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Abstract

We report Monte–Carlo simulation results for a strongly interacting dipolar soft–sphere (DSS)

fluid confined between two conducting, planar walls. The long–range dipolar interactions, including

contributions from the “image dipoles” in the metal, are handled by mapping onto a problem with

three–dimensional periodicity which can be treated by conventional Ewald summation methods.

Considering two different wall separations our results indicate the occurence of wall–induced local

and long–range ordering very similar to the related case of insulating walls. To understand this

behavior we present ground–state (lattice) calculations on the basis of the Ewald sums, as well as

simple macroscopic arguments appropriate for dipolar systems between conducting walls.

Keywords: Monte Carlo simulations, Ewald summation, dipolar fluids, phase behavior, confinement, con-

ducting walls
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I. INTRODUCTION

In recent years there has been substantial progress in simulating complex systems influ-

enced by long–ranged, electrostatic interactions such as the Coulomb interactions between

charged particles or the dipole–dipole interactions between particles with electric or magnetic

dipole moments. Interactions of this type play an important and sometimes even dominant

role in almost all biological systems, such as proteins, DNA, or charged membranes, and

in electrolyte solutions. Moreover, is a wealth of technologically important substances such

as polyelectrolytes [1] where electrostatic interactions determine the material properties.

Other examples can be found among colloidal liquids [2] such as ferrofluids [3–5] (disper-

sions of ferromagnetic nanoparticles) and electrorheological fluids [6] (colloidal dispersions

of polarizable particles).

In many applications involving such systems one is faced with some sort of spatial con-

finement. Examples range widely from cell membranes, electrolyte solutions near charged

surfaces, proteins near (charged) membranes, polyelectrolyte films [7], phospholipid bilayers

[8, 9], and thin films of magnetic colloids or ferrofluids [10]. This renders the question for the

correct treatment of the long–range interactions in computer simulations of systems with

reduced spatial symmetry. Within the last years much work has been done in generalizing

and optimizing methods originally designed for three–dimensional Coulombic or dipolar sys-

tems, in particular the so–called Ewald summmation methods [11–14], to “simple” confined

geometries such as slits (see e.g., Refs. [15–22]). Up to now most simulations studies for slit–

like systems refer to fluids near or in between insulating walls, i.e. non–polarizable materials

characterized by a dielectric constant ǫW = 1 (or a magnetic permeability µW = 1, respec-

tively) [22–27]. However, particularly in the electric case one might also want to consider

dielectric interfaces (ǫW > 1), which appear in many biological systems such as ion channels

in proteins or self–assembled monolayers [29]. A special case in this context are conducting

interfaces (ǫW = ∞) which are particularly important in electrochemical problems [30] and

in electrorheological fluids [6, 31]. The present paper deals with the influence of conducting

walls on a fluid of (spherical particles) with permanent dipole moments. This system may

serve as a simple model of either a polar molecular fluid (that is, a solvent) or a dipolar

colloidal fluid [2].

From a theoretical point of view, the crucial difference between a Coulombic or dipolar
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system subject to conducting walls and the case of insulating walls is that the charges or

dipoles in the original slab–like system create “image charges” or “image dipoles”, respec-

tively, within the metal [32]. These images are, of course, merely theoretical constructs

(rather than real charges or dipoles) which allow to solve the electrostatic boundary value

problem stating that the electrostatic field must be perpendicular to the surface of the walls.

Practically, the existence of the images implies that there are additional interactions to be

taken into account such that treatment of liquids close to conducting walls seems even more

complicated than the case ǫW = 1. However, as has been demonstrated in Refs. [33, 34]

for point charges, the energy of the system between conducting walls can be mapped onto

a problem with three–dimensional periodicity which can then be treated by conventional

three–dimensional Ewald summation methods [13, 14].

The purpose of the present paper is, on one hand, to generalize the mapping procedure

described in Ref. [33] to systems of permanent point dipoles. The second purpose is to

explore the extent to which the wall boundary conditions (ǫW = ∞ versus ǫW = 1) influence

the behavior of a confined dipolar model fluid with dominant dipolar interactions. To this

end we perform Monte Carlo (MC) simulations and compare the results to previous MC

data [27, 28] obtained by us for the same model fluid confined between insulating walls.

Surprisingly, we find that the two systems behave very similar. In particular, both fluids

display spontaneous polarization along a direction parallel to the walls at sufficiently large

densities and wall separations. To understand these results we present both macroscopic

arguments and, in addition, lattice calculations based on the Ewald method established in

this paper.

The remainder of the paper is organized as follows. In Sec. IIA we describe our model

system, a dipolar soft sphere (DSS) fluid between smooth, structureless walls characterized

by ǫW = ∞. An exact expression for the dipolar contribution to the energy, UD, of the

system is derived in Sec. II B, where we also show that UD can be easily calculated from that

of a related system with three–dimensional periodicity. Details of the corresponding Ewald

method and of our MC simulations, which are carried out in a constant–parallel–pressure

ensemble, can be found in Secs. IIC and IID, respectively. Numerical results are presented

in Sec. III. We first consider (Sec. IIIA) systems with wall separation Lz/σ = 7.0 which

value has also been discussed in our previous study at ǫW = 1 [27]. In the present work we

additionally consider (Sec. III B) very narrow systems at Lz/σ = 2.20, where the particles
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are essentially confined to a monolayer. Finally, lattice calculations involving dipolar slabs

with a face–centered–cubic positional structure and various types of perfect orientational

order are presented in Sec. IV. Our conclusions are summarized in Sec. V.

II. MODEL AND SIMULATION METHOD

A. Model system

We consider a fluid composed of N soft spheres with positions ri and point dipole moments

µi, i = 1, . . . N at their centers. The pair potential of the resulting dipolar soft sphere (DSS)

fluid is defined by

uff(ij) = uSR(rij) +
µi · µj

r3
ij

− 3
(µi · rij) (µj · rij)

r5
ij

, (2.1)

where the last two terms form the dipole–dipole potential, rij = |rij| = |ri−rj | is the particle

separation, and

uSR(r) = uSS(r) − uSS(rc) + (rc − r)
duSS(r)

dr
|r=rc

(2.2)

is the shifted–force version of the usual soft–sphere potential uSS(r) = 4ǫ0 (σ/r)12. Since the

shifted–force potential and its first derivative go to zero continuously at r = rc corrections

due to the finite cutoff are not required. In the present calculations, rc = 2.5σ. Fluid

molecules are confined by two planar solid walls separated by a distance Lz along the z–

axis of the coordinate system and of infinite extent in the x–y plane. Assuming that the

interaction potential between fluid particles and atoms composing the wall is given by the

soft–sphere potential uSS(r), and averaging over the subspaces z ≤ −Lz/2 and z ≥ Lz/2

occupied by substrate particles, the fluid–wall potential follows as

u
(k)
FW(z) =

4π

45
ǫ0ρwσ3

(
σ

Lz/2 ± z

)9

, (2.3)

where the plus and the minus sign refer to the lower (k = 1) and upper (k = 2) wall,

respectively. In Eq. (2.3), the reduced density of solid particles is set to ρwσ3 = 1.

