
HAL Id: hal-00514991
https://hal.science/hal-00514991

Submitted on 4 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chemically driven electron tunnelling pumps
Igor Goychuk

To cite this version:
Igor Goychuk. Chemically driven electron tunnelling pumps. Molecular Simulation, 2006, 32 (09),
pp.717-725. �10.1080/08927020600857297�. �hal-00514991�

https://hal.science/hal-00514991
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Chemically driven electron tunnelling  pumps 
 
 

Journal: Molecular Simulation/Journal of Experimental Nanoscience 

Manuscript ID: GMOS-2006-0059.R1 

Journal: Molecular Simulation 

Date Submitted by the 
Author: 

07-Jun-2006 

Complete List of Authors: Goychuk, Igor; Institute of Physics, University of Augsburg 

Keywords: 
electron transfer, tunnelling, dissipation, nonequilibrium 
fluctuations, molecular electron pumps 

  
 
 

 

http://mc.manuscriptcentral.com/tandf/jenmol



For Peer Review
 O

nly

June 7, 2006 10:39 Molecular Simulation e-pumpCORR

Molecular Simulation, Vol. 00, No. 00, DD Month 200x, 1–14

Chemically driven electron tunnelling pumps

Igor Goychuk∗

Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86135 Augsburg, Germany
(20 April 2006)

The simplest mechanism for molecular electron pumps is discussed which is based on nonadiabatic electron tunnelling and nonequilibrium
conformational fluctuations. Such fluctuations can be induced, e.g. by random binding of negatively charged ATP molecules to the
electron-transferring molecular complex, their subsequent hydrolysis and the products dissociation. The pumping rate can be controlled
by the ATP concentration in solution. Depending on the model parameters there may exist a critical ATP concentration for the pump
to function. Alternatively, nonequilibrium fluctuations can be induced by externally applied stochastic electric fields. For realistically
chosen parameters, the mechanism is shown to be robust and highly efficient.

Keywords: Electron transfer, tunnelling, dissipation, nonequilibrium fluctuations, molecular electron pumps

1 Introduction

Electron transfer lies at heart of all bioenergetic processes. The energy of photoexcited electronic states, or
one released in the oxidative breakdown of food molecules is used in a chain of electron-transfer reactions
to create the transmembrane proton gradient storing ultimately the free energy ready to use in such
”energetic” organels of biological cells as mitochondria and chloroplasts (1; 2; 3; 4; 5). This electrochemical
proton gradient is used there by the ATP-syntase molecular complexes to synthesise the molecules of
adenosintriphosphate (ATP) – a free-energy “currency” utilised in the most biochemical cellular processes
which occur far away from the thermodynamic equilibrium under the living cell conditions. It is well known
that the ATP-syntase can work also in reverse using the energy of ATP hydrolysis to restore the proton
gradient (3). The existence of the reverse electron transfer, where the energy of ATP hydrolysis, or the
free energy derived from electrochemical transmembrane gradient of a sort of ions is used to energise the
electrons, is coming gradually in the focus of attention (6; 7; 8; 9; 10). The proton pumping molecular
complexes driven normally by the energy released in the downhill electron transfer can work in reverse,
pumping the electrons uphill on the time scale of seconds and minutes (7; 10). It might even be the case
that such reverse electron transfer evolutionary emerged earlier in archaebacteria existing at extremal
environmental conditions (i.e., during the most earliest steps of the biological evolution). Moreover, the
nitrogen fixation, which is realized by the nitrogenase protein complexes, utilises apparently the energy
released in ATP hydrolysis (11; 12; 13; 14). These natural molecular nanomachines produce ammonia
routinely, at normal conditions, while the standard industrial technological process requires large pressures
of about 150 atmospheres and temperatures in the range of 650-720 K.

The electron transfer in nitrogenase provides one of the key steps in the overall reaction of ammonia
synthesis. It is realized through a long-distance (about 14 Å) nonadiabatic electron tunnelling between
two different metalloclusters situated in two different protein subunits. This process is gated by nonequi-
librium conformational transitions of the whole protein complex due to ATP binding and hydrolysis, with
two ATP molecules hydrolysed per one electron transferred. How nitrogenase works remains still a mys-
tery, but a proper physical understanding gradually emerges (14). Such understanding is crucial not only
for uncovering the working principles of biological nanomachinery in general, but also for the molecular
design of such and similar molecular machines for a future nanobiotechnological use. It would allow for
an intelligent parameter optimisation, performing ultimately better than nature. Below I consider a very
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2 Chemically driven electron tunnelling pumps

simplified, minimal theoretical model for such chemically driven electron tunnelling pumps which is based
on the previous treatments in (14; 15; 16; 17; 18).

