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Abstract 

A simple method is proposed to calculate Coulomb interactions in three-dimensional periodic 

cubic systems. It is based on the parameterization of the interaction on polynomials and 

rational functions. The parameterized functions are compared to tabulation methods, to the 

Ewald calculations and cubic harmonic function fits found in the literature. Our 

parameterizations are computationally more efficient than the use of tabulations at all cases 

and seem to be more efficient than the cubic harmonic parameterizations in the case of 

simultaneous potential energy and force calculations. In comparison to the Ewald method, it is 

feasible to use the parameterizations on small systems and on systems, where pair-wise 

additive short-range interactions are dominant. One also may prefer the parameterizations to 

the Ewald method for large systems, if limited accuracy is needed. The embedding of the 

method into existing molecular dynamics and Monte Carlo simulation codes is very simple. 

The presented investigation contains some numerical experimental data to support the correct 

theoretical partition of potential energy in periodic systems, as well. 

 

Keywords: periodic systems, long-range interactions, Coulomb interaction, molecular 

dynamics, Monte Carlo simulation, cubic harmonics 
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I. Introduction 

 

The calculation of long-range interactions, e.g. Coulomb interactions, in periodic systems is a 

long-standing question in different areas of physics. The progress in computational modeling 

reassigned it partly to a numerical mathematical task, but the different physical ideas still play 

important roles. 

For the energy calculation of a long-range potential the trivial method is to sum the 

interactions among all particles in all cells of the systems. If N denotes the number of the cells 

taken into account, and n is the number of the particles within one cell, the trivial energy 

calculation of the total system scales with N
2
n

2
. If one uses the symmetry of the periodic 

images, and one is interested in the potential energy of a central cell, as it is schematically 

shown in Fig. 1, the trivial calculation scales with Nn
2
. This calculation is unfeasible, because 

one should apply a large number of image cells. A recommended minimal choice of N is a 

few thousand. The first computationally essential milestone in making it feasible was the 

method of Ewald
1
. He suggested recomposing the interactions into two main parts. The direct 

sum is given by the sum of screened interactions, using Gaussian-screening functions centered 

at each point charge. The reciprocal sum is given by the Fourier series representation of the 

solution to Poisson's equation in periodic boundary conditions, using the sum of the 

compensating Gaussians, again centered at each point charge, as a source distribution. The 

terms can be expressed analytically in these Fourier series
1,2

. 

The spreading of computer simulations demanded many new approaches especially on the 

field of liquid matter science. Without going into details and classifying the methods, the most 

important ones are the reaction-field method
3,4

, the different mesh methods
5-7

 and the multi-

pole expansions
8-10

. The description of these techniques can be found in the original 

publications, later applications and in textbooks
11-13

 as well. There are numerous comparative 

studies, whereof we give references only to some traditional articles
14-16

. The methods scale 

with n differently, but in practical applications not the scaling, but the overall computational 

cost and accuracy are the most important factors at a given system size. For example, there is 

an n scaling method
10

, but the overall computational cost becomes beneficial only for large 

systems. 

One can find also methods derived only using practical and computational assumptions 

instead of physical background. The simplest is the decomposition of the interaction into pair-

interactions and tabulating the potential function in a three-dimensional grid. It is possible 
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also to parameterize the tabulated grid using appropriate functions. This technique was 

applied in the historical work of Brush et al.
17

 on one-component plasma. Hansen
18

 used cubic 

harmonic functions (see also kubic harmonics) in the tabulation of interactions. The 

coefficients of this type of series expansion and the efficient choice of the function series were 

revisited and discussed several times
19-21

. The main advantage of the cubic harmonic 

functions is the natural possibility of describing cubic symmetry. The coefficients and the 

corresponding functions of Adams and Dubey
20

 seem to be a practically feasible way in the 

calculation of Coulomb interactions. 

The choice of the method depends on many factors. Practically, the system size is not the 

most important factor. In the case of classical mechanical molecule models, it is not necessary 

to assign charges to all species. In this case, the computational cost of the short-range 

interactions can become dominant against that one of the long-range interactions. The 

organization of the short-range interaction calculation differs from the long-range one. They 

are calculated on interaction pairs via one by one, while the Coulomb interactions are 

calculated for the whole system simultaneously in the Ewald method. Therefore, if the 

number of particles involved only in short-range interactions is significant, the program 

structure should be optimized for the short-range interactions. Another factor is the simplicity 

of the code. For a program code developed for a few applications in a specific research 

project, it is not necessary to optimize ultimately for the speed performance, it is more 

important to write the code quickly and to be able to eliminate programming failures. 

The purpose of our study was to develop a very simple method for the calculation of Coulomb 

interactions in three-dimensional periodic systems. Simple means that it could be embedded 

easily into codes written for short-range interactions and it could be at least as simple and 

efficient than the use of cubic harmonics. Of course, we had to suggest a method that is 

feasible in the side of calculation cost, as well. 

 

II. Partitioning of the potential energy in periodic systems 

 

The primary aim of our investigation was to parameterize the periodic Coulomb interactions. 

Before we started the calculations, we checked how the energy of one cell in a periodic 

system should be calculated. This is not only a case of an arbitrary definition, because the 

calculated potential energies are used very often. One example is classical mechanical Monte 

Carlo simulation, where the energies appear in the probability factor. An incorrect energy 
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definition doubles or halves the apparent temperature of the system. The question of the 

energy partition is also important in micro-canonical molecular dynamic simulations on 

periodic systems. We discuss this question in this section. We know that its content is slightly 

dissimilar to the main aim of our article. 

Let us consider a periodic system. The particles interact with a pair-wise additive potential, 

where the potential depends solely on the distance of the particles. The simulation cell 

contains n particles. We define a system of all together N-1 periodic images of the central cell 

and the central one. The schematic visualization of an N cell system can be seen in Fig. 1. The 

image cells are included in the system, if the center of an image cell is within a given distance 

from the central cell (Fig.1). The potential energy of the total N cell system (U
tot

), e.g. the 

electrostatic energy defined by the Coulomb interaction, can be decomposed into three terms: 

the interactions within the cells (intra term), the interactions among the images of the same 

particles in the different cells (self term) and the interactions of the distinct particles in the 

different cells (distinct term). 