B. Energy of the dipolar system

In this section we derive an exact expression for the energy of a dipolar many–particle

system between two metallic walls, following closely previous work on systems of point
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charges [33, 34].

We start by considering one particle with dipole moment µi = (µi,x, µi,y, µi,z) located at

some position ri in between the walls. To simplify notation, we assume here the walls to be

located at z = 0 and z = Lz. According to the rules of electrostatics [32] which states that

the tangential part of the electric field must vanish on conducting surfaces, the effect of one

metallic wall, e.g. the upper wall at z = Lz, consists in the creation of an “image dipole”

within the upper wall. The position of the image is r′i = (2Lz − zi) ẑ = ri + 2 (Lz − zi)

(with ẑ being the unit vector in z–direction), and its dipolar vector µ′
i is that of the original

particle reflected at the z–axis (to see this, consider the dipole as an arrangement of two

charges of opposite sign, each of which creates an image charge). Therefore,

µ′
i = (−µi,x,−µi,y, µi,z). (2.4)

The total electrostatic field at a position rj 6= ri between the walls is then given by the

superposition of the fields arising from the original dipole, µi, and that of its image, µ′
i.

Introduction of the second (lower) wall at z = 0 changes the situation drastically since

now not only the original particle, but also its upper image are mirrored in the lower wall.

These images at z < 0 induce in turn new images in the upper wall, and so forth, as

illustrated in Fig. 1. For metallic walls of infinite thickness, each single dipole therefore

generates an infinite number of images. The first group of images (which includes the one

mentioned in the beginning) is characterized by reflected orientations µ′
i [see Eq. (2.4)] and

positions

r′
i = ri + 2 (nzLz − zi) ẑ, nz = 0,±1,±2, . . . ,±∞. (2.5)

The second group of images has the same orientation as the original particle, i.e. µ′′
i = µi,

and is characterized by positions

r′′
i = ri + 2nzLz ẑ, nz = ±1,±2, . . . ,±∞. (2.6)

Consider now a many–particle system of N particles between the walls. The dipolar

energy of this system can be written as

ŨD = −1

2

N∑

i=1

µi ·
(
Eself

i + Eother
i

)
, (2.7)

where Eself
i is the electrostatic field arising from the images of particle i, and Eother

i comprises

the fields from the other particles j 6= i and the fields from their images. Introducing the

5
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short–hand notation

ei (µj, rj) =
3rij (µj · rij)

r5
ij

− µj

r3
ij

, (2.8)

the field Eself
i becomes

Eself
i =

∞∑

nz=−∞,nz 6=0

ei (µi, ri + 2nzLzẑ) +
∞∑

nz=−∞

ei (µ
′
i, ri + 2 (nzLz − zi) ẑ) , (2.9)

where the first (second) sum include contributions from images of i with the same (reflected)

orientation. Note that in the first sum, the term nz = 0 (which corresponds to a position

between the walls) is omitted while the second sum is unrestricted. Similarly, the field Eother
i

is given by

Eother
i =

N∑

j=1,j 6=i

[
ei (µj, rj) +

∞∑

nz=−∞,nz 6=0

ei (µj, rj + 2nzLzẑ)

+

∞∑

nz=−∞

ei

(
µ′

j, rj + 2 (nzLz − zi) ẑ
)
]

, (2.10)

where the first sum includes contributions from the true neighbors of particle i and the other

two sums contain the corresponding image contributions. Inserting expressions (2.9) and

(2.10) into Eq. (2.7), using Eq. (2.8), and summarizing we obtain

ŨD =
1

2

N∑

i=1

N∑

j=1

{
∞∑

nz=−∞

′ [
µi · µj

|rij + 2nzLzẑ|3

−3
(µi · (rij + 2nzLzẑ)) (µj · (rij + 2nzLzẑ))

|rij + 2nzLzẑ|5
]

+
∞∑

nz=−∞

[
µi · µ′

j

|rij + 2nzLzẑ + 2zj ẑ|3

−3
(µi · (rij + 2nzLzẑ + 2zj ẑ))

(
µ′

j · (rij + 2nzLzẑ + 2zj ẑ)
)

|rij + 2nzLzẑ + 2zj ẑ|5

]}
, (2.11)

where the prime at the first sum over nz indicates that the term nz = 0 is omitted (only) for

i = j. Furthermore, in writing the summands in Eq. (2.11) we have used that summation

over nz is equivalent to a summation over −nz.

Finally, the central cell comprising the N original particles is repeated periodically along

the x– and y– directions of the coordinate system, resulting in an infinitely extended slab of

fluid confined between conducting walls. The corresponding total dipolar energy, UD, of this

6
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system is easily found from Eq. (2.11) when we replace the sums over nz by three–dimensional

sums over lattice vectors n̄ defined by

n̄ = (nxLx, nyLy, 2nzLz) . (2.12)

One obtains

UD =
1

2

N∑

i=1

N∑

j=1

∑

n̄

′
[

µi · µj

|rij + n̄|3 − 3
(µi · (rij + n̄)) (µj · (rij + n̄))

|rij + n̄|5
]

+
1

2

N∑

i=1

N∑

j=1

∑

n̄

[
µi · µ′

j

|rij + n̄ + 2zj ẑ|3

−3
(µi · (rij + n̄ + 2zj ẑ))

(
µ′

j · (rij + n̄ + 2zj ẑ)
)

|rij + n̄ + 2zj ẑ|5

]
. (2.13)

The appearance of the lattice sums in Eq. (2.13) already indicates that the dipolar system

between metallic walls has, in a way, three-dimensional (3d) periodicity. The basic cell of

this three–dimensional array contains the original cell with the N particles plus the first set

of images, e.g., the N images resulting from the presence of the lower wall alone. In fact, as

we show explicitely in Appendix A, the energy of the extended system with altogether 2N

dipoles, U3d,ex
D , is directly linked to UD by the relation

UD =
1

2
U3d,ex

D . (2.14)

Thus, the energy of a system with conducting interfaces can be conveniently calculated from

the energy of the corresponding extended system. The latter is twice as large as the original

system, but has the great advantage of having three–dimensional periodicity.