2 Theoretical model

ED2

AE

ED1

conformation 1 conformation 2
β

α
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conformation 1 conformation 2
β
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Figure 1. Electron pumping scenarios based on dissipative electron tunnelling and nonequilibrium conformational fluctuations. In the
scheme I, the energy level of the donor state fluctuates in time. This is contrasted with the scheme II, where the acceptor level

fluctuates in time. For dissipative tunnelling to occur from the donor site to the acceptor site of electron localisation, either the donor
state should gain temporally in energy, or the acceptor cite should temporally lose in energy (conformation 2). A combination of two

scenarios is also possible. The condition Vtun1 � Vtun2 is required for the pumping mechanism to work robustly. It is necessary to block
the reverse acceptor-to-donor electron transfer in the conformation 1. Temporal lifting of the electron energy is possible, e.g. due to

binding a negatively charged ATP molecule nearby the corresponding site of localisation. The tunnelling coupling can be exponentially
reduced, e.g. due to increase of the tunnelling distance, or due to disruption of the tunnelling pathway. The latter one can be induced

also by reorientation of a bridging molecular group.

2.1 Nonadiabatic electron transfer

Let us start from nonadiabatic electron tunnelling coupled to molecular vibrational modes considered
within a standard two-state, donor acceptor model (cf. one “frozen” conformation in Fig.1). This tunnelling
can be described, e.g., within a spin-boson like model captured by the following Hamiltonian (19; 20; 21;
22; 23; 24; 25)

Ĥ = ED|D〉〈D| + EA|A〉〈A| + Vtun(|D〉〈A| + |A〉〈D|)

+
1

2
(|D〉〈D| − |A〉〈A|)

∑

j

κj(b̂
†
j + b̂j)

+
∑

j

~ωj(b̂
†
j b̂j + 1/2). (1)

Wherein, |D〉 and |A〉, are the localised electronic states with the energies ED and EA, correspondingly;
Vtun denotes the effective electron tunnelling matrix element which incorporates the intervening medium
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influence (a superexchange tunnelling mechanism is assumed (26; 27; 28; 29; 30)). The coupling of elec-
tron tunnelling to the molecular vibrational modes ωj is characterised by the coupling constants κj and
the corresponding spectral density J(ω) = (2π/~2)

∑

j κ
2
jδ(ω − ωj). This coupling modulates the en-

ergy difference between the donor and acceptor states. The corresponding fluctuations are described by

(quantum) random force ξ̂(t) =
∑

j κj(b
†
je

iωjt + bje
−iωjt) with thermally equilibrium autocorrelation func-

tion 〈ξ̂(t)ξ̂(0)〉T = ~
2

2π

∞
∫

0

J(ω)[coth(~ω/2kBT ) cos(ωt) − i sinωt]dω. The medium’s reorganisation energy

λ = ~
∫ ∞

0 dωJ(ω)/(2πω) serves is an integral characteristics of this coupling. Another important medium’s
characteristic is the upper frequency ωc of low-frequency molecular vibrations, or solvent modes coupled
to the electron transfer (ET), i.e. J(ω) = 0 for ω � ωc. For Vtun � λ,

√
kBT~ωc, the transfer kinetics

occurs in the nonadiabatic tunnelling regime described by the quantum master equations of the Pauli type
for the populations of donor and acceptor states (19; 20; 21; 22; 23; 24; 25),

ṗD(t) = −kf pD + kb pA,

ṗA(t) = −kb pA + kf pD , (2)

with the forward, donor-to-acceptor rate given by the quantum Golden Rule expression

kf =
2V 2

tun

~2

∫ ∞

0
dτ exp[−Q′(τ)] cos

[

Q′′(τ) − ετ/~
]

, (3)

where ε = ED−EA is the difference of free energies (or the thermodynamic driving force −∆G in chemical
notations, ε = −∆G). Furthermore, the functions Q′(t) and Q′′(t) in (3) denote the real and imaginary
parts of the doubly-integrated bath autocorrelation function with the reorganisation energy contribution
added,

Q(t) =
1

~2

∫ t

0
dt1

∫ t1

0
〈ξ̂(t2)ξ̂(0)〉T dt2 + iλt/~ . (4)

The backward rate kb satisfies the Boltzmann relation

kb = kf exp(−ε/kBT ) (5)

for any J(ω) (22). This yields equilibrium Boltzmann-Gibbs distribution pD(∞)/pA(∞) = exp(−ε/kBT )
at temperature T , consistently with the condition of detailed balance, pD(∞)kf = pA(∞)kb. It must be
stressed, however, that the existence of the Boltzmann relations for rates like one in Eq. (5) at constant
ε and Vtun does not guarantee, generally, the detailed balance and the Boltzmann-Gibbs equilibrium
distribution when these parameters explicitly fluctuate in time (25), or when a stationary flux is present
(given open, or cyclic boundary conditions even at constant rates). This is true even if the rates follow
adiabatically to the instant values of the energy levels and the tunnelling coupling so that the condition
(5) is valid at any instant of time.