∑∑∑∑∑∑∑∑∑∑
= ≠ = ≠= ≠ == = ≠

++=
N

k

N

kl

n

i

n

ij

kl
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 ,   (1) 

where kl

iju  denotes the interaction between the i-th particle in the k-th cell and the j-th particle 

in the l-th cell. One can count the intra-, self- and distinct interactions: 

2

1
Nn(n-1)  

2

1
N(N-1)n  

2

1
N(N-1)n(n-1) 

If one collects the interactions where particle one and all of its images are involved, one gets 
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and 

N(n-1)  
2

1
N(N-1) N(N-1)(n-1) 

It is assumed that kl

ju1 = kl

ju 1  in the last term. If the collection is restricted to the interaction of 

the first particle in the first cell: 
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and  

(n-1)  (N-1)  (N-1)(n-1) 

The last equation corresponds to all interactions involved the first cell explicitly: 
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and 

2

1
n(n-1) (N-1)n  (N-1)n(n-1) 

The energy of one cell, e.g. in the Ewald sum, is defined as U
tot

/N in most of the textbooks
11-

13
. On contrary, in most of the lectures at conferences, if one is interested solely on the central 

cell, the energy of Eq. 4 is frequently used. Another introduction of the potential energy of 

periodic systems uses the formulae of electric fields. The effect of charges in the central cell 

and in the surrounding ones is expressed in an electrostatic potential. The equation is simply  

( )∑
=

=
n

i

iiqU
1

1

2

1
rϕ  ,   (5) 

where qi is the charge of the particle and φ(ri) is the electrostatic potential at the ri point. Eq. 5 

differs from the usual definition of the energy of point charges by the factor of 1/2. 

Sometimes the factor is missing in Eq. 5. In this case, the 1/2 shifted into the calculation 

equation of the electrostatic potential. 

If one checks the literature, there is a lack of detailed explanation on the role of the 1/2 

factors. One may have an intuition of it coming from the pair-wise additive potential and/or of 

the constraint connecting the central and the image particles. If one compares Eqs. 1-4, it can 

be concluded that the 1/2 factor appears in the intra term, if one is interested in all particles 

within at least the cell. The 1/2 multiplier of the self term is necessary, if one takes into 

account the periodic images. The 1/2 factor of the distinct term appears only if all particles in 

all cells are concerned. 

At first, we checked the possible theoretical reasons and proofs, but none of them seemed to 

be helpful with complete certainty. Neither theoretician colleagues were able to provide 

simple convincing arguments. Therefore, we performed simple numerical experiments to 

choose the correct partition. It is known, that Monte Carlo and molecular dynamic simulations 

provide the same results in accordance the equivalence of the time and ensemble averages. 

The force acting on a particle and on all of its images is straightforwardly given by the 

Newtonian laws, it is the appropriate derivate of Eq. 2 divided by N. We performed molecular 

dynamics simulation where n=20-100 and the particles interact with Lennard-Jones potential. 

This potential is not a long-range interaction, but in the case of small number of particles, its 

effective range exceeds the size of the cell. Simultaneously, we performed Monte Carlo 

simulation on the same systems, where we used alternatively U
tot

/N or U
1
 to calculate the 
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potential energy. Our calculations showed numerically, that the U
tot

/N definition is the correct 

one. The Monte Carlo and the molecular dynamics simulations provided the same structural 

results only in this case. The pair-correlation functions of a molecular dynamics, a Monte 

Carlo simulation with U
tot

/N, and a Monte Carlo one with U
1
 are shown in Fig. 2. The energy 

conservation was satisfied also for the U
tot

/N definition in the micro-canonical molecular 

dynamics simulation. 

 

III. Details of the calculations 

 

Let us recur to the main aim of our study: to the parameterization of the Coulomb interaction. 

We describe the data sets, the formulae and the methods applied for the parameterization in 

this section. We put two particles with opposite unit charges in the central cell of a system 

like in Fig.1. We centered the whole system on the position of the first particle. It meant we 

had one particle in the origin and another somewhere in the cell. We defined a Coulomb-like 

interaction kl

ijji

kl

ij rzzu /= , where kl

ijr  is the scalar distance of the i-th particle in the k-th cell 

and the j-th particle in the l-th one. For the sake of simplicity, we defined all variables to be 

dimensionless, e.g. they were normalized by the edge length of the cell and by the magnitude 

of the charges. In the cases of parameterization and interpolation methods, the reduction of 

the space was feasible, wherein the process would be performed. One could use many 

simplifications for isotropic systems. If one puts the origin at the center of the central cell, one 

could define eight sub-cells, where only the sign of the second particle coordinates differed. 

The overall energy of the system was the same for all the eight positions, there were 

differences only in the sign of the forces. Furthermore, the choice of the axis was occasional. 

One might rotate the axis to define the coordinates of the second particle always to be z≤y≤x. 

It reduced the important space inside the cubic to its 1/6. If we used both the sign invariance 

and the choice of axis one, it was enough to fit or interpolate the interaction in a 1/48 part of 

the original cell. The shape of this reduced space was a tetrahedron inside the cubic central 

cell. Of course, if we used this reduced space in a real calculation, e.g. during a molecular 

simulation, we had to keep on file the original sign and order of the coordinates and we had to 

calculate the forces due to the original signs and axis. 

The reference data were calculated both by the trivial method and by the Ewald one as it is 

implemented in Ref. 11. The difference was rather small. It was below 10
-4

%, if we chose the 

maximum of the inverse-space sums large enough and we used an appropriate width for the 
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Gaussian-distributions in the Ewald method, and if we calculated the trivial sum over a large 

number of image cells. In the presented calculations we used 25 for the maximum of the 

square of the direct space sums and L/5 for the Gaussian width (see e.g. Refs. 11, 13), where L 

denotes the edge of the cell. (L=1 was used in all of the presented calculations). In the case of 

the trivial method, we calculated the interactions for particles in the central and other cells for 

all cases, where the center of the image cell was closer to the central one than 100L. It meant 

slightly more than four million image cells for each interaction. We should mention, that a 

25L or a 50L radius for the system supplied satisfactory results. We used 100L only to get 

very accurate data. 

We calculated two types of data sets with random choice of the second particle position for 

the polynomial and rational function fits. 10000 random positions (vectors) were stored for 

the second particle in the first type, and the following inequalities were applied:  

0 ≤ z ≤ y ≤ x ≤ 0.5    (6) 

We calculated ten sets of these data. The second type of data sets was designed for the fit 

process. We intended to fit the potential energy by polynomials and rational functions, but we 

wanted to use the fitted functions for the calculation of both potential energies and forces. 

