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Mixing of nanofluids: Molecular dynamics simulations

and modelling

J.S. HANSEN† and A. LEMARCHAND†

† Université Pierre et Marie Curie,
Laboratoire de Physique Théorique de la Matière Condensée

C.N.R.S. U.M.R. 7600, 4, place Jussieu, 75252 Paris Cedex 05, France 1

In this paper we study a mixing scheme, which has recently been proposed for microfluids,
on the nanoscale. We do this by performing a series of nonequilibrium molecular dynam-
ics simulations. On the nanoscale the chaotic mixing regime is captured. We discover a
new phenomenon where the two mixing fluids exchange positions after leaving the mix-
ing intersection. The results from the molecular dynamics simulations also reveal complex
spatio-temporal stream velocity profiles generated by the mixing device. We find that these
profiles can be modelled through an approximate analytical solution to the Navier-Stokes
equation.

Keywords: Nanofluidics; Micromixing; Nonequilibrium molecular dynamics; Navier-Stokes
equation;
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1 Introduction

In recent years a lot of attention has been paid to Micro-Electro-Mechanical Systems (MEMS)
such as embedded biofluidic chips and miniaturised chemical reaction tanks [1, 2, 3, 4].
In order for these devices to operate properly many issues still need to be addressed. In
particular, it is not trivial to transport fluids around inside the devices. Also, reactive fluids
must be brought together and mixed. This mixing could be achieved by simple diffusion, but
in many practical situations the diffusion process is too slow [1] and it is therefore desirable
to design a potent mixing device. Many groups have been concerned with fluid mixing.
Today most of the fabricated and studied devices are, however, not applicable on very small
scales since they are made of components with relatively large sizes.

A micromixing device has been developed by Lee et al. [6]. The device works by letting
the two fluids, A and B, flow side-by-side in a main microtube. The fluids are brought
into a mixing intersection, where they are perturbed by two oscillatory side flows generated
by actuation channels. The two side flows are also A and B fluids. After being perturbed
in the mixing intersection the two fluids are transported further downstream in the main
channel and from there into the other component in the micro-electro-mechanical system.
For certain operational conditions the mixer is able to perform a so-called chaotic mixing,
which means that the mixing imposes an exponential growth of the interface between the
two fluids. The device also exhibits a remarkable spatio-temporal resonance phenomenon:
The fluid interface is highly disturbed in the mixing intersection area, but after the two fluids
leave the intersection they separate again. A simple model accounts for these phenomena
that are well understood at a macroscopic scale [7, 8], i.e. using deterministic equations
for macroscopic quantities like stream velocity. However, many questions still remain. For
example is the stream velocity of the fluid in the direction of the mean flow considered to
follow a parabolic expression. This is characteristic for a steady Poiseuille flow. Surely, this
cannot be strictly true since the oscillatory mixing acts in the normal direction of the fluid
flow. This is also pointed out in reference [7]. Moreover, while this device operates on a
microscale it is uncertain whether it can be applied on even smaller scales, e.g. the nanoscale.

The purpose of this paper is two-fold: First, we wish to investigate, through nonequilib-
rium molecular dynamics simulations (NEMD), whether the mixing device proposed by Lee
et al. can be applied on the nanoscale and if the spatio-temporal features can be observed
on this scale. Secondly, we will use the results obtained in the simulations to suggest an
analytical model describing the stream velocity in larger detail than earlier. To accomplish
this, the paper is organised as follows: In section 2 we describe how the molecular dynamics
simulations are performed and what quantities we extract from the simulations. In section
3 we will present the results. Section 4 is devoted to elucidate the model of fluid dynamics
and in section 5 we summarise the results and suggest further work.
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2 Molecular dynamics

A schematic diagram of the simulated system is given in figure 1. The system is composed
of three different compounds A-fluid, B-fluid and wall atoms. The wall atoms are initially
arranged on a face centred cubic lattice (fcc lattice) such that the geometry illustrated in
figure 1 is obtained. The atoms are kept in place around their initial (or equilibrium) position
through a restoring spring force F(ri) = −k(req − ri) where k = 150.15m2σ2/ε is the spring
constant, ri = (xi, yi, zi) is the position of atom i and req is the equilibrium position. We
will explain the units below. The wall atoms and the fluid particles interact through the cut
and shifted Lennard-Jones potential:

V (rij) =







4ε
[

(

σ
rij

)12
−

(

σ
rij

)6
]

− V (rc) if rij ≤ rc

0 otherwise
(1)

where σ and ε define a length scale and interaction strength, respectively, rij is the distance
between particle i and j, and rc is the cutoff radius [9, 10]. The wall atoms interact with the
fluid particles and the neighbouring wall atoms through equation 1 for rc = 2.5σ whereas
rc = 21/6σ for the fluid-fluid interaction. The latter potential is also known as the Weeks-
Chandler-Anderson (WCA) potential [10]. The fluid-fluid interaction is therefore purely
repulsive, whereas the fluid-wall interaction has also a distance of attraction. In this way we
include a ”wetting” effect between the wall atoms and the fluid particles thereby reducing
the adhesive slip at the wall-fluid boundary [11]. It is worth noting that A-B interactions is
the same as B-B and A-A interactions.

When the simulation begins we apply an external gravitational-like force to the fluid
particles if they are located in the gravitational pressure area shown in figure 1. The force
only acts in the x-direction. In order to simulate the oscillatory side flow generated by the
mixing device we apply an oscillatory force to the fluid particles when they are located in one
of the oscillatory pressure areas. This force acts in the y-direction. Formally, the equation
of motion of fluid particle i is:

dri

dt
=

pi

mi
(2)

dpi

dt
= Fij + iFg + jFo, (3)

where pi is the momentum vector, mi the mass, Fij = −gradV (rij), i and j are the usual
unit vectors in R3. Fg and Fo are the applied gravitational force and oscillatory force, that
are respectively given by:

Fg = fgΘ(10 − xi) (4)

Fo = A sin(ωt) [Θ(10 − yi) + Θ(yi − Ly − 10)] , (5)

where Θ is the Heaviside step function, Ly is the length of the system in the y-direction
and ω is the angular frequency of the mixing device. In all the simulations we will use
A = 0.25m2σ3/ε and fg = 0.1m2σ3/ε.
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We apply periodic boundary conditions in all directions. The fluid labels are changed in
the gravitational pressure area such that if yi < Ly/2 the label is set to A, otherwise it is
set to B. If a fluid particle crosses the upper y-boundary (in the upper oscillatory pressure
area) it is moved to the lower oscillatory pressure area and labeled A. On the other hand, if
the particle crosses the lower y-boundary it placed in the upper oscillatory pressure area and
labeled B. In all simulations the wall density is set to 0.85 σ−3 and the fluid density is 0.75
σ−3. The fluid particles are integrated forward in time using the leap-frog integration scheme
[15]. The wall atoms are thermostated using a Nose-Hoover thermostat such that the wall
temperature is 0.722 ε/kB on average, where kB is the Boltzmann constant [15, 16]. The heat
generated in the system due to the applied external forces is in this way removed by heat

conduction at the wall-fluid boundaries. Both schemes use a time step of h = 0.005σ
√

m/ε.
At every time step the velocity vectors of the wall atoms are translated such that the average
momentum of the wall is zero. Any physical parameter can be expressed in appropriate units
of ε, σ and mass m. Examples, such as force and time are given above. We will here omit
writing the parameters explicitly [15] for the remainder of the paper noting that all particles
and atoms have the same mass, m. The method employed here is known as inhomogeneous
NEMD and is described in many papers, see for example [13, 12, 14] and references therein.

As mentioned in the introduction our focus is to study the mixing properties of the device
on the nanoscale as well as the stream velocity profiles it generates. To this end, we define
the local density of A particles, as [9, 12]:

ρA(r, t) = m
∑

i

δ(r− ri(t)), (6)

where δ is the Dirac delta function, and i runs over all A particles. The local stream velocity
of the fluid, u = (u, v, w), is defined likewise:

u(r, t) =
m

ρ(r, t)

N
∑

i

viδ(r − ri(t)). (7)

Here the index runs over all fluid particles in the system, vi is the velocity vector of fluid
particle i, and ρ is the local density of the fluid. To increase the signal-to-noise ratio we
will present the results as an average over a time interval ∆t = t2 − t1 and in a volume
V = ∆x∆yLz, where Lz is the length of the system in the z-direction. The average local
density can then be expressed as:

ρA =
1

∆tV

∫

∆t

∫

V
ρA(r, t)dtdr. (8)

Similarly, we can define the average stream velocity u = (u, v, w). The time interval is always
∆t = π/4ω such that each mixing cycle is divided into eight equally spaced intervals. The
volume element has dimensions: V = 0.5 × 0.5 × Lz. In practice the Dirac delta function
is replaced by a step function which evaluates to one if fluid particle i is located in a given
volume and zero otherwise. This reduces the sampling to a simple histogram method.
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3 Results

Figure 2 depicts snapshots of ρA when the mixing device is switched off, figure 2 a), and
for two different angular mixing frequencies, figures 2 b) and c). These snapshots resemble
the figures given in reference [8]. It has been described earlier that the choatic mixing is
characterised by a violent “folding and pushing” dynamics [7, 8]. This is clearly recaptured
in figure 2 c). Recall that the exponential growth in the fluid interface defines the chaotic
mixing regime. In order to investigate whether this is also observed at the microscopic scale
we proceed the following way: In different slabs downstream from the mixing device we
calculate the average number, NAB, of B particles located in the first solvation shell of the
A particles. We do this through the radial distribution function, gAB(r) [9]:

NAB = 4πρ
∫ r′

0
r2gAB(r)dr (9)

where r′ is the radius of the solvation shell (r′ ≈ 1.65). In the case of chaotic mixing we will
expect that the number of B particles surrounding an A particle is exponentially increasing
in time. Since the fluid flows with a steady velocity NAB also increases exponentially as
the fluid is transported downstream from the mixing device, i.e. NAB ∝ eλx where λ is
the greatest Lyapunov exponent. In the situation of simple diffusion a sphere consisting
of A particles has the surface area 4πr2. According to Einstein relation the mean square
displacement of a particle is a linear function of time, which in turn means that the surface
area of the sphere is increasing linearly in time, that is, in this case linearly with respect
to x. Assuming that the number of B’s in contact with this surface is proportional to the
surface area the number NAB is proportional to x. Surely, this is a heurestic argument that,
for example, assumes that no B’s penetrates the sphere and that the densities are uniform.
Nevertheless, it will give an estimate of when the device is operating in the chaotic regime.
Figure 3 shows ln(N ∗

AB) as a function of x in the case where ω = 0.053, where we suspect the
regime to be chaotic. Here N ∗

AB = NAB(x)/NAB(x = 56) where NAB(x = 56) is the number
of B particles in the first solvation shell just after the mixing. The best fits to the data are
also shown. It is seen that N ∗

AB as a function of x consist of two regions of different growth.
Just after the mixing intersection where 56 < x < 95 the exponential behaviour is well
captured, however, further downstream the functional behaviour is less clear. Superimposed
in the figure is a plot of ln(N ∗

AB) as function of ln(x) when the mixing device is switched
off. The best fit to the data yields a slope 0.75, i.e. the NAB is not perfectly linear with
respect to x as discussed above. It should also be noted that an exponential fit of N ∗

AB when
the mixing device is switched off gives a very poor agreement with data. We conclude that
mixing can be considered as chaotic for ω = 0.053.

Obtaining ρA we can evaluate the distribution function, pA, that gives the probability
of finding a particle A at position y, i.e. pA = ρA(y)/

∫∞
−∞ ρA(y)dy at some point x in the

main channel. In figure 4 we present pA at the end of the main channel for the same three
parameter sets as in figure 2. When the mixing device is switched off we observe that the
probability distribution is skewed right, indicating a poor mixing. The fact that there exists a
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mixing is simply due to the diffusion of A fluid into the region of high concentration of B fluid.
The fluid structure at the fluid-wall boundary is to be expected, see for example [17]. For
ω = 0.074 the distribution is close to uniform in the interior of the main channel, indicating
an almost perfect mixing. For lower values of the angular mixing (the chaotic regime) we
see a phenomenon which to our knowledge has not been described before. The probability
distribution is skewed left, meaning that fluid A and B have exchanged or swapped location.
This is also indicated in figure 2 c).