Independently of other details of electron-vibrational coupling, the quantum Golden Rule rate acquires in
the high-temperature limit kBT � ~ωc and the quasi-static approximation of electron energy fluctuations,
〈ξ̂(t)ξ̂(0)〉T ≈ 〈ξ̂2(0)〉T ≈ 2λkBT , the semiclassical Marcus-Levich-Dogonadze form (31; 32)

kf =
2π

~

V 2
tun√

4πλkBT
exp[−(ε− λ)2/(4λkBT )] . (6)

Such a universality explains the widespread use of Eq. (6) in interpretation of experimental data. It involves
(apart from temperature) three parameters only: the free energy difference ε, the electron tunnelling
coupling Vtun and the reorganisation energy λ. When a coupling to high-frequency, essentially quantum
modes is present, the expression (6) can be readily generalised accordingly (33; 34). This presents one of

Page 3 of 14

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

June 7, 2006 10:39 Molecular Simulation e-pumpCORR

4 Chemically driven electron tunnelling pumps

the basic theories of electron transfer in molecular systems (34; 23; 24). Of course, it is not truly universal,
but it does provide a milestone and the simplest theoretical framework of practical relevance.

2.2 Nonequilibrium conformational fluctuations

Furthermore, let us assume that the electron-transferring protein complex (or its corresponding molecular
subunit) can be in either of two conformations depending on binding a ligand, say ATP molecule (cf.
Fig. 1). This assumption is quite in spirit of the Monod-Wyman-Changeux model of allosteric enzymes
(35; 36; 37). These two conformations possess very different Vtun (distance between the donor and acceptor
sites is changed, or some bridging molecular group changes its orientation interrupting, or vice versa,
establishing thereby the electron-tunnelling pathway). These conformations can correspond also to very
different energy differences between the localised electron levels, e.g. the energy of the donor or acceptor
state is changed (ATP and the hydrolysis products, ADP and the phosphate group Pi, are all charged
and the electrostatic effects are of utmost importance here (14)). The attachment/detachment of ligand
is a random process and both ε(t) = ED(t) − EA(t) and Vtun(t) in Eq. (1) become stochastic functions
of time. Alternatively, a strong two-state stochastic electric field can be externally applied to drive the
electron transfer process. This is the starting point of the stochastically driven spin-boson model of Refs.
(15; 16; 17; 18; 25). It must be noted that modelling of the equilibrium conformational fluctuations in such
a way should be considered with a great care (25) (see also below), but the approach suits well to model
non-equilibrium fluctuations like those considered (25). Within the approximations leading to Eqs. (2)-(4),
the quantum rates entering equations (2) become stochastic functionals of Vtun(t) and ε(t). Namely, the

term ετ in Eq. (3) is replaced by
∫ t

t−τ
ε(t′)dt′ and instead of V 2

tun in the front of integral there appears
Vtun(t)Vtun(t− τ) in the integrand (15; 16). However, if ε(t) and Vtun(t) fluctuate sufficiently slow on the
time scale of Q(t), one can use an adiabatic driving approximation resulting in fluctuating rates following
to the instantaneous values of ε(t) and Vtun(t). This approximation is reasonable as a simple starting point
for modelling and it can be justified in many cases. For these reasons, it is used below. The discussed
adiabatic assumption means that after every conformational jump the vibrational relaxation to the new
equilibrium of the vibrational degrees of freedom occurs very fast as compare with the mean duration of
time spent in the corresponding conformation. Otherwise, the adiabatic driving approximation cannot be
justified and the theory becomes essentially more intricate (15; 16; 17; 18).

Furthermore, let us assume that the conformational fluctuations are Markovian and occur with the rates
α and β which do not depend on where the electron is localised, but are controlled by thermodynamically
nonequilibrium concentrations of ATP, ADP, Pi in the solution (i.e. ATP is continuously supplied 1). To
be more concrete, let us assume that the conformational transition “1→ 2” is caused by the ATP binding
to the electron-transferring molecular complex (scheme I). Then, the transition rate α should obviously be
proportional to the ATP concentration, [ATP], in the solution, i.e. α ∝ [ATP], since the binding frequency
is proportional to [ATP]. On the contrary, the rate β of the conformational transition “2→1” caused by
the ATP hydrolysis and the products dissociation should not depend on [ATP], but be rather determined
by the activation barrier between two conformations and the energy released by breaking the phosphate
bond. Such nonequilibrium fluctuations fuelled by this, or another source of chemical energy can drive
electron transfer (ET) uphill. Alternatively, they can be induced by an externally applied stochastic elec-
tric field, similar to the case of ionic pumps (38; 43). It can either be directly coupled to the electron
transfer (16; 17; 18) via the Stark effect (39; 40), or modulate the electron levels indirectly, via the
electroconformational coupling (38). In the case of ionic pumps, this latter possibility has been
realized experimentally (41; 42). It seems feasible, although still not investigated experimen-
tally, for electron-transferring proteins as well. Then, within the discussed approximations, the ET
transfer kinetics is described by the kinetic equations (2) with time-dependent rates undergoing two-state
Markovian fluctuations. Formally, this is a typical problem of dynamical disorder (44; 45; 46; 47). It can

