471
	4.0900	1.661	1.62873	1.60099	1.64136	1.62118
	4.7500	2.235	2.22982	2.22878	2.24726	2.23802

Table 3 .

 3 The activity coefficient results for the 2:2 electrolyte with d -= d + = 420 pm, ε r =78.55, T=298.15 K at different molar concentrations, c. The superscript 'VC' denotes the results of Valleau and Cohen[START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF] while 'ind' -the mean from the individual activity coefficients.

	c / M	VC ln ± γ	lnγ ±	lnγ -	lnγ +	ind ln ± γ
	0.01025	-0.896	-0.89450	-0.89310	-0.89061	-0.89186
	0.0456	-1.437	-1.42627	-1.42685	-1.42904	-1.42795
	0.2490	-2.146	-2.13334	-2.13011	-2.13073	-2.13042
	0.5920	-2.476	-2.47256	-2.47216	-2.47329	-2.47273
	0.9710	-2.635	-2.61315	-2.61211	-2.61187	-2.61199
	1.5970	-2.679	-2.65334	-2.65195	-2.65109	-2.65152
	1.9290	-2.630	-2.62423	-2.61988	-2.62153	-2.62071
	2.9840	-2.487	-2.36181	-2.36137	-2.35637	-2.35887
	3.6910	-2.413	-2.07223	-2.06322	-2.06192	-2.06257

Table 4 .

 4 The activity coefficient results for the 2:1 electrolyte with d -= d + = 420 pm, ε r =78.55, T=298.15 K at different molar concentrations, c. The superscript 'VC' denotes the results of Valleau and Cohen[START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF] while 'ind' -the mean from the individual activity coefficients.

	c / M	VC ln ± γ	lnγ ±	lnγ -	lnγ +	ind ln ± γ
	0.01009	-0.343	-0.32979	-0.62721	-0.17961	-0.32881
	0.0477	-0.582	-0.57387	-1.10965	-0.30528	-0.57340
	0.1002	---	-0.70816	-1.40116	-0.36016	-0.70716
	0.2590	-0.878	-0.85873	-1.79432	-0.38790	-0.85671
	0.5780	-0.913	-0.89602	-2.08334	-0.29697	-0.89243
	1.1280	-0.734	-0.73263	-2.16644	-0.01445	-0.73178
	1. 4030	-0.602	-0.59553	-2.11621	0.16923	-0.59258
	1.9640	-0.206	-0.22761	-1.88971	0.61637	-0.21899
	2. 3960	0.087	0.14145	-1.60695	1.02836	0.14992
	2.7800	0.501	0.53872	-1.29193	1.42718	0.52081

Table 5 .

 5 The activity coefficient results for the 3:1 electrolyte with d -= d + = 420 pm, ε r =78.55, T=298.15 K at different molar concentrations, c. The superscript 'VC' denotes the results of Valleau and Cohen[START_REF] Valleau | Primitive model electrolytes. I. Grand canonical Monte Carlo computations[END_REF] while 'ind' -the mean from the individual activity coefficients.

	c / M	VC ln ± γ	lnγ ±	lnγ -	lnγ +	ind ln ± γ
	0.01008	-0.252	-0.25059	-0.68573	-0.10433	-0.24968
	0.0100	-0.654	-0.65151	-1.76192	-0.27952	-0.65012
	0.0468	-1.058	-1.06569	-2.95901	-0.43207	-1.06381
	0.2390	-1.540	-1.52309	-4.63578	-0.48434	-1.52220
	0.5700	-1.655	-1.63702	-5.65244	-0.29722	-1.63603
	1.0640	-1.488	-1.48317	-6.28628	0.11708	-1.48376
	1.3170	-1.355	-1.33187	-6.44484	0.37502	-1.32995
	1.6340	-1.020	-1.08264	-6.55127	0.74290	-1.08064

Table 6 .

 6 The activity coefficient results for the 1:1 electrolyte with d -= 300 pm, d + = 425 pm, ε r =78.65, T=298.15 K at different molar concentrations, c. The superscript 'ind' denotes the mean from the individual activity coefficients.

	c / M	lnγ ±	lnγ -	lnγ +	ind ln ± γ
	0.01158	-0.10896	-0.10873	-0.10815	-0.10844
	0.1002	-0.25144	-0.25109	-0.24782	-0.24945
	0.4950	-0.35215	-0.36092	-0.33965	-0.35029
	1.0030	-0.32485	-0.34998	-0.29435	-0.32217
	1.9940	-0.14970	-0.21938	-0.07280	-0.14609
	3.0450	0.12709	-0.00883	0.27236	0.13177
	3.0520	0.12956	-0.00987	0.27108	0.13061
	4.0900	0.47754	0.25398	0.71498	0.48448
	4.7500	0.73965	0.44227	1.03442	0.73834
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