The mixing scheme features resonance conditions where the two fluids are mixed at the
intersection but leave it unmixed [8]. This condition is fulfilled if the time it takes the fluid
to travel through the mixing intersection is an integer number times the mixing period, i.e.
n2π/ω. The average flow velocity through the main channel is measured to be 0.245. The
mixing frequency has only negligible effect on this velocity. The mixing channel is l = 25
(see figure 1), so the mean time it takes the fluid particles to cross the mixing intersection is
t ≈ 102. This in turn means that the resonance condition is fulfilled for ω = 0.123, 0.062 and
0.031. In order to see whether the resonance phenomenon can be captured on nanoscales we
quantify the symmetry of pA(y) by defining the second and third central moments by:

µn =
∫ ∞

−∞
(y − µ)npA(y)dy n = 2, 3, (10)

where µ =
∫ ∞
−∞ pA(y)ydy. Instead of the third central moment one usually applies the

skewness γ1 = µ3/µ
3/2
2 . As mentioned earlier, if the distribution is uniform we have perfect

mixing meaning that γ1 = 0. In the case where the mixing device is switched off the
probability distribution will have a skewness γd

1 = 0.723 ± 0.035 due to diffusion. We now
define the mixing efficiency, ε, taking the diffusional mixing into account, as well as assuming
that γd

1 is always nonzero:

ε = 1 −

∣

∣

∣

∣

∣

γ1

γd
1

∣

∣

∣

∣

∣

(11)

Since |γd
1 | ≥ |γ1|, the mixing efficiency obeys 0 ≤ ε ≤ 1, where low values indicate poor

mixing and high values indicate good mixing. Starting from the poor mixing region at
large angular frequencies and decreasing ω, we observe in figure 5 that the mixing efficiency
increases and nearly reaches 0.7 in the regime of ω that we earlier argued was the chaotic
region in agreement with earlier reports. As ω decreases further the efficiency drops because
a phenomenon of fluid swapping: The two fluids exchange locations and the mixing becomes
poor again. In the range 0.046 ≤ ω < 0.0246 the efficiency once again increases. Surely, it
would be very interesting to see whether this oscillatory behavior continues, however, as the
frequency decreases the computationational effort increases considerably in order to obtain
acceptable signal-to-noise ratios. The three angular frequencies, ω = 0.123, 0.062, 0.031, that
fulfil the resonance conditions, are illustrated in figure 5 as dotted lines. When the mixing
device operates at the resonance conditions the mixing efficiency, ε, should be relative small,
since the two fluids are not mixed. Whereas the nonmonotonic behavior of ε versus ω is
well reproduced by the MD simulations, a quantitative agreement with the macrosopcic
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prediction for the resonant frequencies is not observed. One explanation for this can be
that the resonance condition is only fulfilled for the average flow. On smale small scales
microscopic fluctuations may disturb the average flow velocity considerably such that the
condition is not fulfilled locally.

We now turn to study the stream velocity in the system. In previous studies the velocity
profile in the x-direction in the main channel has been regarded as a simple parabolic function
of y. This resembles a steady Poiseuille flow and as mentioned in the introduction this
cannot be strictly true. This can be seen in figure 6 were we show three velocity profiles just
downstream from the mixing intersection. It is seen that the stream velocity is not steady, but
features spatio-temporal oscillatory dynamics. The fact that the stream velocity becomes
negative is more pronounced for relatively small mixing frequencies. As we move further
downstream the amplitude of the oscillations decreases and the stream velocity eventually
becomes steady. The oscillations are naturally due to the perturbing side flow which acts
normally to the fluid flow in the main channel. The results of the perturbations can be seen
in figure 7 where the average stream velocity in the y-direction is plotted as a function of
time for three different places in the main channel. It can be seen that, as the oscillatory
flow generated in the mixing intersection is transported downstream by the gravitational
pressure head, the amplitude decreases. We observe that the amplitude decreases linearly
with x within the statistical error. Averaging over the y and z components, we may write
the stream velocity in the y-direction as:

v(x, t) = A(x) sin(ωt) (12)

where A(x) is a decreasing linear function, i.e. A(x) → 0 as the fluid moves downstream.
Notice, that this function is closely linked to A in equation (5), but is of course not equivalent.
It could now be tempting to propose a simple empirical model for u(y, t) by letting a Poiseuille
flow be perturbed by sinusoidal terms in y and t, e.g. at some given point x0 in the main
channel:

u(y, t) = φ(y) + A(x0) sin(ωt) sin(2πy) (13)

=
g

2ν

[

1

4
−

(

y −
1

2

)2
]

+ A(x0) sin(ωt) sin(2πy) (14)

where 0 ≤ y ≤ 1, g is the pressure gradient, ν is the kinematic viscosity, and φ(y) is the
parabolic expression for a Poiseuille flow. However, this equation fits very poorly with the
data obtained in the molecular dynamics simulation.