1In the living cells ATP is perpetually synthesised from ADP and Pi by the ATP-syntase membrane complexes fuelled by the
electrochemical proton gradient (3; 5)
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equivalently be described by the four-state Markovian kinetic scheme depicted in Fig. 2 2. Similar schemes
are standard by considering the problem of free energy transduction in biology (51; 52; 53).

k

k

k

β

D2

D1

A2

A1

kf2

f1

b2

b1

α β α

Figure 2. Equivalent kinetic scheme corresponding to electron transfer with quantum tunnelling rates undergoing
two-state Markovian fluctuations. Such ET process can be embedded as four-state composite process with

unfluctuating rates. For example, the composite state D1 corresponds to electron in the donor state D and to ET
complex in the conformation 1. Transitions from this to other composite states A1 and D2 occur either due to the

electron transfer (with rate kf1), or due to the conformational transition (with rate α), correspondingly. Similar
description holds for other composite states yielding Eq. (7).

Let us denote the population of the donor and acceptor states in the conformation i = 1, 2 as pDi and
pAi, correspondingly. They obviously satisfy the master equations,

ṗD1 = −(kf1 + α)pD1 + βpD2 + kb1pA1 ,

ṗD2 = αpD1 − (β + kf2)pD2 + kb2pA2 ,

ṗA1 = kf1pD1 − (α+ kb1)pA1 + βpA2 , (7)

ṗA2 = kf2pD2 + αpA1 − (β + kb2)pA2 .

These equations describe the process at thermodynamical equilibrium if the overall stationary flux is
absent, i.e. clockwise and counterclockwise fluxes are mutually compensated. This requires that the product
of forward rates along the cycle is equal to the product of backward rates, see e.g. in (52; 54; 55; 56).
Otherwise, a nonequilibrium steady state (NESS) emerges with a persistent flux present. In such a case,
one either requires a free energy supply to produce the corresponding stochastic cyclic motion (uphill
motion on an effective free energy landscape), or this energy will be released (in the downhill motion). Let
us consider the situation where the averaged free energy bias ε = ε1p

st
1 + ε2p

st
2 is negative, ε < 0 (pst

1 and
pst
2 are the stationary probabilities of the corresponding conformations). Then the cycling in the clockwise

direction in Fig. 2 is required to pump the electrons against the averaged free energy bias ε < 0 – the
case of our interest here. If NESS corresponds to the counterclockwise total probability flux in Fig. 2, the
roles of donor and acceptor states are interchanged and the conformational fluctuations can be driven by
the energy released in the downhill electron transfer. These conformational fluctuations can in turn be
coupled to an ion flux to produce the uphill ion flow against the corresponding electrochemical gradient.
This is the operating principle of the electron-driven proton pumps (3; 54). The details are, of course,
much more involved (a more complex, extended kinetic scheme is required to describe these processes in a
consistent manner) and still not completely understood. The operating principle is, however, rather clear
due to (nonlinear) nonequilibrium thermodynamics considerations. In the present context, we combine
them with a quantum treatment of the electron transfer kinetics.

2Non-Markovian generalisation of this scheme accounting for complex dynamics with memory within a conformation can be done,
e.g., in the framework of a stochastic trajectories description, cf. Refs. (48; 49; 50; 25)
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6 Chemically driven electron tunnelling pumps

The free energy ∆Gdrive, which is required to drive one cycle on average in the clockwise direction in
Fig. 2 is determined by the well-known condition (52)

∆Gdrive = kBT ln

(

kf2βkb1α

kb2βkf1α

)

(8)

= kBT ln

(

kf2kb1

kb2kf1

)

= ε2 − ε1 = ED2 − ED1.

