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Running title: Finding transition states 

An automated, iterative approach to finding the lowest energy, ionic diffusion paths through a 

periodic structure has been developed within our new code (written in FORTRAN 77 and named 

Bubble). The approach is quite general in that it can be applied to find the accessible (ergodic) 

regions, at a chosen temperature, of a hyper-surface, which is defined across a uniform grid. We 

describe both our implementation within the Bubble code and its application to locating the 

approximate transition states for Mg interstitial diffusion in forsterite, which can then be refined 

using standard transition state searching [1]. 

In computational studies of diffusion within ionic crystals, it is necessary to be able to 

identify transition states, which are the least stable atomic configurations through which the system 

must evolve during an individual hopping event. Transition states, or saddle points, are represented 

by particular first-order turning points on a (3N-3) dimensional energy hyper-surface, dimensions of 

which are the atomic coordinates. We initially require the approximate location and configuration of 

the relevant turning point, defined on a three-dimensional subspace where the diffusing atom is 

held fixed and the other atoms relaxed so as to minimise the lattice energy. For vacancy diffusion 

the approximate configuration of the transition state is known (broadly, an interstitial located 

somewhere between two lattice sites), but for interstitial diffusion the configuration of the transition 

state can be less obvious. Thus we evaluate a large area of the potential energy surface, as a 

function of the moving interstitial magnesium ion position. More precisely, the diffusing Mg(II) 

interstitial was fixed on a uniform grid covering the whole symmetry irreducible portion of the unit 

cell, whilst the ions in the extended neighbourhood were relaxed. Once this potential energy surface 

has been mapped, the problem becomes one of finding suitable approximate saddle points: the grid 

of energy points becomes the input data for our Bubble code to search. 

Page 1 of 10

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A flow chart of the Bubble code is shown in figure 1. For ease of explanation consider an 

analogous problem on a two dimensional topography, discretised over a regular n×m grid, where 

height represents the energy. In our example the grid spans the 3x3 supercell of the crystal. The 

lowest point, or global minimum (GM), in the central unit cell is located by comparing all data. Next 

the code finds the lowest paths to the equivalent points in the adjacent unit cells; the highest point 

along such a path being the transition point. Imagine the effect of pouring water onto the GM of the 

central unit cell. As the basin containing the GM fills, water may spill out into higher basins. 

Eventually, one of the surrounding equivalent lowest basins will flood. The vector from the central 

GM to one of the newly wet GM is the direction of diffusion. At this stage, one of the highest wet 

points is the transition state from one GM to the other. Adding more water will allow the transition 

states in the other directions to be found. 

In our simulation, initially all grid points, apart from the lowest point in the central unit cell, 

are labelled as dry. Each time the water level is raised, the relative height of dry grid points that are 

nearest neighbours to wet grid points are checked; if below the water level then it is labelled as wet. 

Even for the smallest rise in water level, it is important to check the nearest neighbouring dry grid 

points to any newly wet points as flooding into neighbouring basins may occur. Moreover, if the 

height of the dry and wet grid point is less and higher than the previous water level, respectively, 

then the coordinates of the wet grid point are stored as it represents a saddle point. Each time the 

water level is raised only the wet grid points that define the current edge of the water pool need to 

be considered. To improve the efficiency of our code (CPU time requirements), the latter 

coordinates are stored in memory so that loops over all grid points are reduced to loops over the 

grid points at the water’s edge. Note that the edge of the expanding pool of water marks the 

boundary of the most stable ergodic region, i.e. accessible area for the diffusing ion at a defined 

water depth, or temperature. (By pouring water onto a different local minimum, we can effectively 

investigate the shape/size of higher energy ergodic regions). In the actual case of diffusion in a 

crystal, the system is periodic in three directions and we thus simulate an expanding bubble on a 

3D grid and the code loops over grid points that define the surface of this bubble (see figure 2). 
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The speed of the Bubble code depends upon both the number of grid points (which in turn 

depends on the required accuracy and system size) and the step size for the water level. Upon 

flooding into a basin containing one of the periodic images of the GM, the previous surface of the 

bubble can be reloaded and a smaller step taken so to reduce the number of candidate points. 