Since we used only the 1/48 part of the cell, we had to take care of the curvature of the fitted 

function at the surface of our elementary tetrahedron as well. The usual concept could be the 

incorporation of some constraints into the fit, like it is useful in the case of one-dimensional 

cubic splines and fast interpolation methods
22

. Unfortunately, the situation was rather 

complicated in our three-dimensional case, and the non-violable constraints might reduce 

remarkably the degree of freedom in the polynomials. Therefore, we applied a different 

method to ensure smooth behavior at the surfaces of the tetrahedron. We calculated data sets, 

where we allowed slight violence of the inequalities 0 ≤ z ≤ y ≤ x ≤ 0.5. We performed it by 

adding a random number of the [-0.05; 0.05] interval to the non-violating coordinates. 

Geometrically it meant an enlargement of the tetrahedron in all directions. We calculated two 

sets of 10000 particle coordinates with this second type of method. These sets were used only 

in the parameterization procedures, while the first type of coordinates was used only in the 

test of the fitted functions. 

We omitted the intra term ( 11

ijr≈  within the central cell) in the fit, because it can be calculated 

easily in an explicit way. We defined an interaction called as a correction term: 

∑∑∑∑∑∑
≠ ≠≠≠ ≠≠

−=+=
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l ij

l

ij

N

l

l

ii

N

l ij

l
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Page 7 of 26

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 8 

The intuitive description of the term, that it is the interaction between two particles: particle 

one in the central cell and particle one and two in the image cells, if n=2. The charges are 

omitted on the right hand side, because i and j were oppositely charged with unit absolute 

value in our two-particle systems. The total potential energy of one cell with arbitrary n can 

be calculated in a pair-wise manner, in accordance with the previous section about the 

partition of the energy in periodic systems. Supposing that the net charge is zero in the central 

cell: 

( ) ( )∑∑∑∑
= ≠= ≠

−=−=
n

i

n

ij

ijjiij

n

i

n

ij

ijijji EzzuErzzNU
1

corr11

1

corr11tot

2

1
/1

2

1
/     (8) 

The net zero charge is a necessary condition, otherwise U
tot

/N contains incorrect number of 

self term interactions. 

The coefficients of the polynomials were determined in the usual way of ordinary least square 

fits on ),( ,

corr

jjjj zyxE . The index of the first particle (i-th particle) was omitted, because this 

particle was in the origin of the two-particle periodic systems. The polynomials contained all 

possible terms up to a defined power: 

∑=
per

),,( dcb

bcdM zyxazyxP     (9) 

The superscript per denotes all the possible terms with different b, c and d, where b, c and d 

are integers of [0;M], M is the highest power of the polynomial, and (b+c+d) ≤ M. We fitted 

seven polynomials, 1 ≤ M ≤ 7. 

In the case of the rational function fit, we used 
),,(

),,(
),,(

zyxQ

zyxQ
zyxR

S

M
MS = , where the 

numerator and the denominator were similar polynomials as the ones defined in Eq. 9, but 5 ≤ 

M+S ≤ 7. The optimal coefficients were determined by the method of Gauss-Newton-

Marquardt
22

 as it is implemented in the Mathematica software
23

. In the test calculations the 

potential energies were calculated according to the fitted functions. The forces were 

calculated as the corresponding partial derivates of the fitted functions. 

In the case of the tabulated calculations, we defined a grid inside the tetrahedron described 

above. We used the 1/48 reduction of the central cell to spare the computational memory. The 

tetrahedron was enlarged to have at least two grid points in all the three Cartesian directions 

around the non-violating tetrahedron. We calculated the energies and also the x, y and z forces 

at all grid points. The intra term was subtracted from the data to be consistent to the 

polynomial and rational function fits. Since a cell with unit edge lengths was used, a bin size 

∆r=0.02 meant 25+4 grid points in all directions. It meant 29×30×31/6=4495 grid points, ∆r 
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=0.01 with 54 grids/direction counted 27720 points, and ∆r=0.005 with 104 grids/direction 

gave 192920 data points. We applied two interpolation formulas in the test calculations. A tri-

linear form
23

 was applied as 

( )( )( )∑∑∑
+

=

+

=

+

=

∆−−−−−−=
1 1 1

3corrcorr /111
I

Ii

J

Jj

K

Kk

ijkkjil rEzzyyxxE .    (10) 

x laid between xI and xI+1, y laid between yJ and yJ+1, z laid between zK and zK+1. 

The other interpolation method was a tri-cubic one
22

. The interpolation was performed as one-

dimensional cubic polynomial interpolation at first in the x, then in the y, and then in the z 

directions. One-dimensional cubic polynomials were fitted at first through the rI-1,j,k, rI,j,k, 

rI+1,j,k and rI+2,j,k points with J-1≤j≤J+2 and K-1≤k≤K+2, and the function values were 

interpolated to the rx,j,k points. Thereafter it was repeated for the rx,J-1,k, rx,J,k, rx,J+1,k and rx,J+2,k 

points with K-1≤k≤K+2, and the function values were interpolated to the rx,y,k points. Finally 

these last points were fitted by a cubic polynomial and the rx,y,z point was interpolated. The 

polynomials were determined via the Lagrange method. It is rather expensive method of 

calculation, and it is not recommended in time-consuming computer simulations, but as our 

results showed, the tri-cubic interpolation has very limited advantages anyway. 

To compare our data with previous analytic functions fitted, we choose three functions of 

Adams and Dubey
20

. The first one was an isotropic approximation, where the interaction over 

the 1/r minimal image convention term was described as  

642

,

corr 86910.094414.275022.2),( rrrzyxE jjjj +−=     (11) 

The other two equations based on a series extension of cubic harmonics (Eq. 18. in Ref. 20), 

where the potential energy is expanded as a finite sum of functions depending on r
l
 and 

(x
l
+y

l
+z

l
). Adams and Dubey determined different coefficients for sets including all even l 

powers up to a given maxima of l values. They proposed theoretically derived and 

computationally optimized sets up to l=20. Unfortunately, there were typing errors in their 

tables (see also in Refs. 24, 25), therefore the l>14 sets did not provide satisfactory results. 

We used in our comparison the theoretical set with a maximal l=14 and an optimized set with 

maximal l=12. 