For the scheme II, ∆Gdrive = EA1 − EA2. In the second line, we took Eq. (5) into account. As discussed
above, this energy can be delivered, e.g., due to the ATP hydrolysis (breaking the energy rich phosphate
bond), or derived from any other free energy source (the proton gradient, for example, via protona-
tion/deprotonation of the molecular pump). Obviously, if only the tunnelling matrix element is modulated
by the conformational transitions, then no pumping is possible and the described scheme agrees with the
thermodynamic equilibrium, since no overall flux is present. We return back to the well-known problem of
dynamical disorder in equilibrium systems and no more. To pump, one has to modulate the difference of
electron energy levels ε in time. With Vtun = const a pumping scenario conditioned on the existence of in-
verted Marcus regime of electron transfer, where the transfer rate decreases with the increase of the energy
bias, is possible. It was described in Ref. (18). In this respect, it is worth to notice that the very existence of
the inverted ET regime presents a profoundly quantum-mechanical feature of nonadiabatic ET. Therefore,
such an electron pump would be essentially quantum-mechanical. However, such a pumping scenario based
on the sole modulation of ε(t) would be rather inefficient and too demanding for the system parameters in
practice. Therefore, it is not likely to be used by nature. On the contrary, a properly concerted modulation
of ε(t) and Vtun(t) can allow to pump highly efficiently. In essence, for this one has to ensure Vtun1 � Vtun2

in Fig. 1 and a proper timing when ET kinetics is gated and locked to conformational fluctuations. Two
possible pumping scenarios are depicted in Fig. 1. In the scheme I, the donor energy level is lifted upon
binding negatively charged ATP molecule(s). Alternatively, one can modulate the acceptor energy level in
time, scheme II in Fig. 1. In the reality, a combination of both possibilities can take place. For example, in
the case of nitrogenase the donor level is lifted by 300 meV and the acceptor level increases simultaneously
by 100 meV, with the total increase of the driving energy bias by 200 meV (14). This compares well with
the energy release from the hydrolysis of one ATP molecule which is about 0.3 − 0.5 eV under the living
cell conditions. This basic pumping mechanism will be detailed and quantified below.

2.3 Solution of the model

How to proceed further is standard and well-known (45). The solution of the master equations (7) with the
initial conditions pj′(0) = 1, where j′ = D1,D2, A1, A2 yields the corresponding conditional probabilities
of the state j, Pjj′(t). We are interested in several quantities, such as (i) the asymptotic population of the
donor state 〈pD(∞)〉; (ii) the time course of the donor state relaxation 〈pD(t)〉, provided that the electron
was initially prepared in the donor state; (iii) the distribution of the first arrival times, ψD(τ), at the
acceptor state and the corresponding mean forward transfer time 〈τf 〉 :=

∫ ∞

0 τψD(τ)dτ =
∫ ∞

0 ΦD(τ)dτ ,
where ΦD(τ) =

∫ ∞

τ
ψD(τ)dτ is the corresponding survival probability. Given the conditional probabilities

Pjj′(t), the contracted probability of states D1 and D2 with the electron being localised initially on the
donor site is

〈pD1(t)〉 = PD1D1(t)p
st
1 + PD1D2(t)p

st
2 (9)

and

〈pD2(t)〉 = PD2D1(t)p
st
1 + PD2D2(t)p

st
2 , (10)

correspondingly. In the above equations, it is tacitly assumed that the donor site has the same affinity to
the transferring excess electron in the both protein conformations and these conformations are met with
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the stationary probabilities pst
1 = β/(α+ β) and pst

2 = α/(α+ β). The former assumption is trivially valid
for the scheme II. However, for the scheme I it might be the case that the electron affinity to D2 state is
much smaller than to D1, i.e. the protein binds the transferring electron with a much higher probability
in the first conformation (when no negatively charged ATP is bound nearby the donor state). In such a
situation (which is not considered here for the sake of simplicity and analytical tractability of the results),
one should put pst

1 → 1 and pst
2 → 0 in Eqs. (9) and (10). In any case, the averaged population of the

donor state is 〈pD(t)〉 = 〈pD1(t)〉 + 〈pD2(t)〉.
The formal solution can be found most conveniently using the Laplace-transform method. After some

lengthy algebra we obtain (assuming equal electron binding affinities of the D1 and D2 states):

〈p̃D(s)〉 =
1

s

Ã(s)

B̃(s)
, (11)

where

Ã(s) = s2 + [ν + pst
2 (k1 + kb2) + pst

1 (k2 + kb1)]s (12)

+pst
2 kb2(k1 + ν) + pst

1 kb1(k2 + ν),

B̃(s) = s2 + (ν + k1 + k2)s+ k1k2 + (pst
1 k1 + pst

2 k2)ν, (13)

and ν = α + β, k1 = kf1 + kb1, k2 = kf2 + kb2. In Eq. (11), 〈p̃D(s)〉 denotes the Laplace trans-
form, 〈p̃D(s)〉 =