(Alternatively, although less efficient, as the code requires less than a minute on a typical desktop 

computer, successive runs of the code with ever decreasing step size could be performed). Once 

the approximate transition states are located, the second order transition state search can be 

implemented to allow for refinement of the transition structure with motion of the diffusing ion away 

from the grid points. In our example, a grid of 20×40×20 points across the unit cell for forsterite (two 

neighbouring grid points 0.25 Å apart) was sufficient. The Bubble code can also employ the 

appropriate space group symmetry, so reducing the 16000 energy calculations to a more 

manageable 2000. 

From experimental data [2], the mechanism of diffusion in forsterite is uncertain. Using 

Bubble, as well as finding the migration paths for diffusion, it was found that interstitial Mg diffusion 

has a higher activation barrier than O vacancy diffusion in all three crystallographic directions, (e.g. 

3.13 compared to 0.72 eV in the [001] direction) so suggesting the mechanism is by vacancy 

diffusion [3]. 

[1] A. Banerjee, N. Adams, J. Simons, R. Shepard. Search for stationary points on surfaces. J. 

Phys. Chem., 89, 52 (1985). 

[2] S. Chakraborty. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980-1300°C. J. 

Geophys. Research, 120, 12317 (1997). 

[3] A.M. Walker, S.M. Woodley, B. Slater, K. Wright. A computational study of magnesium point 

defects and diffusion in forsterite. Submitted. 
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Figure 1: Flow chart of the Bubble code: solid arrowheads of solid (broken) lines indicate direction 

of yes (no). 
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Figure 2: The growing bubble marks the accessible volume for hydrogen diffusion in forsterite 

crystal structure at a temperature (a) near 0K, (b) just below and (c) above the transition 

temperature. 

Page 5 of 10

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

New software for finding transition states by probing accessible, or ergodic, regions 

S. M. WOODLEY*† and A. M. WALKER‡ 

†DFRL, Department of Chemistry, University College London, UK 

‡Department of Earth Sciences, University of Cambridge, UK 

Keywords: Ionic diffusion; Ergodic regions, Software; Transition states 

Running title: Finding transition states 

An automated, iterative approach to finding the lowest energy, ionic diffusion paths through a 

periodic structure has been developed within our new code (written in FORTRAN 77 and named 

Bubble). The approach is quite general in that it can be applied to find, at a chosen temperature, the 

accessible (ergodic) regions of a hyper-surface, which is defined across a uniform grid [1]. We 

describe both our implementation within the Bubble code and its application to locating the 

approximate transition states for Mg interstitial diffusion in forsterite, which can then be refined 

using standard transition state searching [2]. 

In computational studies of diffusion within ionic crystals, it is necessary to be able to 

identify transition states, which are the least stable atomic configurations through which the system 

must evolve during an individual hopping event. Transition states, or saddle points, are represented 

by particular first-order turning points on a (3N-3) dimensional energy hyper-surface, dimensions of 

which are the atomic coordinates. We initially require the approximate location and configuration of 

the relevant turning point, defined on a three-dimensional subspace where the diffusing atom is 

held fixed and the other atoms relaxed so as to minimise the lattice energy. For vacancy diffusion 

the approximate configuration of the transition state is known (broadly, an interstitial located 

somewhere between two lattice sites), but for interstitial diffusion the configuration of the transition 

state can be less obvious. Thus we evaluate a large area of the potential energy surface, as a 

function of the moving interstitial magnesium ion position. More precisely, the diffusing Mg(II) 

interstitial was fixed on a uniform grid covering the whole symmetry irreducible portion of the unit 

cell, whilst the ions in the extended neighbourhood were relaxed. Once this potential energy surface 

has been mapped, the problem becomes one of finding suitable approximate saddle points: the grid 

of energy points becomes the input data for our Bubble code to search. 
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A flow chart of the Bubble code is shown in figure 1. For ease of explanation consider an 

analogous problem on a two dimensional topography, discretised over a regular n×m grid, where 

height represents the energy. In our example the grid spans the 3x3 supercell of the crystal. The 

lowest point, or global minimum (GM), in the central unit cell is located by comparing all data. Next 

the code finds the lowest paths to the equivalent points in the adjacent unit cells; the highest point 

along such a path being the transition point. Imagine the effect of pouring water onto the GM of the 

central unit cell. As the basin containing the GM fills, water may spill out into higher basins. 