C. Ewald sum

To calculate the energy of the extended system we can employ the conventional Ewald

sum for a three-dimensional system with conducting boundaries [11–14],

U3d,ex
D = 2UD =

1

2

2N∑

i=1

∑

j 6=i

[(µi · µj)B(rij , α)

− (µi · rij) (µj · rij)C(rij, α)]

+
1

2V ex
cell

∑

k 6=0

4π

k2
exp

(
− k2

4α2

)
M̃(k)M̃∗(k)

− 2α3

3
√

π
(2N) µ2. (2.15)
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In Eq. (2.15), the real space contribution has been formulated under the assumption that

the convergence parameter α is large enough to consider only interactions within the central

cell. This is satisfied with the present choice α/L = 7.0. Furthermore, the functions B and

C are defined by [13]

B(r, α) ≡
[
2αr√

π
exp(−α2r2) + erfc(αr)

]
/r3,

C(r, α) ≡
[
2αr√

π
(3 + 2α2r2) exp(−α2r2) + 3erfc(αr)

]
/r5, (2.16)

where erfc is the complementary error function. We evaluate the real–space part by em-

ploying periodic boundary conditions in the x– and y– directions and the minimum–image

convention. As to the reciprocal part in Eq. (2.15), V ex
cell = A(2Lz) = 2L2Lz is the vol-

ume of the extended simulation cell (assuming that the area A = LxLy is a square, that is

Lx = Ly = L). Furthermore,

M̃(k) =
2N∑

i=1

µi · k exp (ik · ri) , (2.17)

and M̃∗(k) denotes its complex conjugate. Also, the reciprocal vectors of the (simple–

tetragonal) superlattice are given by k = (2πmx/L, 2πmy/L, 2πmz/(2Lz) where mx, my,

and mz are integers. In the present study the reciprocal sum includes k–vectors with length

up to m2
x + m2

y + m2
z = 80.

D. Monte Carlo method

Simulations were performed in the constant–parallel–pressure ensemble, that is at fixed

(N, Lz, P‖, T ) where T is the temperature and P‖ is the transverse pressure exerted on the

confined fluid in directions parallel to the walls. For given parallel pressure, the average area

〈A〉 (or lateral length 〈L〉) adjusts itself accordingly.

The simulations were carried out with N = 500 particles. Each MC cycle consisted of an at-

tempted translation or rotation of the N particles, followed by an attempt to change the box

area A = L2 parallel to the walls. Employing Metropolis algorithm [14], the translation (ro-

tation) of a particle, say i, is accepted with probability ptrans/rot = min{1, exp(−β∆UT(i))},
where β = 1/kBT , kB is Boltzmann’s constant, and ∆UT(i) is the associated change in total
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configurational energy,

UT =
∑

i>j

uSR(ij) +
1

2
U3d,ex

D +
2∑

k=1

∑

i

u
(k)
FW(i). (2.18)

Moreover, changes of the box area from A = L2 to A′ = (L′)2 are accepted on the basis of

a modified Metropolis criterion involving the probability

p = min {1, exp (−β∆A→A′)} , (2.19)

where the argument of the pseudo Boltzmann factor is given by [35]

−β∆A→A′ = −β∆UA→A′

T − βP‖ (A − A′)Lz + N ln

(
A

A′

)
. (2.20)

The displacement parameter governing the changes in A was adjusted such that 40–50

percent of the attempts were accepted. Finally, all simulations were started with randomly

oriented particles located on a face–centered cubic lattice. A typical run then consisted

of 120000-200000 cycles for equilibration, followed by a production period of about 80000-

150000 cycles.

III. MONTE CARLO SIMULATION RESULTS

Thermal properties of DSS fluids can be characterized by the reduced temperature T ∗ =

kBT/ǫ0 and the reduced dipole moment m∗ = µ/
√

ǫ0σ3. In the present study, all simulations

were performed at T ∗ = 1.35 and m∗ = 3.0, corresponding to a strongly interacting fluid with

dipolar coupling strength µ2/kBTσ3 = m∗2/T ∗ ≈ 6.6. These parameters have already been

employed by us in previous MC simulations of DSS fluids confined by insulating walls (ǫW =

1) [27, 28] and in bulk DSS (Molecular Dynamics) simulations [36, 37]. In the following

we first discuss (Sec. IIIA) simulation results for DSS between conducting walls (ǫW = ∞)

with reduced wall separation L∗
z = Lz/σ = 7.0, which value has also been considered in

Refs. [27, 28]. We then turn in Sec. III B to an even narrower system characterized by

L∗
z = 2.2.

A. Wall separation L∗
z = 7.0

Recently it was shown that dense bulk systems of DSS [36, 37] (and dipolar hard spheres

[38, 39]) may develop spontaneous polarization, yielding a liquid state with long–range

9
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ferroelectric order. In Ref. [27] we have demonstrated that this phase transition appears

also in the presence of insulating walls with sufficiently large wall separation such as, e.g.,

L∗
z = 7.0. In fact, we found that those walls promote rather than suppress the long–range

ordering: the transition occurs at somewhat lower pressures (and resulting average densities)

compared to corresponding bulk systems.

