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Some Physical Properties of the Weeks-Chandler-Andersen Fluid
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Molecular Dynamics simulations have been carried out of some properties of a Weeks-Chandler-Andersen (WCA) system in its fluid phase. Data for the potential energy components, mean square force, infinite frequency elastic moduli and Poissons ratio are presented as a function of density and temperature. The scaling behaviour of these quantities using reduced variables, such as an effective hard sphere diameter, σ HS , was investigated. The infinite frequency Poisson's ratio, ν ∞ , was found to increase with packing fraction and temperature towards the incompressible fluid limit value of 1/3. Some success was achieved in scaling the mean square force, by the value of the force squared evaluated at σ HS .

The Weeks-Chandler-Anderson (WCA) potential is a popular pair potential,

φ(r) =        4 (( σ r ) 12 -( σ r ) 6 ) + , r ≤ 2 1/6 σ 0 r > 2 1/6 σ . ( 1 
)
This potential is the Lennard-Jones (LJ) potential, shifted upwards by and truncated at the LJ potential minimum of 2 1/6 σ. Although the total potential is repulsive, it is composed of repulsive r -12 ('r') and attractive r -6 ('a') components. It was originally devised as a reference fluid in a perturbation treatment for the LJ fluid [START_REF] Weeks | Role of repulsive forces in determining the equilibrium structure of simple liquids[END_REF][START_REF] Tang | Role of the Barker-Henderson diameter in thermodynamics[END_REF]. The Lennard-Jones pair potential is decomposed into two parts, one entirely repulsive (the WCA potential) and the other entirely attractive. The WCA fluid has been examined in various dimensions [START_REF] Bishop | Equation of state of hard and Weeks-Chandler-Andersen hyperspheres in four and five dimensions[END_REF][START_REF] Mulero | Application of hard sphere equations of state to the Weeks-Chandler-Andersen reference system[END_REF]. The phase diagram of the WCA system is relatively simple, in that unlike the LJ potential it does not have a critical point and liquid-vapour co-existence region. The melting line of the WCA fluid has been determined [START_REF] De Kuiper | The melting line of the Weeks-Chandler-Anderson Lennard-Jones reference system[END_REF], and its thermomechanical properties calculated by Molecular Dynamics simulations [START_REF] Hess | Thermomechanical properties of the WCA-Lennard-Jones model system in its fluid and solid states[END_REF].

In this study we consider various properties of the WCA fluid, including the potential energy, the mean square force, infinite frequency elastic moduli and Poisson's ratio. This study follows on from our recent molecular dynamics simulation and theory of the generalised soft sphere potential, φ(r) = (σ/r) n where n is an adjustable parameter. This r -n potential, like the WCA, is purely repulsive but exhibits a more convenient scaling of the static and dynamic properties [START_REF] Rickayzen | Viscoelasticity of fluids with steeply repulsive potentials[END_REF]. For the soft sphere potential, there is a direct mapping between temperature and density, so that the complete equation of state can be computed from density dependent data carried out at a single temperature. In the WCA case, one cannot perform such a temperature-density interchange, although one would expect that at high temperature (k B T >> ) the behav- in WCA reduced units, i .e., ≡ σ ≡ m = 1 (m is the mass of the particle). The density of the fluid is usually written in terms of a packing or volume fraction, ζ = πN σ 3 /6V . The simulations were carried out at reduced temperatures in the range 0.25 -5.0, the same set as used in ref. [START_REF] De Kuiper | The melting line of the Weeks-Chandler-Anderson Lennard-Jones reference system[END_REF] and at densities up to and above the maximum fluid density at each temperature.

One of the main themes of this work is an attempt to collapse the computed quantities onto a single master curve in each case. In order to achieve this we need to introduce a prescription for a state dependent characteristic lengthscale, which has had an extensive and rich history.

Although real molecules and the WCA particle are not hard spheres, the exercise of mapping their properties onto those of an 'equivalent' hard sphere fluid has proved such a longstanding procedure in liquid state theory (e.g., see ref. [START_REF] Hansen | Theory of Simple Liquids[END_REF] Chap. 6). The requirement is to attribute an effective hard sphere diameter, σ HS to the real molecule. The WCA data can be rescaled by defining an effective hard sphere diameter, σ HS , which leads to an effective hard sphere packing fraction through ζ HS ≡ πN σ 3 HS /6V . A number of presciptions for σ HS exist in the literature (e.g., see ref. [START_REF] Hess | Thermomechanical properties of the WCA-Lennard-Jones model system in its fluid and solid states[END_REF] and references therein) which involve, for example, integrating the Boltzmann factor of the potential. Unfortunately for WCA (indeed for most commonly used potentials) these do no lead to simple analytic expressions for the usual potential forms. An alternative scheme is to simply use the distance at which the WCA potential equals the thermal energy k B T (or a factor times the thermal energy), which leads to a simple analytic expression for σ HS .

