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Introduction

The availability of good-quality thermochemical data for small molecules is of great importance for a number of problems in chemistry and chemical engineering. Oxygen heterocycles are key ingredients in a number of industrial processes [1] and their omnipresence in our environment has lead to a significant interest in the way in which they are broken down both in nature as well as in the body. [2] As far as their industrial usage goes, oxygen heterocycles are key ingredients in the manufacture of polyacetals. Polyoxymethylene (POM), for example, is manufactured by polymerizing 1,3,5-trioxane and, if a co-monomer is included, by copolymerizing various 1,3-dioxolanes. [START_REF] Cramail | Cationic Polymerization[END_REF] Generally, the world market for engineering plastics is growing and, as an example, the demand for POM in China alone was estimated to increase from 140 kt in 2003 to 180 kt in 2005. [START_REF] Brock | Asia -future market for engineering plastics[END_REF] Tetrahydrofuran is another important monomer, which has attracted a significant amount of industrial attention recently, with the BASF opening the world's largest polyTHF plant in Caojing (China) in the spring of 2005.[5] All of this has led to a need to obtain good thermodynamic data for this class of compounds.

A significant amount of effort has been devoted to the development of methodologies for the estimation of enthalpies and entropies of formation as well as molar heat capacities. As early as the 1950s, Benson et al. published a general method for estimating the thermochemical properties of chemical species on the basis of group additive contributions. [START_REF] Benson | Thermochemical Kinetics[END_REF][START_REF] Benson | Additivity rules for the estimation of molecular properties. Thermodynamic properties[END_REF][START_REF] Benson | Additivity rules for the estimation of thermochemical parameters[END_REF] The group additive method makes the assumption that most molecular properties are made up of additive contributions from individual atoms or bonds in the molecule. With the advent of high-performance computing, thermochemical parameters could also be estimated using computational tools, ranging from semiempirical methods [START_REF] Saito | Prediction for thermodynamic function of dioxins for gas phase using semiempirical molecular orbital method with PM3 Hamiltonian[END_REF] through to DFT [START_REF] Wilcox | The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: G3(MP2)//B3LYP heats of formation[END_REF] and other ab-initio [START_REF] Notario | The enthalpy of formation of dibenzofuran and some related oxygen containing heterocycles in the gas phase[END_REF] calculations. Furthermore, Gibbs-ensemble Monte Carlo simulations can also be used to derive thermodynamic properties. [START_REF] Ahunbay | Prediction of thermodynamic properties of heavy hydrocarbons by Monte Carlo simulations[END_REF] In an early study, Lay and co-workers reported thermochemical data for a 34membered dataset of three-to-six membered oxygen-containing heterocyclic hydrocarbons calculated using the semiempirical PM3 method [START_REF] Stewart | Optimization of parameters for semiempirical methods I[END_REF][START_REF] Stewart | Optimization of parameters for semiempirical methods II[END_REF] and developed a set of group additivity ring corrections for use with Benson's group additivity parameters. [START_REF] Lay | Thermodynamic parameters and group additivity ring corrections for three-to-six-membered oxygen heterocyclic hydrocarbons[END_REF] The authors later expanded this work and, using a combination of abinitio calculations and isodesmic reactions, developed thermochemical and group additive parameters for linear [START_REF] Lay | Enthalpies of Formation and Group Additivity of Alkyl Peroxides and trioxides[END_REF] and cyclic alkyl peroxides. [START_REF] Lay | Enthalpies of formation of cyclic alkyl peroxides: dioxirane, 1,2-dioxetane, 1,2-dioxolane and 1,2-dioxane[END_REF] In a subsequent study, Shirel and Pulay investigated the stability of oxo-and chloro-substituted trioxanes [START_REF] Shirel | Stability of novel oxo-and chloro-substituted trioxanes[END_REF] and Saito and Fuwa conducted an extensive study concerning the thermochemical properties of polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls using the PM3 Hamiltonian. [START_REF] Saito | Prediction for thermodynamic function of dioxins for gas phase using semiempirical molecular orbital method with PM3 Hamiltonian[END_REF] Notario et al. studied dibenzofurans using ab initio calculations at the GAUSSIAN-3 G3(MP2)//B3LYP level, albeit with a much smaller compound set. [START_REF] Notario | The enthalpy of formation of dibenzofuran and some related oxygen containing heterocycles in the gas phase[END_REF] Li et al. calculated thermochemical parameters for 76 polybrominated dibenzo-p-dioxins using B3LYP/6-31G(d) functional and basis set. [START_REF] Li | Theoretical calculation of thermodynamic properties of polybrominated dibenzo-p-dioxins[END_REF] To the best of our knowledge, no quantitative structure-property relationships (QSPRs) for thermochemical parameters for small oxygen heterocycles have been developed so far. The present paper aims to fill this gap, using 1D, 2D and 3D descriptors. QSPRs for the prediction of enthalpies of formation were generated on the basis of available experimental data, while models for entropies of formation and heat capacities were, due to the paucity of available experimental data, developed on the basis of validated computed values. 