Against this background it is interesting to see whether the present system characterized

by ǫW = ∞ also polarizes spontaneously. To this end, we first consider the behavior of

the global (i.e., pore–averaged) order parameters P1 and P2 [13] measuring the degree of

polarization and the alignment, respectively. For a given configuration P2 was taken to be

the largest eigenvalue of the ordering matrix Q = (1/N)
∑N

i=1 (3µ̂iµ̂i − I) /2 where µ̂i is the

unit vector associated with µi, and I is the identity matrix. The corresponding normalized

eigenvector is the global director d̂, from which the instantaneous order parameter P1 follows

as

P1 =
1

N

∣∣∣∣∣

N∑

i=1

µ̂i · d̂
∣∣∣∣∣ . (3.1)

Numerical results for the average order parameters 〈P1〉 and 〈P2〉 as functions of the (ex-

ternally applied) parallel pressure P ∗
‖ = P‖σ

3/ǫ0 are plotted in Fig. 2 where we have included

previous MC data (again with N = 500) for the same DSS fluid but with insulating walls

[27]. Starting from P ∗
‖ = 0.05 and increasing the pressure up to P ∗

‖ ≈ 2.0, the order param-

eters of the present system with conducting walls remains at first very small indicating that

the system is globally isotropic in this pressure range (the small non–zero values of the order

parameters can be attributed to finite–size effects [40]). Upon further compression, how-

ever, 〈P1〉 and 〈P2〉 sharply increase and for pressures P ∗
‖ > 2.8 one observes very large order

parameters with values 〈P1〉 ≥ 0.7 and 〈P2〉 ≥ 0.5 (note that the maximum value of these

quantities is 1). Keeping in mind that all simulations were started from randomly oriented

states, we conclude that these high–pressure states are indeed spontaneously polarized and

therefore correspond to a true ferroelectric phase. Moreover, all states appearing in Fig. 2

are still fluid–like in directions parallel to the walls, as we have verified by an inspection of

the in–plane correlation functions.

Comparing then the results obtained at ǫW = ∞ with those at ǫW = 1 one finds that

the pressure range in which the ferroelectric order develops upon compressing the fluid

from the dilute limit, is essentially indistinguishable for the two wall boundary conditions
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considered. The same is true for the pore–averaged densities 〈ρ∗〉 = Nσ2/(〈A〉Lz) associated

to the external pressures, as may be seen from the density data given in Fig. 3. Finally,

inspection of the global director d̂ (which is a result of the simulations) indicates that metallic

substrates support ordering parallel to these substrates, that is, d̂ has directions within the

x–y–plane at all pressures considered. Exactly the same behavior is found in systems with

insulating walls [27].

We can understand the apparent insensitivity of the ferroelectric transition against the

wall boundary conditions (ǫW = ∞ versus ǫW = 1), at least in parts, by simple macroscopic

arguments. Consider first a system of the shape of a general linear ellipsoid (with two axes

of length s and one axis of length ks) immersed in an insulating medium with dielectric

constant ǫ′ = 1. A homogeneous polarization P of this system along the (symmetry) axis of

length ks would induce a depolarizing field within the system [41],

EDP = −4πD(k)P, (3.2)

where D(k) is the depolarizing factor. The infinitely extended fluid slab in which we are

interested here, is a special case of the ellipsoid where k → 0, implying D(k → 0) = 1 [41].

Assuming polarization normal to the insulating walls (i.e., ǫW = ǫ′ = 1) the fluid slab then

experiences the field EDP = −4πP from which the corresponding energy per volume follows

as UDP/V = −(1/2)P · EDP = 2πP2 > 0. The apparance of this energy “penalty” explains

why the DSS fluids simulated in Ref. [27], where ǫW = 1, ordered along (arbitrary) directions

parallel to the walls: for this situation, D(k) = 0, and the depolarizing field vanishes [41].

Consider now the general ellipsoid immersed into a polarizable medium characterized by

a dielectric constant ǫ′ > 1. In this case, the field EDP [see Eq. (3.2)] is supplemented by

the so–called reaction field [42],

ERF = −4πD(k)
(ǫ′ − 1) (1 − D(k))

(ǫ′ − 1) D(k) − ǫ′
P. (3.3)

Applying the formula (3.3) to a slab–like system (D(k) = 1) we see that the reaction field

vanishes for this specific geometry regardless of the value of the ǫ′ = ǫW (contrary to, e.g,

spherical samples where D(k) = 1/3 and the reaction field cancels the depolarizing field

in the limit ǫ′ → ∞). As a consequence, polarization normal to the walls is unfavorable

even in presence of conducting walls (ǫW → ∞), at least from the perspective of macro-

scopic electrostatics. Indeed, further reasoning for the observed parallel ordering in our MC
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simulations is provided by the lattice calculations presented in Sec. IV.

In view of the macroscopic arguments above it is interesting to investigate the behavior of

the total configurational potential energy [see Eq. (2.18)], U∗
T = UT/ǫ0N , as obtained from

the MC simulations. Results for U∗
T as function of P ∗

‖ are plotted in Fig. 4. Upon increasing

P‖ from zero the energy first rises in both systems as a consequence of the increasing repulsion

[stemming from the short–range interactions, see Eq. (2.2)] between the particles. In this

pressure range, the numerical values of U∗
T for metallic walls, on one hand, and insulating

walls, on the other hand, are indeed essentially indistinguishable. Further compression then

yields a sharp decrease of the total energy which can be attributed to the sudden decrease

of dipolar energy (see inset in Fig. 4) associated to the onset of orientational ordering (see

Fig. 2). Within the ferroelectric phase the energies then increase again upon increasing P ∗
‖ ,

with the values of U∗
T at high pressures being somewhat larger in the metallic case. An

overview of thermodynamic data obtained at two examplary densities corresponding to the

isotropic and ferroelectric phase is given in Tables I and II, respectively. The tables also

include numerical estimates for the diagonal components of the (internal) pressure tensor

(the off–diagonal elements should be zero in fluid states). Explicit expressions for the dipolar

contribution to these quantities are given in Appendix B. Due to the planar, homogeneous

character of the confining substrates, one expects the quantities P̃xx and P̃yy to agree with

each other, and their average P̃‖ = (P̃T,xx+P̃T,yy)/2 to coincide with the fixed input value P‖

appearing in the Metropolis criterion [see Eq. (2.20)]. The data presented in Tables I and II

indicate that these criteria are satisfied quite well even in the orientationally ordered phase.

One also notes that the normal pressure, P ∗
T,zz, is different from the parallel components,

which is a direct consequence of the slab geometry.

Given the ordering behavior discussed so far it is not surprising that the local structure of

the fluid confined between conducting walls resembles closely that between insulating walls.