Eventually, one of the surrounding equivalent lowest basins will flood. The vector from the central 

GM to one of the newly wet GM is the direction of diffusion. At this stage, one of the highest wet 

points is the transition state from one GM to the other. Adding more water will allow the transition 

states in the other directions to be found. 

In our simulation, initially all grid points, apart from the lowest point in the central unit cell, 

are labelled as dry. Each time the water level is raised, the relative height of dry grid points that are 

nearest neighbours to wet grid points are checked; if below the water level then it is labelled as wet. 

Even for the smallest rise in water level, it is important to check the nearest neighbouring dry grid 

points to any newly wet points as flooding into neighbouring basins may occur. Moreover, grid 

points with a height that is higher than the previous water level and that have at least one 

neighbouring dry grid point with a height lower than the previous water level are labelled 

(coordinates stored) as possible key saddle points. Each time the water level is raised only the wet 

grid points that define the current edge of the water pool need to be considered. To improve the 

efficiency of our code (CPU time requirements), the latter coordinates are stored in memory so that 

loops over all grid points are reduced to loops over the grid points at the water’s edge. Note that the 

edge of the expanding pool of water marks the boundary of the most stable ergodic region, i.e. 

accessible area for the diffusing ion at a defined water depth, or temperature. (By pouring water 

onto a different local minimum, we can effectively investigate the shape/size of higher energy 

ergodic regions). In the actual case of diffusion in a crystal, the system is periodic in three directions 

and we thus simulate an expanding bubble on a 3D grid and the code loops over grid points that 

define the surface of this bubble (see figure 2). 
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The speed of the Bubble code depends upon both the number of grid points (which in turn 

depends on the required accuracy and system size) and the step size for the water level. Upon 

flooding into a basin containing one of the periodic images of the GM, the previous surface of the 

bubble can be reloaded and a smaller step taken so to reduce the number of candidate points. 

(Alternatively, although less efficient, as the code requires less than a minute on a typical desktop 

computer, successive runs of the code with ever decreasing step size could be performed). Once 

the approximate transition states are located, the second order transition state search can be 

implemented to allow for refinement of the transition structure with motion of the diffusing ion away 

from the grid points. In our example, a grid of 20×40×20 points across the unit cell for forsterite (two 

neighbouring grid points 0.25 Å apart) was sufficient. The Bubble code can also employ the 

appropriate space group symmetry, so reducing the 16000 energy calculations to a more 

manageable 2000. 

From experimental data [3], the mechanism of diffusion in forsterite is uncertain. Using 

Bubble, as well as finding the migration paths for diffusion, it was found that interstitial Mg diffusion 

has a higher activation barrier than O vacancy diffusion in all three crystallographic directions, (e.g. 

3.13 compared to 0.72 eV in the [001] direction) so suggesting the mechanism is by vacancy 

diffusion [4]. 

[1] For a random-walk approach on a hypersurface, see, for example, J.C. Schön, H. Putz, M. 

Jansen. Studying the energy hypersurface of continuous systems - The threshold algorithm. J. 

Phys.-Conden. Matt., 8, 143 (1996). 

[2] A. Banerjee, N. Adams, J. Simons, R. Shepard. Search for stationary points on surfaces. J. 

Phys. Chem., 89, 52 (1985). 

[3] S. Chakraborty. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980-1300°C. J. 

Geophys. Research, 120, 12317 (1997). 

[4] A.M. Walker, S.M. Woodley, B. Slater, K. Wright. A computational study of magnesium point 

defects and diffusion in forsterite. Submitted. 
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Figure 1: Flow chart of the Bubble code: solid arrowheads of solid (broken) lines indicate direction 

of yes (no). 
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Figure 2: The growing bubble marks the accessible volume for hydrogen diffusion in forsterite 

crystal structure at a temperature (a) near 0K, (b) just below and (c) above the transition 

temperature. 
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