DFT and Semi-Empirical Calculations

Molecular energies, geometries and vibrational frequencies were determined using the DMol 3 . [START_REF] Delley | An all-electron numerical mehod for solving the local density functional for polyatomic molecules[END_REF][START_REF] Delley | From molecules to solids with the DMol3 approach[END_REF] Geometry optimizations were performed using general gradient corrected Perdew, Burke, Ernzerhof (PBE), the revised PBE (RPBE) functional, [START_REF] Hammer | Improved adsorption energetics within density-functional theory using revised Perdew-Burke Ernzerhof functionals[END_REF] the Becke, Lee, Yang, Parr (BLYP) correlation functional, [START_REF] Becke | A multicenter numerical integration scheme for polyatomic molecules[END_REF][START_REF] Lee | Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density[END_REF] or the Hamprecht (HCTH) functional, [START_REF] Boese | A new parametrization of exchange-correlation generalized gradient approximation functionals[END_REF] using a double numerical basis set including a polarization functions (DNP). [START_REF] Delley | An all-electron numerical mehod for solving the local density functional for polyatomic molecules[END_REF][START_REF] Delley | From molecules to solids with the DMol3 approach[END_REF] Optimum structures were confirmed as such by the absence of imaginary vibrations (self-consistent field density convergence: 1 x 10 -6 Ha).

Semiempirical calculations were carried out using the PM3 method [START_REF] Stewart | Optimization of parameters for semiempirical methods I[END_REF][START_REF] Stewart | Optimization of parameters for semiempirical methods II[END_REF] as implemented in VAMP. [START_REF] Rauhut | Multicenter point charge model for high-quality molecular electrostatic potnetials from AM1 calculations[END_REF][START_REF] Beck | The natural atomic orbital point charge model for PM3: multipole moments and molecular electrostatic potentials[END_REF][28] Enthalpies and entropies of formation as well as heat capacities were also estimated using a modified version of Benson's group additive method as implemented in an electronic form by the National Institutes of Standards (NIST). [START_REF] Benson | Thermochemical Kinetics[END_REF][29][START_REF] Reid | The Properties of Gases and Liquids[END_REF][START_REF] Lyman | Handbook of Chemical Property Estimation Methods[END_REF] 

QSPR studies

Descriptors were calculated using the MS QSAR 3. algorithms [START_REF] Rogers | Application of genetic function approximation in quantitative structure-activity relationships and quantitative structure-property relationships[END_REF] to select key descriptors. Models were validated by predicting thermochemical properties of the test set molecules.

Validation of computational data

When comparing the calculated structural data for all combinations of functional and basis set used in this study to experimentally determined values contained in the CCCBD for ethylene oxide (1), 1,3,5-trioxane (2) and furan (3) (Figure 1), it could be shown that the latter are reproduced with good to excellent accuracy (Table 1).

[Insert Figure 1, Table 1 about here] As expected, the agreement between experimental data and structures computed the PM3 Hamiltonian is less good. Furthermore, different functionals and basis sets are in good agreement w.r.t. the computed entropies and heat capacities. All further calculations of entropies and heat capacities using DFT methods, were therefore carried out using the PBE functional in connection with a DNP basis set.

In order to determine how accurately DFT methods predict standard entropies of formation as well as molar heat capacities, the geometries of 84 compounds were optimized using the PBE/DNP functional and basis set combination and thermodynamic data were calculated. Although sufficient experimental data is available, enthalpies of formation were also computed using PM3 and Benson's method. The current commercial implementation of PBE/DNP in DMol 3 is not suitable for the calculation of standard enthalpies of formation, as these are calculated using a database of atomic binding energies, which is not currently available for the PBE functional. Tables of experimental and calculated data are given in the supporting information. PM3 parameters have been optimized to reproduce experimental enthalpies of formation at 298.15 K. Consequently the method performs well when compared to experimental data (R = 0.984, R 2 = 0.968, SD = 9.21 kcal mol -1 ). The use of DFT optimized structures and subsequent enthalpy prediction using PM3, did not lead to improved data. The results are in good agreement with those previously obtained by Lay et al., [START_REF] Lay | Thermodynamic parameters and group additivity ring corrections for three-to-six-membered oxygen heterocyclic hydrocarbons[END_REF] with the somewhat higher standard deviation and lower correlation coefficients reflecting the much larger and more diverse set used in the present study.