4 The stream velocity

We therefore take onset in the fundamental continuity equations describing the fluid mo-
mentum [9]:

ρ
Du

Dt
= ρFe −∇ · P (15)
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where D/Dt = ∂/∂t + u · ∇ is the usual Stokes’ operator, Fe is the external force per unit
mass and P is the pressure tensor. If we ignore compressibility and apply Newtons law of
viscosity the last term on the right-hand side is simply given by ∇ · P = −η∇2u, where
η is the shear viscosity. It is worth noting that Newton’s law of viscosity is not valid for
systems where the channel width is very small, i.e. smaller than 6-7 molecular diameters
[12, 18]. In this case the shear viscocity varies considerably in the system and Newton’s law
breaks down: The shear viscocity may exhibiting singularities and even become negative
[19]. In our case, however, the main channel width is around 25 molecular diameters which
is sufficiently large to ignore this effect. If we furthermore ignore the z-component in the
stream velocity we are led to the corresponding Navier-Stokes equation [20]:

∂u

∂t
+ u · ∇u = Fe + ν∇2u (16)

where u = (u, v) and ν = η/ρ is the kinematic viscosity. As discussed in the previous section,
if we are sufficiently far downstream the stream velocity is given by a Poiseuille flow, i.e. for
A(x) → 0, we can write u(x, y, t) ≈ φ(y). As a first approach, we will therefore approximate
the strain rate, that is ∂u/∂y, as:

∂u

∂y
≈ −

g

ν

(

y −
1

2

)

for A(x) → 0. (17)

Introducing equations (12) and (17) into equation (16) and setting Fe = (g/ρ, 0) we have
decoupled the two differential equations and obtain for u:

∂u

∂t
−

A(x)g

ν
sin(ωt)

(

y −
1

2

)

=
g

ρ
+ ν

∂2u

∂y2
, (18)

such that the inertia term is an algebraic equation. This nonhomogeneous parabolic differ-
ential equation is mathematical traceable if we specify the boundary and initial conditions,
i.e. we write the complete problem as:

∂u

∂t
= ν

∂2u

∂y
+ f(y, t), (19)

where

f(y, t) =
g

ρ
+

A(x)g

ν
sin(ωt)

(

y −
1

2

)

(20)

with boundary and initial conditions:

u(0, t) = 0 , u(1, t) = 0 , u(y, 0) = φ(y) . (21)

Note that (i) we assume non-slip conditions, (ii) start with a Poiseuillian velocity profile and
(iii) the dependence on x is implicit given by A(x). Moreover, it is worth noting that the
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model is only valid for small values of A(x). The solution to the problem in equations (19)
- (21) is given by the series [21]:

u(y, t) =
∞
∑

n=1

Tn(t) sin(nπy) , (22)

at a given x and where Tn(t) is a function that satisfies a more simple initial value problem.
In appendix A we give a detailed mathematical treatment and simply state the solution here:

u(y, t) = 4g
∑

n=1,3,...

1 + (ρ − 1)e−(nπ)2νt

(nπ)3ρν
sin(nπy) +

2A(x)g
∑

n=2,4,...

(nπ)2ν sin(ωt) − ω cos(ωt) − ωe−(nπ)2νt

nπν(ω2 + (nπ)2ν)
sin(nπy) (23)

As it can be seen is the solution divided into two contributions: The odd term contribution
recaptures the Poiseuille flow for t → ∞, which can be seen by letting A(x) = 0. The
even term contribution features the perturbations normal to the y-direction. As explained
in section 2, equations (7) and (8), the stream velocity profiles obtained from the molecular
dynamics simulations are?averages over a given time interval ∆t and volume V . If we neglect
the variation of the stream velocity with V and only consider the asymptotic situation, i.e.
t → ∞, we write the average of equation (23) as:

u(y) =
4g

∆t

∫ t2

t1





∑

n=1,3,...

sin(nπy)

(nπ)3ρν
+

A(x)

2

∑

n=2,4,...