This criterion for σ HS has also been used by Hess et al. [START_REF] Hess | Thermomechanical properties of the WCA-Lennard-Jones model system in its fluid and solid states[END_REF]. In reduced units this requires us to solve the quadratic equation, T = 4X 2 -4X + 1 for X, where (in reduced units) X = r -6 .

Then substitution of X for r gives,

σ HS = 2 1/6 (1 + √ T ) 1/6 , (2) 
on setting r ≡ σ HS . The formula in Eq. ( 2) indicates that the effective hard sphere diameter decreases with increasing temperature. This prescription a specific example of a more general formula derived by Ben-Amotz and Herschback [START_REF] Ben-Amotz | Estimation of effective diameters for molecular liquids[END_REF],

σ HS = α 0 (1 + T /T 0 ) 1/6 , (3) 
where α 0 and T 0 are variables that could be density dependent [START_REF] Ben-Amotz | Estimation of effective diameters for molecular liquids[END_REF][START_REF] Ben-Amotz | Reformulation of Weeks-Chandler-Andersen perturbation theory directly in terms of a hard-sphere reference system[END_REF].

In Fig. 1 the potential energy per particle divided by k B T , u/k B T and the repulsive (u r /k B T ) and attractive components (u a /k B T ) of the WCA potential energy are presented, plotted against ζ HS derived from Eq. ( 2). It can be seen that both components are important at all temperatures (even though the total potential energy is always positive). Figure 2 shows the total potential energy per particle only. There is no obvious way of scaling < u > as at σ HS the Eq. (2) energy per particle is always k B T (this fact was used in deriving the formula in Eq. ( 2) ).

Figure 3 shows the mean square force per particle plotted against effective hard sphere packing fraction, ζ HS defined with σ HS from the formula in Eq. ( 2). The force is normalised by the value derived from the pair potential, evaluated at r = σ HS . It can be seen that the scaling is not good. However, it can be improved if the definition of σ HS is modified empirically to,

σ HS = 2 2/9 (1 + √ T ) 1/6 , (4) 
as can be seen in figure 4. The difference between the definitions of σ HS in Eqs. ( 2) and ( 4) is in the coefficient 2 definition of σ HS of Ben-Amotz and Herschback [START_REF] Ben-Amotz | Estimation of effective diameters for molecular liquids[END_REF] given in the formula of Eq. ( 3). Using

Eq. ( 4), convergence of the data onto a single line is reasonable, at least for T > 1.

We now consider the mechanical properties of the WCA fluid. The infinite frequency elastic shear modulus, G ∞ for pair-wise additive interactions can be written as follows [11],

G ∞ = ρk B T + 2πρ 2 15 ∞ 0 drg(r) d dr (r 4 φ ), (5) 
where g(r) is the radial distribution function and φ ≡ dφ/dr. ρ = N/V is the number density for N particles in volume V . In a Molecular Dynamics, MD, or Monte Carlo, MC, simulation G ∞ can be computed from Eq. ( 5) rewritten as a sum over pair interactions,

G ∞ = ρk B T + 1 15V < N -1 i=1 N j=i+1 r -2 ij d dr ij (r 4 ij φ ij ) > . (6) 
where r ij and φ ij are the separation and pair potential between particles i and j respectively.

< • • • > stands for a simulation time or ensemble average. Similarly for the infinite frequency bulk or compressional modulus, K ∞ , [11],

K ∞ = 5ρk B T /3 + 2πρ 2 9 ∞ 0 drg(r)r 3 (rφ -2φ ), (7) 
where, φ = (d/dr)φ , which in terms of pair interactions is,

K ∞ = 5ρk B T /3 + 1 9V < N -1 i=1 N j=i+1 r ij (r ij φ ij -2φ ij ) > . (8) 
At liquid-like densities the kinetic contributions to G ∞ and K ∞ are relatively small compared with the φ-dependent terms. formulas for this quantity, given in Eq. ( 5), one would not expect any simple scaling of the data. The corresponding plot for K ∞ is qualitatively similar, although the magnitude of each term is larger. The (infinite frequency) Poisson's ratio, ν ∞ can be obtained from the computed G ∞ and K ∞ using the formula [12],

ν ∞ = 3K ∞ -2G ∞ 6K ∞ + 2G ∞ (9) 
which is plotted as a function of equivalent hard sphere packing fraction in Fig. 9. The ν ∞ increase with packing fraction and temperature towards the incompressible fluid limit of ν = 1/3. Note that Poisson's ratio, like the compressibility factor, Z is a dimensionless quantity and therefore cannot be scaled by any function of σ HS .

In this report we have explored the density and temperature dependence of some of the less well studied properties of the WCA fluid. We have illustrated how these properties vary with temperature and density. We have also made some attempts to scale the various data sets onto master curves using an effective hard sphere diameter treatment. These quantities we find are, however, rather difficult to collapse onto master curves, presumably because of the relatively complicated functional form of the potential. 
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 123456 FIG.1: The total energy per particle 'u' (u/k B T ) and the repulsive 'r' (u r /k B T ) and attractive 'a'

  ior of the WCA fluid should approach that of the soft sphere potential with the exponent n = 12.
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