∫ ∞

0 exp(−st)〈pD(t)〉dt. The averaged asymptotic population of the donor level follows

as 〈pD(∞)〉 = Ã(0)/B̃(0),

〈pD(∞)〉 =
pst
2 kb2(k1 + ν) + pst

1 kb1(k2 + ν)

k1k2 + (pst
1 k1 + pst

2 k2)ν
. (14)

The averaged relaxation of the donor state population is obtained by the inversion of Eq. (11) to the time
domain. It is bi-exponential and reads

〈pD(t)〉 = 〈pD(∞)〉 + [1 − 〈pD(∞)〉]R(t), (15)

where R(t) =
∑

i=1,2 ci exp(−Γit) is the relaxation function with the rate constants

Γ1,2 =
1

2

[

k1 + k2 + ν ±
√

(k1 + α− k2 − β)2 + 4αβ
]

(16)

and the weighting coefficients

c1,2 =
1

2

[

1 ± k1 + k2 + α+ β − 2c0/a0
√

(k1 + α− k2 − β)2 + 4αβ

]

. (17)

The remaining quantities a0 and c0 in Eq. (17) are

a0 = αkf2(k1 + α) + βkf1(k2 + β) + αβ(kf1 + kf2),

c0 = ν2(αkf2 + βkf1) + αk1kf2(2α+ k1) + βk2kf1(2β + k2) + αβ(k1 + k2)(kf1 + kf2). (18)

The distribution of the first arrival times at the acceptor state ψD(τ) can be immediately obtained from
the survival probability ΦD(τ) which in turn follows from the above relaxation function R(τ) by setting
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8 Chemically driven electron tunnelling pumps

kb1, kb2 → 0, i.e. by assuming that the acceptor state is absorbing. This yields immediately

ΦD(τ) =
∑

i=1,2

ci exp(−Γiτ), (19)

where the rate constants Γi and the coefficients ci reduce to

Γ1,2 =
1

2

[

kf1 + kf2 + ν ±
√

(kf1 + α− kf2 − β)2 + 4αβ
]

, (20)

and

c1,2 =
1

2

[

1 ∓ α+ β + (kf2 − kf1)(β − α)/(α + β)
√

(kf1 + α− kf2 − β)2 + 4αβ

]

, (21)

respectively. These are the same expressions as, e.g., Eqs. (7)-(10) in Ref. (50) obtained there using a
different method. The corresponding mean forward transfer time is

〈τf 〉 =
(α+ β)2 + αkf1 + βkf2

(α+ β)[αkf2 + βkf1 + kf1kf2]
. (22)

All the quantities, we are interested in, are thus formally determined.

2.4 Conditions for pumping

Let us suppose that the ET is characterised by Eq. (6) with the negative bias ε1 < 0 and the tunnelling
matrix element Vtun1 in conformation 1 and the positive bias ε2 > 0 and the tunnelling matrix element
Vtun2 in conformation 2. In addition, one assumes that the reorganisation energy λ is the same in both
conformations. Then for the ratio of the averaged donor and acceptor populations we obtain from Eq.
(14):

〈pD(∞)〉
〈pA(∞)〉 = exp

(

− ε2
kBT

)

1 + ζξ

1 + ζ/ξ
, (23)

where

ζ =
pst
1

pst
2

(ν + k2)F cosh(ε2/2kBT )

ν cosh(ε2/2kBT ) + k2F cosh(ε1/2kBT )
, (24)

F =

(

Vtun1

Vtun2

)2

exp[−(ε21 − ε22)/(4λkBT )] (25)

and ξ = exp[−(ε1−ε2)/(2kBT )]. The pumping is most efficient when 〈pD(∞)〉/〈pA(∞)〉 � 1. This requires
ε2 � kBT and ζξ � 1. Moreover, to have the averaged energy gained by the transferring electrons
maximal, i.e. ε = pst

1 ε1 + pst
2 ε2 ≈ ε1, one has to ensure that pst

2 � pst
1 which contradicts, however, at

the first look to the condition ζ � 1 in Eq. (24). To resolve this contradiction, one requires sufficiently
small values of F � 1 and this in turn demands Vtun1 � Vtun2. How small is small depends on the
system parameters. For example, for nitrogenase ∆ε = ε2 − ε1 ≈ 200 meV (14). Therefore, at the room
temperatures, kBT ≈ 25 meV, ξ ≈ 54.6 is pretty large. Furthermore, let us assume for simplicity that
|ε1| = ε2, so that ζ = (β/α)(ν+k2)F/(ν+k2F ) and F = (Vtun1/Vtun2)

2. Moreover, we assume for a moment
that α = 0.1β, so that the conformation 1 is about ten times more probable than the conformation 2.
Then, to satisfy ζξ � 1 and to have an efficient pumping, Vtun1 should be smaller than Vtun2 by, at
least, two orders of magnitude. In such a case, k2 � k1, and for k1 � ν � k2, one can expect that the
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Table 1. Tunnelling coupling energies (in eV) and the corresponding Mar-

cus rates (in sec−1)