 

IV. Results and discussions 

 

The results of the test calculations on the 10 times 10000 data points are summarized in 

Tables I-III. Table I contains the data on the fit of the potential to compare the polynomial fits 
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of up to the 7th degree, the rational function fits, where the sum of the degrees in the 

numerator and in the denominator were in the range of 5-7, data calculated with the aim of tri-

linear and tri-cubic interpolations, and data obtained with previous analytical fits. The merit-

function of the fits was defined as the average square difference of the original correction and 

the fitted one. One can see that the polynomial of the 7th degree provided the best results, and 

the second best one was obtained by a rational function of 6/1 degrees. The performance of 

the tabulated methods was rather weak, they were slightly better than a polynomial of the 

second degree. The isotropic fit of Adams and Dubey performed weak. The optimized cubic 

harmonic fit (l≤12) provided better results than the cubic harmonic with theoretical 

parameters with more functions (l≤14). The optimized set provided accuracy around 

polynomials of the 4th or 5th degree. The trends of our fits are clear in this column of Table I, 

the polynomials of high degree performed better. In the case of rational functions, the 

increasing sum of the degrees was the most important factor. If the sum was equal for two 

rational functions, the one with higher degree in the numerator provided better data. The 

tabulated methods were sensitive primarily to the grid of the tabulation. The tri-cubic 

interpolation method performed slightly better than the simple tri-linear one. 

At the creation of tabulated data, the average square difference was not a criterion as in the 

parameterization methods. Therefore, it is necessary to use other measures in the comparison 

of the different methods. The next three columns contain further data. Surprisingly, the 

tabulated method performed with three magnitudes better, if we calculate the averaged 

relative difference of the fitted and original corrections: 
i

ii

E

EE −fit/tab

100 . How is this 

reverse order possible? How can be this relative average error of the fits around and over 

100%? We checked the worst data, and we found, that there are some points in each data set, 

where the two particles are very close to each other. In these cases, the correction terms are 

very small and the intra part of the energy can be about 10 magnitudes larger than Ei-s. For 

example, in the worst data of the polynomial fit of 7th degree Ui was around -170, Ei was -

1×10
-9

, and fit

iE  was 7×10
-5

. It means a 7,000,000% relative error at this point, but in the 

absolute scale, the error is only around 10
-5

, or relatively to the intra term, it is only 

0.00004%. The polynomial and the rational function fits performed poorly in this relative 

comparison, while the tabulation works stable. The cubic harmonic methods were better in 

this comparison, than the polynomials. If we use the total interaction in the normalizations, 
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i

ii

U

EE −fit/tab

100 , the fit methods provides about two magnitudes better results than the 

tabulated ones. If this criterion was used, the worst data represented the cases, where the intra 

terms were small, the second particles were close to the corner of the cell, and the correction 

term was very important. The best average error was 0.0005% in the fits and 0.05% in the 

tabulation in this comparison. If we simply compared ii EE −fit/tab , the fits of high degrees 

performed one magnitude better than the tabulation. The calculation of potential energy has a 

crucial role in the Monte Carlo simulation methods. Here, the total energy of the system is 

important. It means, the fitting and the tabulated methods should work correctly not only for 

one interaction, but it is necessary to provide good total energies. Each of our test sets 

contained 10000 data. The number of these interactions corresponds to a system about 140 

charged particles. The last column in Table I shows the average in the 10 sets of 

( )
∑

∑ −

i

ii

E

EE
fit/tab

100 . On can see, the best fits gave the overall corrections with 0.0006% error. 

The tabulation provides 0.4% error. We concluded that the polynomial and rational function 

parameterizations of high degree provided expressively better results than the tabulation. The 

tabulation was superior only in one relative comparison, but here the defective points of the 

fits were those ones, where the corrections were very small and unimportant on the absolute 

scale. The performance of the optimized cubic harmonic fit in the last three comparisons was 

similarly around the polynomials of 4th and 5th degree. 

The two most important methods in the classical mechanical modeling of liquid matter are the 

Monte Carlo and the molecular dynamic simulations. In the case of Monte Carlo methods, the 

calculation of the potential energy is necessary, so the above fits can be important. In the case 

of molecular dynamics, the calculation of forces is essential. We present the same table for the 

forces as Table I for the potential. The forces were calculated simply as the corresponding x, y 

and z partial derivatives of the fitted potential. In the case of the tabulation, the forces were 

tabulated similarly to the potential, and the same tri-linear or tri-cubic interpolation methods 

were applied. iF denotes the original correction term, fit/tab

iF  is the fitted or tabulated value of 

the correction term, and all

iF  means the sum of the correction and the intra term. The data 

shown in Table II are the averages over the ten test sets and the three directions: x, y, and z. 

Trends were similar to the ones in Table I. The fits with polynomials or rational functions of 

high degree performed the best. In the case of the relative comparison to the force correction, 
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the tri-linear seems to be superior, but the apparently weak performance of the fits did not 

mean serious deficiency in this comparison. We checked the worst data, and we concluded 

similarly as in the case of the potential. The weak average originates from the points, where 

the contribution to the force from the intra part is about 10 magnitudes larger than the 

correction term. The fits provide maximum about four magnitudes larger corrections, than the 

real ones, but these ones are still negligible in respect to the total force. We omitted the line 

which corresponds to the total force within one data set, because it is not important to 

calculate it in molecular dynamics. The optimized cubic harmonic sets performed again better 

than the theoretical sets. Its accuracy laid between the polynomials of 4th and 5th degree for 

the first comparison, but in the third and fourth comparison they provided slightly better data 

than the polynomials of 5th degree. 

We did not provide confidence intervals for the data in Table I and II, because we did not 

want to overcrowd the tables. We calculated the error intervals for the data with a significance 

of α=0.05 on the 10 test sets. For the force data it meant 30 sets taking an average over the x, 

y, and z directions. The relative uncertainty of the data was slightly different for the various 

columns in the two tables. The average error was between 0.02-0.06% for the first, third and 

4th columns of Table I in the cases of polynomial and rational function fits. Respectively, it 

was in the 0.05-0.2% range for the force data in Table II. The corresponding values for the 

tabulated data were 2-5 times larger. In the case of the second columns, the error bars were 

smaller for the tabulation (for the energy around 1.5% and 0.2% for the forces), and the data 

for the fits were about 3 times larger. The uncertainty of the 5th column in Table I was 0.8% 

for the fits and 0.2% for the tabulations. 

If one looks at Table I and II, the optimized solution would be a polynomial fit of high degree. 

Of course, in the case of computational methods, the requested number of operations is an 

important factor. We summarized the number of different operations for the calculation of 

potential energy and force in Table III. The data were calculated in respect to one interaction. 

The calculation cost of the distance of the two interacting particle is not included in the table. 