This may be verified from the local densities ρ(z) = 〈N(z)/(A∆z〉) (where ∆z = 0.05σ is

the thickness of a thin slice centered on z) plotted in Fig. 5. Parts (a) and (b) correspond

to the isotropic (a) and the ferroelectric (b) phase, respectively. As a consequence of the

nanoscopic pore width the local density exhibits oscillations throughout the pore already

at the relatively small pressure P ∗
‖ = 1.0, but particularly at the larger pressure P ∗

‖ = 5.0

related to the ferroelectric phase. These density oscillations indicate stratification of the fluid

into layers of particles along directions parallel to the walls. In particular, the appearance
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of six layers at large pressures [see Fig. 5 (b)] is consistent with present value of the wall

separation, L∗
z = 7.0. From a quantitative point of view, inspection of Fig. 5 shows that

the local density is indeed essentially uneffected by the wall boundary conditions, the only

difference being that the density peaks are somewhat more pronounced for ǫW = 1 than for

conducting walls.

Finally, to investigate the degree of local orientational order within the isotropic and

ferroelectric phase we have calculated the order parameter [27]

Qzz(z) =

〈∑′
z

(
3µ̂2

i,z − 1
)
/2

N(z)

〉
, (3.4)

where the sum is carried out over particles within thin layers of thickness ∆z. By defini-

tion, Qzz(z) is zero in (globally isotropic, bulk–like) situations where the dipole moments

rotate freely in all three spatial directions, whereas Qzz(z) = −1/2 when the dipoles point

exclusively along directions in the x–y–plane. Note that such behavior does not imply any

long–range orientational ordering but rather a restriction of dipole fluctuations normal to

the walls. Therefore, Qzz(z) can be non–zero even in a globally isotropic state. Numerical

results for Qzz(z) are given in Fig. 6 (a). Considering first the data corresponding to the

isotropic phase (P ∗
‖ = 1.0) we see that Qzz(z) is indeed negative particularly in the contact

layers as a consequence of the presence of confining walls. Moreover, the present results are

again very close to those obtained with insulating walls [27]. The same is true within the

ferroelectric phase (P ∗
‖ = 5.0), where Qzz(z) exhibits large negative values throughout the

pore due to the long–range polarization parallel to the walls.

Finally, the local degree of polarization along the (pore–averaged) director d̂ of the fer-

roelectric phase can be detected from the order parameter

P1(z) =

〈∑
z

′
µ̂i · d̂

N(z)

〉
. (3.5)

Results are plotted in Fig. 6 (b), showing that indeed all layers of the confined ferroelectric

fluid are polarized along the global director irrespective of the wall boundary conditions.

B. Wall separation L∗
z = 2.2

In view of our MC results at L∗
z = 7.0 it is interesting to see whether the wall boundary

conditions have a similarly small effect when the spatial confinement becomes even more
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severe. To this end we have performed additional (N, Lz, P‖, T ) MC simulations at L∗
z = 2.2.

At this small pore width the particles essentially form monolayers regardless of the values of

P ∗
‖ , as may be verified from plots of the local density ρ(z) presented in Fig. 7. Inspecting

the density profiles in more detail one also realizes that they are fairly insensitive against ǫW

(the data presented here for insulating walls stem from (N, Lz, P‖, T ) MC simulations with

the slab–adapted Ewald method described in Ref. [27]). This is consistent with our findings

at L∗
z = 7.0 (see Fig. 3).

However, comparing the two wall separations with each other it turns out that the con-

fined fluids at L∗
z = 2.2 behave quite differently from the thicker films discussed in Sec. IIIA.

In particular, the quasi–monolayer does not develop spontaneous polarization, i.e., the or-

der parameter 〈P1〉 remains very small within the pressure range P ∗
‖ ≤ 3.0 investigated (at

larger pressures, equilibration of the systems became increasingly difficult). This may be

veryfied from plots of the orientational order parameters in Fig. 8. Recalling that the fluid

at L∗
z = 7.0 orders at pressures P ∗

‖ ≈ 2.20 (see Fig. 2) we conclude that the quasi–monolayer

does not exhibit an isotropic–to–ferroelectric transition, at least not at comparable pres-

sures. This holds for both wall boundary conditions considered. Interestingly, however, the

systems at L∗
z = 2.20 were generally characterized by quite large degrees of average align-

ment parallel to the walls, as measured by the order parameter 〈P2〉 also plotted in Fig. 8.

Indeed, from this figure it is seen that the particles align relative to each other already at

very small values of P ∗
‖ , with 〈P2〉 being generally somewhat larger for conducting than for

insulating walls. Two typical particle configurations (“snapshots”) of the fluid particles are

shown in Fig. 9. At very low pressures such as P ∗
‖ = 0.005 [see Fig. 9 (a)], which corre-

sponds to an average adsorption rate of Γ∗ = Nσ2/〈A〉 ≈ 0.04, the particles clearly arrange

into large clusters and chains with head–to-tail alignment of the dipole moments. This is

the typical behavior expected in strongly coupled dipolar fluids under dilute conditions [43].

In particular, the present “quasi–monolayers” behave very similar to true two–dimensional

dipolar fluids [10] in that the chains form exclusively along “in–plane” directions, i.e., within

the x–y plane. At the larger pressure P ∗
‖ = 1.0 (Γ∗ ≈ 0.71), the particles are still connected

to chains but due to the larger density, the chains appear to align along a global director.

There is, however, no sign of global parallel (ferroelectric) ordering, in accordance to the

neglible values of 〈P1〉 (see Fig. 8).

Finally, we compare in Fig. 10 the total configurational energy, U∗
T and its dipolar con-
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tribution, U∗
D, as functions of the parallel pressure for the two wall boundary conditions.

At ǫW = 1 the total energy increases monotonously upon compression of the system, in-

dicating that the increase of short–range repulsion dominates the decrease of the dipolar

energy (see inset of Fig. 10). In particular there is no sudden decay of U∗
T such as the one

observed at L∗
z = 7.0 (see Fig. 4) in the vicinity of the isotropic–to–ferroelectric transition.

The results obtained at ǫW = ∞ reveal a similar trend, with the energies at larger pressures

being slightly larger than in the insulating case. A complete list of thermodynamic data at

the examplary state P ∗
‖ = 2.0 is given in Table III. Taken altogether, the MC results at

L∗
z = 2.20 suggest that the wall boundary conditions do not affect the system’s behavior on

a qualitative level, whereas the quantitative differences appear to be somewhat larger than

those found at L∗
z = 7.0.