(nπ)2ν sin(ωt) − ω cos(ωt)

nπν(ω2 + (nπ)2ν)
sin(nπy)



 dt

= φ(y) −
2gA(x)

∆t





∑

n=2,4,...

sin(nπy) ((nπ)2ν cos(ωt) + ω sin(ωt))

nπνω((nπ)2ν + ω2)





t2

t1

(24)

In figure 8 a) we have plotted two velocity profiles obtained from the molecular dynam-
ics simulation together with fits to equation (24) where n ≤ 10. These profiles have been
obtained just after the mixing intersection. Figure 8 b) shows the same but further down-
stream. We see that the analytical expression is in excellent agreement with the simulations.
However, the amplitude A(x) is about a factor three too large compared with the figure 7.
Furthermore, it can be seen that the velocity profiles exhibits small modulations. One might
argue that this is a drawback of the truncation. It is very interesting to note, however, that
these modulations are also observed in NEMD simulations of Couette and Poiseuille flows for
small channel widths [18, 12]. It would be necessary to make very long molecular dynamics
simulations in order to increase the signal-to-noise ratio and to determine if the modulations
are also present at the nanoscale.

5 Conclusion

In this paper we have investigated the properties of a mixing device, recently suggested
by Lee et al. for microfluidics, on a nanoscale. It was shown that the chaotic regime can
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be reached on the nanoscale. The nonmonotonic behavior of the mixing efficiency versus
the frequency of the oscillatory side flows is well reproduced by the molecular dynamics
simulations. However the frequencies associated with the minima of the mixing efficiency do
not quantitatively agree with the macroscopic prediction for the resonant frequencies. We
suggest that this is due to the local fluctuations which are relatively large on very small
scales. In the chaotic regime we observed that the two fluids exchange location in the main
channel. This has to our knowledge not been reported earlier. The molecular dynamics
simulations also provided very detailed information about the stream velocity. Using these
results we proposed an approximate analytical solution to the Navier-Stokes equation. The
model is only valid for small oscillatory pressure gradients generated in the mixing device
and gives a good agreement with the simulation results.

In this work we have considered simple miscible nonreactive fluids. In real applications
the two fluids may react and the fluid may consist of complex molecules such as polymers
or charged compounds. The molecular dynamics technique can also be applied in these
difficult cases. However, it must be noted that the phenomena one can investigate is within
the limitations of the computational power at the present day.

A Solving the nonhomogeneous parabolic equation

In section 4 we set out to solve the nonhomogeneous parabolic differential equation:

∂u

∂t
= ν

∂2u

∂y
+ f(y, t) , (25)

where

f(y, t) =
g

ρ
+

A(x)g

ν
sin(ωt)

(

y −
1

2

)

(26)

subjected to the boundary and initial conditions:

u(0, t) = 0 , u(1, t) = 0 and u(y, 0) = φ(y) (27)

The solution to this problem is given by the series:

u(y, t) =
∞
∑

n=1

Tn(t) sin(nπy) (28)

The temporal factor Tn(t) can be found through the initial value problem [21]:

dTn(t)

dt
+ ν(nπ)2T = fn(t) and (29)

Tn(0) = 2
∫ 1

0
φ(y) sin(nyπ)dy , (30)

where

fn(t) = 2
∫ 1

0
f(y, t) sin(nyπ)dy (31)
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For n odd:

fn(t) =
2A(x)g

ν
sin(nωt)

∫ 1

0

(

y −
1

2

)

sin(nπy)dy +
2g

ρ

∫ 1

0
sin(nπy)dy (32)

=
4g

nρπ
(33)

Tn(t) is then found by solving:

dTn(t)

dt
+ (nπ)2νT =

4g

nρπ
and (34)

Tn(0) = 2
∫ 1

0
φ(y) sin(nyπ)dy =

4g

(nπ)3ν
(35)

This ordinary differential equation can be solved by standard methods [22] and the solution
is:

Tn(t) = 4g

[

1 + (ρ − 1)e−(nπ)2νt

n3νπρ

]

(n odd) (36)

For n even:

As in equation (32) we find for even n:

fn(t) = −
2A(x)g sin(ωt)

nπν
(37)

such that we obtain the following initial value problem:

dTn(t)

dt
+ (nπ)2νT = −

2A(x)g sin(ωt)

nπν
and (38)

Tn(0) = 2
∫ 1

0
φ(y) sin(nyπ)dy =

4g

(nπ)3ν
(39)

The solution to this problem is given by:

Tn(t) =
2A(x)g[(nπ)2ν sin(ωt) − w cos(ωt) − ωe−(nπ)2νt]

nπν(ω2(nπ)2ν)
(n even) (40)

Substituting equations (40) and (36) into equation (28) we obtain the solution given in
equation (23) in section 4.
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Figure captions

Figure 1: Schematic illustration of the system in the x − y plane. The system dimension
is in all simulations: Lx × Ly × Lz = 132.0σ × 58.1σ × 8.4σ. The main channel and
mixing channel have a width of l = 25σ.

Figure 2: Snapshots of the averaged density for A particles, ρA. Bright regions correspond
to high concentration of A. a) is when the mixing device is switched off, b) is for
ω = 0.074 and c) is for ω = 0.053.

Figure 3: ln(N∗
AB) as a function of x for ω = 0.053. Lines are the best fits to the data.

Superimposed figure shows ln(N ∗
AB) as a function of ln(x) when the mixing device is

switched off. The slope is 0.75.

Figure 4: Probabilty functions of fluid A far downstream. Full line: the mixing device is
switched off. Dashed line: ω = 0.074 and dotted line is for ω = 0.053. The probability
functions are averaged over time and in the interval 95 < x < 105.

Figure 5: Mixing efficiency for different mixing frequencies. The dotted lines indicate the
three frequencies where the resonance condition is fulfilled. The lines are a guide to
the eye.

Figure 6: Velocity profiles for three different times just downstream from the mixing inter-
section and for ω = 0.053.. The lines are a guide to the eye.

Figure 7: Averaged stream velocities, v, in the y-direction in the main channel and for
different values of x as a function of time for ω = 0.053. The lines are a guide to the
eye.

Figure 8: Stream velocity profiles obtained from the molecular dynamics (dots connected
by broken lines which are a guide to the eye) and from equation (24) (full lines). n ≤ 10
and ω = 0.053. The parameters values for equation (24) are: ν = 1.85, g = 0.87, ρ =
0.75. In a) A = 0.1 and in b) A = 0.03.
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Figure 1: Schematic illustration of the system in the x − y plane. The system dimension is
in all simulations: Lx × Ly × Lz = 132.0σ × 58.1σ × 8.4σ. The main channel and mixing
channel have a width of l = 25σ.

15

Page 15 of 22

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
a)

b)

c)

Figure 2: Snapshots of the averaged density for A particles, ρA. Bright regions correspond
to high concentration of A. a) is when the mixing device is switched off, b) is for ω = 0.074
and c) is for ω = 0.053.
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Figure 3: ln(N∗
AB) as a function of x for ω = 0.053. Lines are the best fits to the data.

Superimposed figure shows ln(N ∗
AB) as a function of ln(x) when the mixing device is switched

off. The slope is 0.75.
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Figure 4: Probabilty functions of fluid A far downstream. Full line: the mixing device is
switched off. Dashed line: ω = 0.074 and dotted line is for ω = 0.053. The probability
functions are averaged over time and in the interval 95 < x < 105.
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Figure 5: Mixing efficiency for different mixing frequencies. The dotted lines indicate the
three frequencies where the resonance condition is fulfilled. The lines are a guide to the eye.
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Figure 6: Velocity profiles for three different times just downstream from the mixing inter-
section and for ω = 0.053.. The lines are a guide to the eye.
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Figure 7: Averaged stream velocities, v, in the y-direction in the main channel and for
different values of x as a function of time for ω = 0.053. The lines are a guide to the eye.
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Figure 8: Stream velocity profiles obtained from the molecular dynamics (dots connected by
broken lines which are a guide to the eye) and from equation (24) (full lines). n ≤ 10 and
ω = 0.053. The parameters values for equation (24) are: ν = 1.85, g = 0.87, ρ = 0.75. In a)
A = 0.1 and in b) A = 0.03.
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