In the case of the polynomial and rational function fits and the tabulation, the calculation cost 

of the bookkeeping of the original signs of the coordinates and of the rotation of the vector to 

provide 0 ≤ z ≤ y ≤ x ≤ 0.5 was not counted. The table contains data on the operations 

demanded by the potential calculation via the Ewald method as it was implemented in the 

supplement of the book of Allen and Tildesley
11

. If one reports on the scaling of the Ewald 

method, there are different data from n to n
2
, both for the direct and the reciprocal space sums. 

The difference in the data originates from the adjustable width of the Gaussian distribution 
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that is a free parameter in the Ewald method. If the Gaussians are chosen to vanish at a cutoff 

of half the cell size, the direct sum scales n
2
 and the reciprocal sum scales n. If the Gaussian 

width is chosen to provide Gaussian vanishing at a standard cutoff distance independent of n, 

the direct sum scales n, but the reciprocal sum becomes n
2
 scaling

2,7
. By varying the cutoff 

with the square root of the cell size, it can be shown that both the direct and reciprocal sum 

can be scaled n
3/2

, which is supposed to be optimal by some authors
26

. As we mentioned in the 

introduction, the primary aim of our investigation was to get a practically usable interpretation 

of the periodic Coulomb interactions in the case of program codes, where the interactions are 

calculated via one by one. In the general implementation of the Ewald method, the calculation 

is performed on the interactions via one by one for the direct sum, but the reciprocal space 

sum is calculated only once for all of the interactions in the system. Therefore, if we would 

like to compare our methods to the Ewald one, we have to define a system size (n) and also 

the choice of the Gaussian width. The data in Table III correspond to a linear scaling in the 

reciprocal space sum and an n
2
 in the direct part. The system sizes are indicated in the table, 

too. The unit of the number of the operations corresponds to one multiplication or addition. 

The other operations, as division, calculation of exponentials, trigonometric functions and 

logic functions were counted in these units. The ratios were obtained in small test 

calculations. In these tests we calculated the cost of the different functions by small programs, 

where the CPU time of a million of these calculations were counted relatively to a million of 

multiplications or additions. The codes were written in Fortran and C, and they were used on 

PC-s with Pentium IV processor running under Windows XP. We found no relevant 

differences in the ratios in the cases of the two programming languages. Maybe it is a 

consequence of that we used the compilers from the same vendor for the two languages. 

There were not any significant differences in the calculation cost of a double precision 

addition and multiplication. An exponential took 22.9, a sine or cosine took 11.4, a division 

took 2.6 and a conditional jump took 1.6 times longer time, than a multiplication, addition or 

subtraction. The truncation of a real number to an integer cost 1.6 units. A search in a vector 

depended on the size, for vectors up to a few ten thousands elements it was three times more 

expensive than a multiplication, but it increased up to 13 times more for a vector with 192920 

elements. 

The corresponding column of Table III contains the multiplication equivalent calculation cost 

for the different methods. In the case of polynomials, the calculation needs solely 

multiplications and additions in a half-half ratio, if one uses the computationally feasible 

Horner arrangements. In the case of the rational functions, both the numerator and the 
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denominator can be expressed in the Horner form. It was rather surprising, that the number of 

the operations were rather high already for the simple tri-linear interpolation. In the case of 

the tri-cubic interpolation, the operational cost was extremely high. It was coded with the 

expensive one-dimensional Lagrange method, but significant reduction is not possible with 

any other cubic methods. 

If one compares the data of Table I and Table III, we can find optimal solutions for the 

potential calculations. Let us compare the polynomial, the rational function, the tabulated 

methods and the cubic harmonics at first. The tabulated ones performed weakly with respect 

to the computational cost. Therefore, we do not suggest the use tabulated methods. It is not 

easy to choose from the polynomials and rational functions of different degrees. Depending 

on the desired accuracy, we suggest the following order: P-3 < R-3/2 < P-4 < R-3/3 < R-4/3 < 

R-5/2 < R-6/1 <P-7. The notations correspond to the acronyms in the tables. We omitted some 

of the fits, where other fits with similar computational cost were close to them with higher 

accuracy. The number of the operations with respect to the merit function is visualized for the 

parameterized functions in Fig. 3. The computational cost of the optimized cubic harmonics 

(l≤12) was slightly larger than the polynomial of 5th degree, but relevant difference was not 

found. In comparison with the rational functions the use of cubic harmonics seemed to be less 

feasible. 

If one compares the performance of the fits to the Ewald method, one can find optimal 

solutions with respect to the system size. A polynomial of the third degree is less expensive 

computationally than the Ewald method at all system sizes. An accurate fit costs more than 

the Ewald method for large systems. At the system size around 100 particles, or more 

explicitly, where the number of the charged particles is around 100, the rational functions 

with a degree of 4/3 or 3/3 are computationally comparable to the Ewald method. For small 

systems (less than 50 charged particles) the use of whatever fit is feasible. 

The situation is different, if one is interested in the forces, too. Here one has to calculate 4 

values: the x, y and z components of the forces and the potential. The estimated total 

computational costs of these calculations are summarized in Table III. The data corresponding 

to the fits are approximate. There are many common terms in the Horner expressions of the 

potential and x, y, and z components of the forces in the polynomials and rational functions. 

Furthermore, the degree of the functions is one less in the force calculation than in the 

potential calculation. An effective compiler may omit the redundant calculations. We guessed 

that the cost of these calculations might be reduced to the calculation of two forces and the 

potential instead of three forces and the potential. The data in Table III include this reduction 
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also for the cubic harmonics. As one can see in Table III, the force calculation with the cubic 

harmonics is expensive. The used degree of r, x, y, and z is rather large in the cubic harmonic 

expansion, and the loss of degree is less significant in comparison to the rational functions or 

polynomials. The calculation of a cubic harmonic force component cost more than a 

calculation of a potential value, while the opposite case happened for our polynomials and 

rational functions. The calculation cost of the optimized l≤12 cubic harmonics is around a 

polynomial with a degree of 7th, but the accuracy of the latter is reasonably better. The same 

accuracy can be achieved with a half of the computation time with polynomials and especially 

with rational functions, if both potential energy and forces are calculated. Therefore, it is 

feasible to use our new functions especially in molecular dynamics and in other applications, 

where the forces are important as well. The common calculation of forces and potential 

slightly modified the preferences in respect to the Ewald method. The polynomial of third 

degree became slightly less effective than the Ewald method for large systems. On contrary, 

for systems consisting about 100 charged molecules one can efficiently use more precise 

polynomials than in the case of simple potential calculations. The rational function 6/1 fit 

seemed to be the best choice for systems consisting of less than 50 particles (see also in Fig. 