IV. LATTICE CALCULATIONS

We now turn back to the ferroelectric transition occuring in the thicker systems at L∗
z =

7.0. The electrostatic arguments presented in Sec. IIIA [see Eq. (3.2) and below] already

provide some explanation of the ordering behavior of the present system with ǫW = ∞, in

particular its similarity to the case ǫW = 1. Indeed, according to these arguments there

should not be any difference between the two wall boundary conditions because, for both

systems, the macroscopic fields in the ordered state are the same.

However, these electrostatic arguments clearly rely on the assumption that macroscopic

theory remains to be valid for the nanoscopic fluid slabs considered here. As an attempt

to better understand the ordering behavior on a microscopic level we have carried out some

additional calculations of the energy of crystalline dipolar slabs with perfect orientational

order (and ǫW = ∞). Making this restriction gives us the possibility to evaluate, based on

Eqs. (2.14) and (2.15), the corresponding energies on a quasi–exact level and to compare

them with corresponding energies of systems between insulating walls [27].

Specifically, we have considered (infinitely extended) slabs composed of dipolar parti-

cles located at the sites of a face–centered cubic (fcc) lattice with lattice vectors rfcc =

(a/2) (lx, ly, lz), where a is the lattice constant (fixed such that the reduced density ρfccσ
3 =

4/(a/σ)3 = 1.0), and {lα} (α = x,y,z) are integers with lx + ly + lz even. An infinitely

extended slab is then realized by setting −∞ < lx, ly < ∞ and lz = 0, . . . , nz − 1, nz being
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the number of fcc layers in z–direction. Based on this positional structure we have employed

the energy relation (2.14) combined with the Ewald expression (2.15) to calculate the total

dipolar energy UD for two dipole configurations characterized by perfect orientational order:

(i) all dipoles point along the x–axis, that is, d̂ ‖ x̂ (which is energetically equivalent to

d̂ ‖ ŷ) and (ii), all dipoles point along the z–axis (d̂ ‖ ẑ).

Numerical results for the reduced dipolar energy UDσ3/µ2/N as function of the number

of lattice layers nz are given in Fig. 11, where part (a) compares the energies related to

cases (i) and (ii) in presence of conducting walls (ǫW = ∞). Regardless of the actual value

of nz, the energy related to an ordering parallel to the walls (d̂ ‖ x̂) is smaller than that

related to perpendicular ordering. This is consistent with the macroscopic arguments in

Sec. IIIA and explains why the MC simulations at L∗
z = 7 predict spontaneous polarization

parallel to the walls. However, we also observe from Fig. 11 (a) that the actual differences

between the two ordering directions are large only for very thin films and decrease with

increasing film thickness. Indeed, in the limit nz → ∞ both energies converge to the exact

value UDσ3/µ2/N = −(2π/3)ρfccP
2
1 ≈ −2.094 (with ρfcc = P1 = 1 valid for perfectly ordered

bulk dipolar fcc–lattice [44]). This is in marked contrast to the lattice energies of systems

with insulating walls (ǫW = 1) [27] for which perpendicular ordering (d̂ ‖ ẑ) turns out to

be energetically unfavorable even for nz → ∞. We can understand these differences as

a consequence of depolarizing fields [see Eq. (3.2)] which arise for perpendicular ordering

between insulating walls even in the limit nz → ∞ [27].

Finally, we compare in Fig. 11 (b) the energies related to parallel ordering (d̂ ‖ x̂) for

systems between metallic and insulating walls. The latter system is generally characterized

by smaller energy values (as compared to the metallic case) which is consistent with our

computer simulation results in the ferroelectric phase at L∗
z = 7.0 (see Table II). One

also sees that the wall boundary conditions have a large effect only at very small values

of nz where UD has negative values in the case ǫW = 1, but not for ǫW = ∞. Therefore,

ferroelectric (in–plane–) ordering of systems close to two dimensions is even more unlikely

in presence of conducting walls, which may explain the absence of ferroelectric ordering in

our MC simulations at L∗
z = 2.20 (see Sec. III B).
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V. SUMMARY AND CONCLUSIONS

In this paper we have presented an Ewald summation method suitable for computer

simulations and lattice calculations of systems of permanent point dipoles confined between

conducting walls. The long–range dipolar interactions, including contributions from the “im-

age dipoles” in the metal, are handled by mapping onto a problem with three–dimensional

periodicity which can be treated by conventional Ewald summation methods. The final

relations between the original and the artificial system are formally the same as those pre-

viously found for systems of point charges [33, 34]. The present method can also be viewed

as a generalization of an earlier approach [31] to simulate electrorheological fluids, where all

(field–induced) dipoles point perpendicular to the metallic walls, to the case of permanent

(and therefore fluctuating) dipoles.

As an illustration of the method we have carried out Monte Carlo computer simulations

in order to explore the influence of conducting walls on the structural and phase properties

of a dipolar soft sphere fluid confined in a slab. Particular emphasis has been given on the

question to which extent the behavior of the present systems differs from the related case

of a fluid between non–polarizable walls [27]. Interestingly, the effect of the wall boundaries

turns out be very small even for strongly confined fluids and when the wall separations is

nanoscopically small. In particular, orientational ordering phenomena such as the isotropic–

to–ferroelectric transition appearing at larger wall separations (such as, e.g., L∗
z = 7.0)

and the absence of the latter in systems close to two dimensions (L∗
z = 2.2) seem to be

unaffected by the nature of the confining walls for the fluids considered here. Differences

only arise when one compares numerical values for thermodynamic data such as energies,

(normal) pressures, and order parameter, with these differences becoming somewhat more

pronounced as the wall separation decreases. We have partially explained this similarity

on the basis of lattice calculations involving dipolar crystalline slabs with various types of

perfect orientational order. The results (which were based on the Ewald methods) showed

that both insulating and conducting walls favor ferroelectric ordering parallel the walls for

sufficiently large wall separations, with the energies in the case of conducting walls being

slightly larger. Our MC results for the ferroelectric systems at L∗
z = 7.0 are consistent with

this picture.