Tunnelling coupling energies kf1 kb1 kf2 kb2

Vtun1 = 5 · 10−6, Vtun2 = 10−4 0.54 29.5 1.18 · 104 216
Vtun1 = 10−6, Vtun2 = 10−4 0.02 1.18 1.18 · 104 216
Vtun1 = 5 · 10−6, Vtun2 = 5 · 10−5 0.54 29.5 2.95 · 103 53.9
Vtun1 = 5 · 10−6, Vtun2 = 2 · 10−5 0.54 29.5 471 8.63

overall transfer will become gated by the conformation fluctuations. Namely, it follows from Eq. (22) that
for kf1 � α � β � kf2, 〈τf 〉 ≈ 1/α (50), i.e. the pumping of electrons is locked to the conformational
transitions caused by the binding of ATP molecules somewhere nearby the electron donor site (scheme I)1,
or vice versa by their hydrolysis and dissociation nearby the acceptor site (in the scheme II).

3 Results and discussion

The outlined mechanism should be very robust. We illustrate it in Figs. 3, 4 for the following realistic test
parameters which partially correspond to nitrogenase (14) and partially are chosen just to demonstrate
the essential effects: λ = 1.2 eV, ε1 = −0.1 eV, ε2 = 0.1 eV; the tunnelling coupling energies are given in
the Table 1 together with the corresponding Marcus rates. Furthermore, the value β = 1000 sec−1 is used
in calculations and the rate α is varying as a control parameter assuming its proportionality to the ATP
concentration [ATP].

0 200 400 600 800 1000
α, sec-1

0

500

1000

1500

1/
〈τ

f
〉

Vtun1=5.10-6 eV,  Vtun2=10-4 eV

Vtun1=10-6 eV,     Vtun2=10-4 eV

Vtun1=5.10-6 eV,  Vtun2=5.10-5 eV

Vtun1=5.10-6 eV,  Vtun2=2.10-5 eV
1/〈τf〉=α

Figure 3. Dependence of the inverse of mean forward transfer time on the rate of conformational transitions α ∝ [ATP] (scheme I is
assumed).

As it is clearly seen in Figs. 3, 4 the pumping effect is indeed present for Vtun2/Vtun1 = 100 (cf. contin-
uous lines which approximately correspond to ET in nitrogenase). Moreover, the mean forward
time is locked to the rate α for α < 200 sec−1, being practically its inverse. Furthermore, the calculation of
the survival probability ΦD(t) shows, e.g. for α = 100 sec−1, ΦD(t) ≈ 0.08 exp(−12790 t)+0.92 exp(−92 t);
α = 200 sec−1, ΦD(t) ≈ 0.14 exp(−12798 t) + 0.86 exp(−184 t), etc., that the transfer is almost single
exponential and 〈τf 〉−1 ≈ α can be regarded as the pumping rate. With the further increase of α, the
transfer kinetics becomes, however, ever more nonexponential with the effective rate 〈τf 〉−1 being larger

1In the case of nitrogenase, where the ATP binding site is located at the distance of about 15 Å from the electron
donor site, the actual electrostatic mechanism is more intricate (14). Namely, binding of ATP molecules causes a
structural rearrangement of the protein complex with the donor metallocluster relocating from the protein surface,
where it is exposed to water (with a large dielectric constant of about εw ≈ 80), into the protein interior (with much
smaller dielectric constant, εp ∼ 3−10). Roughly speaking, the increase of the electron donor energy in the conformation
2 can be related to the extra change of Born solvation energy of the donor metallocluster due to the excess, transferring
electron (i.e. change of the charging energy due to the desolvation of metallocluster).
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10 Chemically driven electron tunnelling pumps

10 100 1000
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0.01
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1
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(∞

)〉/
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(∞

)〉

Vtun1=5.10-6 eV,  Vtun2=10-4 eV

Vtun1=10-6 eV,     Vtun2=10-4 eV

Vtun1=5.10-6 eV,  Vtun2=5.10-5 eV

Vtun1=5.10-6 eV,  Vtun2=2.10-5 eV

Figure 4. Dependence of the ratio of donor and acceptor populations on the rate of conformational transitions α ∝ [ATP].

than α, cf. Fig. 3. Here, the conformational transitions cease gradually to be the rate-limiting step and the
tunnelling time 1/kf2 becomes ever more important for the overall kinetics. However, this regime presents
lesser interest in the present context since ε = 0 for α = β and the pumping effect then vanishes.