3). 

 

V. Conclusions 

 

The aim of our study was to elaborate a simple method to calculate Coulomb interactions in 

three-dimensional periodic systems. The method is not intended to be competitive with well 

established methods on physical intuition. We would like to present a feasible way to 

calculate the long-range interactions in program codes primarily designed for systems with 

short-range interactions. We have shown that the crucial part of the Coulomb interaction, 

which is the extra term besides the contribution within the minimal image convention, can be 

easily parameterized with simple functions. We used polynomials of up to the 7th degree and 

rational functions with a sum of 5, 6 and 7 of the degrees in the numerators and denominators. 

The comparison of the fits to simple tabulated functions showed, that the accuracy of the fits 

is reasonably better than for the tabulations, especially if we took into account the 

computational cost of the methods. Our functions seem to be as feasible as the previous cubic 

harmonic parameterizations, if solely the potential energy is calculated. The comparison was 

performed both for simple potential calculation and for common calculation of forces and 
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potentials. The first corresponded to the Monte Carlo simulations, while the second concerned 

the requirements of molecular dynamics. If both potential energy and forces are needed, the 

polynomials and rational functions provide the same accuracy with a half of computational 

cost than it is required for cubic harmonics. We proposed some sets of parameterized 

functions. The suggested functions are detailed in the Appendix. 

Of course, our parameterized functions should be competitive not only during the program 

code development, but they should not mean a drastic increase in the computational cost 

during the simulations. Therefore, we compared the calculation cost of our methods to the 

Ewald one. We obtained reasonable good performance for our methods in the case of small 

systems. In the case of medium and large systems, our parameterized polynomials and 

rational functions and the previously fitted cubic harmonics are competitive in the calculation 

cost, only if one uses less accurate fits. 

The methods are intended to be easily embeddable into existing codes. One needs to add them 

as a function into the codes and call them at each interaction pair. 
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Appendix 

 

Selected parameterized functions are detailed here. The other functions can be accessed at the 

homepage of the authors
27

. The forces can be calculated as the corresponding partial derivates 

of the functions. The format of the functions helps to paste them directly into C or Fortran 

program codes. 

 

P-7 polynomial 

),,(corr
zyxE =0.00006935528245746797+z*(0.0021600087427982575+z*(0.010077826502256547+z*(0.08211063320794686+z*(-

3.4732828079283466+z*(-9.314273611252304+(14.16681370479069-3.111726172826123*z)*z)))))+y*(0.001575589085250862+z*(-

0.04946302738211095+z*(-0.5461572397611817+z*(9.645235058499194+z*(-

12.100970067330422+z*(10.468290488143378+6.309005153979316*z)))))+y*(-

0.12396063682007008+y*(0.982231868071471+z*(6.028068019846833+z*(-17.789466989160736+(-96.5199335183439-

42.32265420041536*z)*z))+y*(-0.9283843203267544+y*(-

27.812214458566334+y*(21.30693743338091+4.520106137117244*y+5.422380955735728*z)+z*(-
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33.42332128349194+10.254096587054391*z))+z*(-

9.124340828920644+z*(98.53115658291732+30.21428274012793*z))))+z*(0.469739555622663+z*(9.73056725774623+z*(-

19.326699784455506+z*(-11.37420631739499+59.2737824517607*z))))))+x*(-0.0010769741023264508+z*(-

0.03331222484387889+z*(0.12239075346337186+z*(-8.464141594766453+z*(32.13297640506034+(5.295849771329786-

26.680059631432933*z)*z))))+y*(0.06432376081037171+z*(0.48142207166094036+z*(-3.456674703281202+z*(-

29.470389357353614+(63.421756702461884-141.98270528757035*z)*z)))+y*(0.5714542131297252+z*(-

21.095935501594877+z*(60.85631110259151+(363.4053322178775-3.385620913504718*z)*z))+y*(-

19.141586520349748+y*(67.1392836634568+(151.95009370062058-296.24604740512046*z)*z+y*(77.75706782621464-

81.30021189598561*y+50.407253193861436*z))+z*(-22.584361540660517+z*(-94.37317073592516+109.45214658704292*z)))))+x*(-

0.006065872558772311+z*(0.30113981770468445+z*(13.312076580467963+z*(29.617911396911396+z*(-

116.72457001390151+107.43007317129914*z))))+y*(-0.6255143663443122+z*(10.524061781990161+z*(-8.57249448295761+z*(-

273.58407474601285+77.40904240322111*z)))+y*(21.83680155975584+z*(123.72400023547327+(-333.2887060666331-

582.325447006672*z)*z)+y*(21.326945569638394+y*(-334.6661821372041+80.44298584353629*y-249.48921174203804*z)+z*(-

131.7347948910907+542.7920598545852*z))))+x*(0.047081255188474065+z*(-4.043834137787724+z*(-

21.28091606308152+(66.20110806516355-11.71291472658606*z)*z))+x*(-2.634940113127114+z*(23.224190523041237+(-

9.4717876144749-184.09034470257453*z)*z)+y*(26.71884823132592+(187.66033464664753-

385.5182685340148*z)*z+y*(54.07626820719544-384.66964141880385*y+7.403361674992371*z))+x*(-4.328124199512774+y*(-

65.56910963194828+86.47299097623085*y-119.6071622023683*z)+x*(11.549646843718113-

13.071896023932819*x+48.37625921900341*y+37.23947113930151*z)+z*(-50.97079346331456+109.92078183137382*z)))+y*(-

2.0733112680607295+y*(-65.23997175235587+z*(-

171.0130695529695+125.31168108618317*z)+y*(222.63085930387916+250.28203045061449*y+298.4931606713601*z))+z*(-

86.15037384165008+z*(230.49331958022708+575.3871498824374*z)))))) 

 

R-6/1 polynomial: 

),,(corr
zyxE =(-0.0000960512168521368+z*(-0.005607048507666448+z*(0.0906226345763506+z*(-0.21639277687019992+z*(-

3.277365176264637+(2.004882272381631-0.6512401928726239*z)*z))))+y*(-0.007829400157423769+y*(0.13798121954712936+z*(-

0.8126272788330875+z*(11.060280733203957+(4.441358500803813-2.375135450021934*z)*z))+y*(-