Finally, it seems worth to note that the simulations with conducting walls, which were
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based on the extended three–dimensional Ewald sum proposed in the present work, required

significantly less computational time than comparable simulations involving insulating walls

(and the slab–adapted version of the Ewald method described in Refs. [22, 27]). Indeed, for

the strongly coupled systems discussed in this work the difference (in required CPU time)

was about a factor two. From that perspective, and in view of the observed insensitivity of

the numerical data against the wall boundary conditions, conducting walls actually appear

as a particularly efficient way to simulate confined dipolar systems.
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APPENDIX A: RELATION BETWEEN THE ORIGINAL AND THE EX-

TENDED SYSTEM

In this appendix we give a short derivation of Eq. (2.14) which relates the energy of a

slab–like system of point dipoles between conducting walls to that of an extended system

with three–dimensional periodicity. The basic cell of the extended system contains the N

dipoles in the original cell plus the first set of images, e.g., the N images resulting from the

presence of the lower wall alone. Positions and orientations of these N image particle are

then specified by the relations [see Eq. (2.5) with nz = 0 and Eq. (2.4)]

ri+N = ri − 2ziẑ, i = 1, . . . , N

µi+N = µ′
i = (−µi,x,−µi,y, µi,z) , i = 1, . . . , N. (A1)

Repeating the extended basic cell periodically in all three spatial directions, the total energy

is given as

U ex,3d
D =

1

2

2N∑

i=1

2N∑

j=1

∑

n̄

′
[

µi · µj

|rij + n̄|3 − 3
(µi · (rij + n̄)) (µj · (rij + n̄))

|rij + n̄|5
]

, (A2)

where the lattice vectors n̄ are specified in Eq. (2.12), and the prime at the sum indicates

that the term related to i = j is omitted for n̄ = 0. We now separate the double sum

18

Page 18 of 42

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

over the 2N particle appearing in Eq. (A2) into four terms containing (i) “particle–particle”

contributions
∑N

i=1

∑N
j=1, (ii) “image–image” contributions

∑2N
i=N+1

∑2N
j=N+1, (iii) “particle–

image” contributions
∑N

i=1

∑2N

j=N+1, and (iv) “image–particle” contributions
∑2N

i=N+1

∑N

j=1.

Terms (i) and (ii) give the same result after performing the lattice sum, as one may varify

from the relations

µi+N · µj+N = µi · µj

|ri+N,j+N + n̄| = |rij + n̄ − 4nzLzẑ|, (A3)

where ri+N,j+N = ri+N − rj+N ,

(µi+N · (ri+N,j+N + n̄)) (µj+N · (ri+N,j+N + n̄))

= (µi · (rij + n̄ − 4nzLzẑ)) (µj · (rij + n̄ − 4nzLzẑ)) , (A4)

and the fact that we sum in Eq. (A2) over an infinite set of lattive vectors {n̄} such that

the terms −4Lznzẑ appearing on the right side of Eqs. (A3) and (A4) are irrelevant.

Similarly, the lattice sums over terms (iii) and (iv) in the above decomposition also give

equivalent results due to the relations

µi · µj+N = µi+N · µj

|ri,j+N + n̄| = |ri+N,j + n̄ − 4nzLzẑ| (A5)

and

(µi · (ri,j+N + n̄)) (µj+N · (ri,j+N + n̄))

= (µi+N · (ri+N,j + n̄ − 4nzẑ)) (µj · (ri+N,j + n̄ − 4nzẑ)) . (A6)

Due to these symmetries we can rewrite Eq. (A2) as

U ex,3d
Dip =

N∑

i=1

N∑

j=1

{
∑

n̄

′
[

µi · µj

|rij + n̄|3 − 3
(µi · (rij + n̄)) (µj · (rij + n̄))

|rij + n̄|5
]

+
∑

n̄

[
µi · µj+N

|ri,j+N + n̄|3 − 3
(µi · (ri,j+N + n̄)) (µj+N · (ri,j+N + n̄))

|ri,j+N + n̄|5
]}

. (A7)

Noting that µj+N = µ′
j and ri,j+N = ri − rj+N = ri − rj + 2zj ẑ [see Eqs. (2.4) and (A1)],

one realizes that the energy of the three–dimensional extended system given in Eq. (A7) is

indeed exactly twice the energy UD defined in Eq. (2.11).

19

Page 19 of 42

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

APPENDIX B: PRESSURE TENSOR

In the following we present explicit expressions for the diagonal components Pγγ (with

γ = x, y, or z) of the pressure tensor, P, for a dipolar fluid confined between metallic walls.

Considering first a canonical ensemble (i.e., constant N , T , A, and Lz), the virial formula

for Pγγ [45] gives

Pγγ = β−1 N

ALz
− 1

Aγ

〈
∂UT

∂Lγ

〉
, (B1)

where Aγ = Vcell/Lγ , and UT is the total energy including both fluid–fluid and fluid–wall

interactions [see Eq. (2.18)]. We note that the Lγ–derivatives in Eq. (B1) have to be per-

formed at fixed scaled coordinates ui = ri,γ/Lγ with ri,γ being the γ–component of the

position vectors ri (see Ref. [45] for an examplary derivation of the normal component).

Because of the simple structure of the short–range and fluid–wall potential [see Eqs. (2.2)

and (2.3), respectively] the corresponding pressure contributions can be easily derived (note

that the fluid–wall potential only contributes to Pzz). For the evaluation of the dipolar

contribution,

PD,γγ = − 1

Aγ

〈
∂UD

∂Lγ

〉
, (B2)

we make use of the energy mapping relation (2.14) which implies

PD,γγ = − 1

Aγ

1

2

〈
∂U3d,ex

D

∂Lγ

〉
=

1

2

(
P real

γγ + ∆PD,γγ

)
. (B3)

Thus, the dipolar contribution to the pressure tensor of the present system can be calculated

from the corresponding formulae for three–dimensional (3d) dipolar systems with extended

system size (see Appendix A). A detailed derivation of the real–space contribution, P real
γγ ,

and the reciprocal contribution, ∆PD,γγ, for the 3d Ewald sum [see Eq. (2.15)] can be found,

e.g., in Refs. [46]. One obtains

P real
γγ =

1

2V ex
cell

〈
2N∑

i=1

∑

j 6=i

{
C(rij, α)

[
(µi · µj) r2

ij,γ

+µi,γrij,γ (µj · rij) + (µi · rij) µj,γrij,γ]

+ (µi · rij) (µj · rij) rij,γC̃(rij , α)
}〉

, (B4)

where r̃ij,γ is the γ–component of vector rij = ri − rj, and the function C̃(rij, α) =

r−1
ij ∂C/∂rij [cf. Eq. (2.16)]. Furthermore, the reciprocal part of the dipolar pressure tensor
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is given by

∆PD
γγ =

1

(V ex
cell)

2

〈
∑

k6=0

4π

k2
exp

(
− k2

4α2

)