Furthermore, let us to keep Vtun2 the same, but to increase Vtun1 such that the ratio Vtun2/Vtun1 becomes
much smaller, Vtun2/Vtun1 = 20 (fat dotted lines in Figs. 3, 4). This does not affect 〈τf 〉 in Fig. 3, but
changes dramatically the ratio of populations in Fig. 4. The pumping effect is present for sufficiently
large rates α (cf. negative values of 〈pD(∞)〉/〈pA(∞)〉 in Fig. 4). The pumping efficiency drops, however,
essentially. Moreover, the critical values of the rate αc and the associated ATP concentration [ATPc]
emerge. The overall transfer occurs in the “donor→acceptor” direction if only α > αc. On the other hand,
one must keep α < β. Otherwise, the transferred electrons will start to lose in energy on average. Clearly,
such a pump would not function perfectly. To realize a good electronic pump, the ratio Vtun2/Vtun1 must
be large.

The inversion of the transfer direction depending on the rate of “1 → 2” conformational transition,
cf. Fig. 4 at several combinations of the tunnelling couplings, is rather intriguing. Namely, for sufficiently
small α the roles of the donor and acceptor states are interchanged. Here, the effective rate of the backward
“acceptor→donor” ET, defined as the inverse of the corresponding mean first passage time 〈τb〉, can be
used to quantify the rate of transfer in this direction (assuming 〈pD(∞)〉/〈pA(∞)〉 � 1). 〈τb〉 can be
obtained from Eq. (22) by setting there kf1 → kb1, kf2 → kb2. This quantity is depicted in Fig. 5. It is

0 200 400 600 800 1000
α, sec-1

0

50

100

150

1/
〈τ

b
 〉

Vtun1=5.10-6 eV,  Vtun2=10-4 eV

Vtun1=10-6 eV,     Vtun2=10-4 eV

Vtun1=5.10-6 eV,  Vtun2=5.10-5 eV

Vtun1=5.10-6 eV,  Vtun2=2.10-5 eV

Figure 5. Dependence of the inverse of mean backward transfer time on the rate of conformational transitions α.

clearly seen in Fig. 5 that the effective backward rate is not gated by the conformational fluctuations for
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the used sets of parameters. Nevertheless, it can strongly depend on α, being almost linearly proportional
to α at small α (see the continuous line in Fig. 5). It might thus resemble a gating regime.

One more interesting feature is that with the decrease of Vtun2 the effective transfer rate becomes smaller
than α, with the tunnelling providing the rate-limiting step when α increases (see dashed line in Fig. 3).

3.1 Pumping efficiency

The maximal pumping efficiency can be defined as the averaged energy gained by the transferred electron
relative to the energy required to drive one transfer cycle, i.e. η = |ε|/∆Gdrive, or

η =
pst
1 |ε1| − pst

2 ε2
ε2 + |ε1|

. (26)

For the above parameters (corresponding to the continuous lines in Figs. 3, 4 and α ∼ 100), the maximal
pumping efficiency is rather high approaching η = 0.51. It can be even higher approaching one, if the
affinity of the donor state D1 to electrons is much larger than the affinity of the state D2 (scheme I), i.e.
the protein complex takes preferably electrons from the bulk in the conformation I (the formal solution of
the model has to be modified in this case, but the qualitative features remain).

4 Conclusions

The considered generic model might seem somewhat oversimplified. It is indeed aimed primarily to highlight
the basic working principles and their practical relevance. This model should be extended and generalised
further in several directions, e.g. a correlated two-electron transfer should probably be considered in ni-
trogenase as an elementary step rather than single-electron transfer and a proper treatment of the ATP
binding, hydrolysis and dissociation of the hydrolysis products would require to introduce more conforma-
tions than two. Moreover, the external uptake and release of electrons from and to the donor and acceptor
sites, e.g., from mobile electron carriers should be incorporated in the complete model. Nevertheless, the
considered elementary model does allow to manifest the main operating principles which are not much
different from those well established and clearly understood, both phenomenologically and in progressing
details, for ionic pumps (3; 4; 36). Moreover, it allows one to clarify some important conditions for the
efficient pumping such as a large ratio of the tunnelling couplings in the different conformations and a pos-
sible existence of the critical ATP concentrations. The profound physical difference between the ionic and
electronic pumps is, however, that the electron is essentially a quantum particle and it tunnels over a large
distance between metalloclusters in nitrogenase (also in other electron transfer complexes, like cytochrome
bc1) using virtually protein bridging states. This is why the details here are definitely very different from
ionic pumps. They do matter and are important to arrive in a future at the detailed (quantum)-mechanistic,
molecular-dynamic understanding which still is lacking at present. Unlike to the many-years, extensive re-
search on ionic pumps we undertake here really the first steps. The research domain of electron transfer
driven by a chemical energy source through nonequilibrium conformational fluctuations is just emerging.
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