0.008639986515872387+z*(0.4009488000594831+(4.270529310803303-19.335723163875056*z)*z)+y*(-3.419015489617705+y*(-

4.0272766940210065+0.8304169575975706*y-

2.095211263815416*z)+z*(6.624728386093039+1.242354506552586*z))))+z*(0.1495830902516656+z*(-0.8900349273909299+z*(-

1.3091761203010592+z*(-0.4933802467002245+1.8779096673018691*z)))))+x*(0.004196154599397339+z*(-

0.00701069724990378+z*(-0.6943869185678819+z*(4.669182014814679+z*(3.633879338225599+1.1393052601669498*z))))+y*(-

0.003933806714890548+z*(-1.0983974530865155+z*(7.788585776402839+(-2.7875144215781593+0.15939476651879092*z)*z))+y*(-

1.7678580265053072+y*(1.5481102263919486+y*(13.37660017591304+13.060615130380311*y-7.923680438753291*z)+z*(-

17.891239477025035+15.87717897146121*z))+z*(6.009037922746548+z*(-41.59808673171331+21.395376236167262*z))))+x*(-

0.033272445690500634+z*(0.584020424351269+z*(6.523442379770122+(-12.05263249562082-4.290313716049*z)*z))+x*(-

0.007809226559581139+x*(-1.580463496237746+x*(0.894523744996066+2.3599451952315995*x-12.47838559940495*y-

4.2078185053570625*z)+(6.090355759865185-

6.459937570553608*z)*z+y*(13.375904119024488+12.785165253609035*y+4.832761581301174*z))+z*(-3.0230947417126575+z*(-

2.5362219185889225+6.203539763948587*z))+y*(-6.374217731434383+y*(-23.717360459500625+13.23809107886893*y-

12.898330486490876*z)+z*(-3.7235104862966772+17.110057606860188*z)))+y*(1.0263819882673804+z*(2.169543574904084+(-

11.3101826530877+0.501075586402872*z)*z)+y*(14.238540869774098+z*(-1.8873012512884682+4.278290557414104*z)+y*(-

1.3843737175442605-34.26326140949819*y+29.92194171904781*z))))))/(0.7785801748034736-

1.1780056799421226*x+0.47467769284219097*y-0.03459234405920862*z) 

 

R-4/3 polynomial: 
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),,(corr
zyxE =(0.276603502858369+z*(-4.561654391176089+z*(-16.848531578909338+(-496.30931123018576-

330.4895352528282*z)*z))+x*(-10.889480971076306+y*(-127.82716466691214+y*(1417.2490046012413+610.8986719429023*y-

250.0357830465296*z)+(-613.048742546201-2514.4374426553577*z)*z)+z*(-

1.8223169952808964+z*(807.2550480845954+1081.9222907760686*z))+x*(127.33552277440984+x*(-

691.0342370897528+531.4267614254303*x+130.68301042391113*y-

538.1623155961747*z)+z*(229.83556002084737+39.590231961430064*z)+y*(303.4943899078969-

1570.0668499481665*y+1175.7251203585736*z)))+y*(9.597851468039439+z*(56.881627373512124+z*(433.15875573482634+704.4361

965120456*z))+y*(-42.95108114953812+y*(-567.0114168090131-

62.94770861897754*y+52.151196418409896*z)+z*(143.00363221889194+1626.282611553713*z))))/(504.83457101003654+z*(-

246.65352293075762+(70.6749845912373-156.47732101930012*z)*z)+y*(-

256.846382918661+z*(658.3031284197873+180.52973086841993*z)+y*(298.8238930832602-

489.4813036276625*y+269.0487436607461*z))+x*(-1223.2416233280578+y*(120.44506592295635+514.6341617498665*y-

1534.3392088908931*z)+x*(1172.607406289951-518.2452442689786*x+124.34877912152452*y-

664.3639329999492*z)+z*(953.9993392115671+442.61872952630995*z))) 

 

R-3/3 polynomial: 

),,(corr
zyxE =(-5.6468521708440065+z*(-0.6455850054332947+(-230.05350161010912-

54.17650850083276*z)*z)+y*(7.992951149397931+y*(-87.49761949669715-

1949.205115702377*y+254.24445550679738*z)+z*(181.25043636088205+1407.8975806293345*z))+x*(82.85111615402805+y*(-

130.87697422086134+3887.4574763651417*y-752.741678587582*z)+x*(-295.7807664461502-

621.19046643253*x+375.94415623137803*y+232.01135342400596*z)+z*(-

66.94866662350915+2827.9582789815113*z)))/(2144.1865380721265+y*(-3105.804366519403+y*(-378.9440833358306-

1362.783553384834*y-806.3630159591904*z)+(-1028.4360620641837-

1779.4015301222191*z)*z)+z*(526.7280804765501+(1974.1832548064363-296.2714329249807*z)*z)+x*(-

5177.023448684519+x*(4330.109316156619-848.1190906080768*x-9626.709942481264*y-897.9320682272385*z)+z*(-

607.5401961600213+558.5610651538227*z)+y*(10484.299117231063+3700.5309423965664*y+2417.052553088499*z)) 

 

P-3 polynomial: 

),,(corr
zyxE =-0.002662936871531699+z*(-0.03895811249804262+(0.10436444596789068-

2.4819620219519227*z)*z)+y*(0.1216783487028532+z*(0.8951353654415654+1.5726746317550928*z)+y*(0.6405532694957459-

3.158266234200411*y+1.8729798816149168*z)) +x*(-0.028001857078216615+y*(-2.668489424206896+4.37373697972929*y-

4.873877687390871*z)+x*(1.107379412223926-3.965579695813902*x+ 5.927493669743001*y+3.231343548491743*z)+z*(-

0.9380907165155405+ 4.647533829714995*z)) 
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Table I Comparison of potential energy for the polynomial fits, rational function fits, 

tabulated methods and cubic harmonic fits. For statistical and other details see the text. 