×
{(

1 −
2k2

γ

k2
−

k2
γ

2α2

)
M̃(k)M̃∗(k)

+Q̃(k)M̃∗(k) + Q̃∗(k)M̃(k)
}〉

, (B5)

where the quantity M̃(k) is defined in Eq. (2.17), and

Q̃(k) =

2N∑

i=1

µi,γkγ exp (ik · ri) . (B6)

A generalization of the above virial formulae for the (dipolar) pressure tensor to systems

simulated in the (N, Lz, P‖, Lz) ensemble was presented by us in Ref. [27]. The normal

pressure Pzz then follows from the canonical formulae via a simple replacement of the area

A by its average, 〈A〉.
The parallel contributions, P̃xx and P̃yy, do not have any rigourous statistical expression

in the (N, Lz, P‖, Lz) ensemble, but their evaluation might still be useful as an internal check

of the simulations. Defining these components through the relations [27]

P̃γγ = β−1 N

〈A〉Lz
− 1

〈A〉Lz

〈
Lγ

∂UT

∂Lγ

,

〉
, γ = x, y (B7)

and performing the derivatives one arrives again at the canonical formula given above with

the replacement A → 〈A〉.
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FIGURES

z

0

3Lz

2Lz

Lz

- Lz

- 2Lz

- 3Lz

FIG. 1: Sketch of the effect of conducting walls on two dipolar particles located in the white box.

The combination of two conducting walls yields an infinite number of images per particle, where

one group of images has the same orientations as the original dipole, whereas the other group

is characterized by reflected orientations. The structure in z–direction can be considered as an

infinite periodic replication of the extended cell (original dipoles plus one set of images) marked

by the thick frame.
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FIG. 2: Order parameters 〈P1〉 and 〈P2〉 versus parallel pressure P ∗
‖ at wall separation L∗

z = 7.0

(T ∗ = 1.35 and m∗ = 3.0). The solid and open symbols indicate MC results for conducting and

insulating walls [27], respectively.
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FIG. 3: Density versus parallel pressure P ∗
‖ at L∗

z = 7.0. The solid and open symbols indicate

results for conducting and insulating walls, respectively.
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FIG. 4: Energies versus parallel pressure P ∗
‖ at L∗

z = 7.0. The solid and open symbols indicate

results for conducting and insulating walls [27], respectively.
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FIG. 5: Local number density at (a) P ∗
‖ = 1 (isotropic phase) and (b) P ∗

‖ = 5 (ferroelectric phase).

Results for conducting and insulating walls are indicated by solid and dashed lines, respectively.
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FIG. 6: (a) The local order parameter Qzz(z) at P ∗
‖ = 1.0 and P ∗

‖ = 5.0. (b) The local polarization

at P ∗
‖ = 5.0. Results for conducting and insulating walls are indicated by solid and dashed lines,

respectively.
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FIG. 7: Local densities at L∗
z = 2.20 and two different parallel pressures P ∗

‖ = 0.005 (a) and

P ∗
‖ = 2.0 (b). The solid and dashed lines indicate results for conducting and insulating walls,

respectively.
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FIG. 8: Order parameters versus parallel pressure P ∗
‖ at L∗

z = 2.20. The solid and open symbols

indicate results for conducting and insulating walls, respectively.

x
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FIG. 9: Snapshots of the system at L∗
z = 2.20 (quasi–monolayer) and ǫW = ∞ for two different

parallel pressures P ∗
‖ = 0.05 (a) and P ∗

‖ = 1.0 (b).
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FIG. 10: Energies versus parallel pressure P ∗
‖ at L∗

z = 2.20. The solid and open symbols indicate

results for conducting and insulating walls, respectively.
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FIG. 11: Dimensionless energy per particle for dipolar crystalline (fcc) slabs with perfect orientational

order. Part (a) refers to systems between metallic walls and d̂ ‖ x̂ or d̂ ‖ ẑ. Part (b) compares for the case

d̂ ‖ x̂ the energies of systems between metallic and insulating walls [27].
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TABLES

TABLE I: Simulation results for the average density, the order parameters, the short–ranged (SR),

fluid–wall (FW), dipolar (D), and total (T) reduced potential energy [U∗ = U/(ǫ0N)], and the

components P ∗
T,γγ = PT,γγσ3/ǫ0 (with γ = x, y, z) of the reduced (total) pressure tensor for DSS

fluids between insulating (ǫW = 1) and conducting walls (ǫW = ∞) at T ∗ = 1.35, m∗ = 3.0,

L∗
z = 7.0, and P ∗

‖ = 1.0 (isotropic phase).

〈ρ∗〉 〈P1〉 〈P2〉 U∗
SR U∗

FW U∗
D U∗

T P̃ ∗
T,xx P̃ ∗

T,yy P ∗
T,zz

ǫW = ∞ 0.40 0.05 0.15 4.60 0.099 -17.30 -12.61 1.00 1.01 1.32

ǫW = 1 0.40 0.09 0.14 4.62 0.094 -17.34 -12.63 1.00 1.01 1.31

TABLE II: Thermodynamic data (for explanation, see Table I) at T ∗ = 1.35, m∗ = 3.0, L∗
z = 7.0,

and P ∗
‖ = 5.0 (ferroelectric phase).

〈ρ∗〉 〈P1〉 〈P2〉 U∗
SR U∗

FW U∗
D U∗

T P̃ ∗
T,xx P̃ ∗

T,yy P ∗
T,zz

ǫW = ∞ 0.65 0.83 0.58 6.34 0.26 -19.26 -12.67 4.98 5.02 5.94

ǫW = 1 0.65 0.85 0.63 6.37 0.25 -19.36 -12.74 5.01 4.99 5.93

TABLE III: Thermodynamic data (for explanation, see Table I) at T ∗ = 1.35, m∗ = 3.0, L∗
z = 2.20,

and P ∗
‖ = 2.0.

Nσ2/〈A〉 〈P1〉 〈P2〉 U∗
SR U∗

FW U∗
D U∗

T P̃ ∗
T,xx P̃ ∗

T,yy P ∗
T,zz

ǫW = ∞ 0.810 0.21 0.41 5.50 0.60 -19.45 -13.35 2.01 1.99 2.32

ǫW = 1 0.802 0.04 0.42 5.53 0.57 -19.48 -13.70 1.97 2.02 2.29
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