 

Type ( )2ii EE −fit/tab  
i

ii

E

EE −fit/tab

100
 

i

ii

U

EE −fit/tab

100
 

ii EE −fit/tab  ( )

∑

∑ −

i

ii

E

EE
fit/tab

100
 

P-1 1.8E-03 1.5E+05 1.8E+00 3.2E-02 1.2E+00 

P-2 5.9E-05 6.7E+04 2.8E-01 5.6E-03 4.6E-01 

P-3 3.2E-06 4.2E+03 6.9E-02 1.3E-03 2.3E-02 

P-4 3.1E-07 2.3E+03 2.0E-02 4.1E-04 1.3E-02 

P-5 2.6E-08 1.7E+02 5.7E-03 1.1E-04 9.6E-03 

P-6 2.4E-09 1.1E+02 1.7E-03 3.4E-05 7.3E-04 

Polynomial 

fit 

P-7 2.3E-10 1.1E+02 5.3E-04 1.0E-05 6.2E-04 

R-3/2 5.9E-07 4.0E+03 3.4E-02 5.7E-04 2.3E-01 

R-4/1 1.4E-07 4.1E+03 1.3E-02 2.7E-04 2.2E-02 

R-3/3 7.5E-08 3.7E+03 1.1E-02 2.2E-04 3.6E-02 

R-4/2 2.4E-08 1.1E+03 7.0E-03 1.3E-04 4.8E-03 

R-5/1 1.3E-08 1.8E+02 4.3E-03 8.1E-05 2.9E-03 

R-4/3 6.7E-09 6.3E+02 3.5E-03 6.5E-05 7.6E-03 

R-5/2 2.2E-09 1.2E+02 2.0E-03 3.6E-05 2.8E-03 

Rational 

function fit 

R-6/1 8.0E-10 2.3E+02 1.0E-03 2.1E-05 1.3E-03 

small 6.8E-05 6.2E+00 1.2E-01 1.4E-03 2.1E+00 

medium 3.3E-05 1.5E+00 6.0E-02 7.1E-04 1.1E+00 
Tabulated 

tri-linear 
large 1.7E-05 6.5E-01 3.0E-02 3.5E-04 5.3E-01 

small 4.9E-05 4.7E+01 1.7E-01 2.0E-03 1.4E+00 

medium 2.5E-05 2.1E+00 9.1E-02 1.1E-03 7.7E-01 
Tabulated 

tri-cubic 
large 1.3E-05 7.0E-01 4.8E-02 5.6E-04 4.0E-01 

Isotr. fit
20

 ≤6 3.0E-03 2.6E+03 2.4E+00 4.5E-02 3.3E+01 

≤14 3.8E-06 1.2E-01 3.5E-02 3.1E-04 1.9E-01 Cubic 

harmonics
20

 ≤12opt. 1.1E-07 2.7E+00 1.1E-02 1.7E-04 1.1E-02 
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Table II Comparison of forces for the polynomial fits, rational function fits, tabulated 

methods and cubic harmonic fits. For statistical and other details see the text. 

 

Type ( )2fit/tab

ii FF −  
i

ii

F

FF −fit/tab

100
 

all

fit/tab

100
i

ii

F

FF −  
ii FF −fit/tab  

P-2 1.9E-02 1.8E+03 1.5E+01 9.6E-02 

P-3 1.5E-03 2.7E+02 5.2E+00 2.4E-02 

P-4 1.9E-04 2.6E+02 1.4E+00 8.4E-03 

P-5 1.5E-05 6.3E+01 4.6E-01 2.4E-03 

P-6 1.4E-06 1.6E+01 1.1E-01 7.7E-04 

Polynomial 

fit 

P-7 1.8E-07 4.1E+00 3.9E-02 2.6E-04 

R-3/2 3.1E-04 1.1E+02 2.6E+00 1.1E-02 

R-4/1 6.0E-05 1.9E+02 8.5E-01 5.2E-03 

R-3/3 3.5E-05 5.5E+01 9.4E-01 4.2E-03 

R-4/2 1.2E-05 5.9E+01 4.9E-01 2.4E-03 

R-5/1 7.8E-06 4.0E+01 3.4E-01 1.7E-03 

R-4/3 3.8E-06 4.3E+01 2.5E-01 1.3E-03 

R-5/2 1.4E-06 2.3E+01 1.9E-01 7.3E-04 

Rational 

function fit 

R-6/1 4.1E-07 1.6E+01 6.1E-02 4.4E-04 

small 7.2E-04 2.4E+00 2.7E-01 4.7E-03 

medium 3.5E-04 9.5E-01 1.2E-01 2.3E-03 
Tabulated 

tri-linear 
large 1.8E-04 5.0E-01 5.7E-02 1.1E-03 

small 5.5E-04 3.2E+00 4.0E-01 6.9E-03 

medium 2.7E-04 1.5E+00 1.8E-01 3.6E-03 
Tabulated 

tri-cubic 
large 1.4E-04 6.6E-01 9.4E-02 1.8E-03 

Isotr. fit
20

 ≤6 2.4E-01 4.7E+02 1.5E+01 3.4E-01 

≤14 6.5E-04 9.5E-01 2.4E-01 4.7E-03 Cubic 

harmonics
20

 ≤12opt. 3.0E-05 1.0E+00 1.4E-01 2.5E-03 
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Table III Number of instructions for the calculation of one interaction. The unit of the 

operations is one multiplication or addition. 

 

Number of 

instructions 
Type 

potential 

forces 

and 

potential 

P-1 6 - 

P-2 18 30 

P-3 38 74 

P-4 68 144 

P-5 110 246 

P-6 166 386 

Polynomial fit 

P-7 238 570 

R-3/2 59 120 

R-4/1 77 166 

R-3/3 79 164 

R-4/2 89 190 

R-5/1 119 268 

R-4/3 109 234 

R-5/2 131 292 

Rational 

function fit 

R-6/1 175 408 

small 215 431 

medium 215 431 
Tabulated 

tri-linear 
large 295 751 

small 2615 6555 

medium 2615 6555 
Tabulated 

tri-cubic 
large 3255 9115 

n=10 710 2724 

n=50 143 514 

n=100 93 278 
Ewald 

n=10000 42 65 

Isotr. fit
20

 ≤6 10 22 

≤14 145 629 Cubic 

harmonics
20

 ≤12opt. 121 537 
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Figure captions 

 

Figure 1 Schematic representation of a periodic system. The central cell and a possible choice 

of an N cell subsystem are denoted by thick borders. 

 

Figure 2 Pair-correlation functions of Lennard-Jones systems to check the partition choice of 

potential energy. The system consisted of 40 Lennard-Jones particles close to the triple point. 

r* is in reduced unit
11

. 

 

Figure 3 Number of operations with respect to the merit function of the fits (second column 

of Table I). Energy calculations: □ polynomials, ■ rational functions. Energy and force 

calculations: + polynomials, × rational functions. The data are connected with solid and 

dashed lines to clarify trends. 
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