For those cases, for which group additive parameters were available, Benson's method performs well. When comparing experimental and computed data, a correlation coefficient of R = 0.997 (R 2 = 0.993) and a standard deviation of 3.63 kcal mol -1 was determined. cisand trans-2,2,4,6-tetramethyl-1,3-dioxin are the only significant outliers in this case and are overestimated by 5.7 and 8.8 kcal mol -1 .

Density functional theory, the PM3 Hamiltonian as well as Benson's group additive method (where appropriate) were used to calculate standard entropies of formation.

Unfortunately, there is significantly less entropy than enthalpy data available in the literature and therefore the calculations could only be validated using a significantly smaller data set (8 datapoints). The risk inherent in such a small dataset is that it could lead to either a serious over-(in cases in which there is a good accidental agreement between experimental and computed data) or underestimation (in case the experimental data is very noisy or there are experimental errors) of the accuracy of the computational methods evaluated here. This also means that any comparison between methods may be affected by a certain amount of uncertainty. In the absence of further data, however, this is the best that can currently be achieved. On this basis, all three methods gave satisfactory results, with DFT giving a slightly better [Insert Figure 2 about here] DFT calculations give rise to a correlation coefficient of R = 0. 963 (R 2 = 0.927) and a standard deviation of 2.72 cal mol -1 K -1 , whereas the Benson model gives R = 0.912 (R 2 = 0.832) and a standard deviation of 3.44 cal mol -1 K -1 . This is reflected in a certain amount of disagreement between the two models (Figure 3).

[Insert Figure 3 about here] The major outliers (in addition to the cisand trans-2,2,4,6-tetramethyl-1,3-dioxines) are compounds containing an oxetanone or a carbonate motif, probably indicating that the parameterization of the Benson model is not optimal for this type of structures.

PM3 delivers results close to those of the DFT calculations (R = 0.961, R 2 = 0.923, SD = 3.21 cal mol -1 K -1 ).

Regarding the prediction of standard heat capacities, all methods give good to excellent agreement between experimentally determined and calculated heat capacities. Overall, PM3 seems to perform best (R = 0.979, R 2 = 0.958, SD = 0.70 cal mol -1 K -1 ), followed by Benson's group additive method (R = 0.968, R 2 = 0.938, SD = 1.93 cal mol -1 K -1 ) and PBE/DNP (R = 0.935, R 2 = 0.875, SD = 1.24 cal mol -1 K -1 ) although the differences between the methods are small (Figure 4). 

Subset Selection

The selection of diverse subsets of molecules for model development is a non-trivial problem and a number of different approaches, such as clustering techniques, [START_REF] Senese | A simple clustering technique to improve QSAR model selection and predictivity: application to a receptor independent 4D-QSAR analysis of cyclic urea derived inhibitors of HIV-1 protease[END_REF] random selection, [START_REF] Yasri | Toward an optimal procedure for variable selection and QSAR Model Building[END_REF][START_REF] Wu | Artificial neural networks in classification of NIR spectral data: design of the training set[END_REF][START_REF] Poetter | Random or rational design? Evaluation of diverse compound subsets from chemical structure databases[END_REF][START_REF] Golbraikh | Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection[END_REF] activity sampling, [START_REF] Golbraikh | Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection[END_REF][39][START_REF] Mattioni | Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors[END_REF] self-organizing maps [START_REF] Guha | Generation of QSAR sets with a selforganizing map[END_REF][START_REF] Bayram | Genetic algorithms and self-organizing maps: a powerful combination for modeling complex QSAR and QSPR problems[END_REF] as well as a number of experimental design approaches [START_REF] Sjostrom | Applications of Statistical Experimental Design[END_REF][START_REF] Eriksson | Multivariate Design and Modeling in QSAR[END_REF] have been reported in the literature. In a comparative study, Massart et al. demonstrated that both D-Optimal and Kennard stone designs ultimately led to better models than random sampling or self-organizing maps [START_REF] Wu | Artificial neural networks in classification of NIR spectral data: design of the training set[END_REF] and other authors have also reported favourable experiences. [START_REF] Gramatica | QSAR Modeling of bioconcentration factor by theoretical molecular descriptors[END_REF][START_REF] Gramatica | QSAR Prediction of ozone tropospheric degradation[END_REF][START_REF] Marengo | A new algorithm for optimal, distance-based experimental design[END_REF] D-optimal designs aim to maximize the determinant of the variance-covariance matrix│X'X│, where X is the information matrix of independent covariables. This determinant will be at a maximum for compound sets, which have a maximum variance (i.e. span a large chemical parameter space) and a minimum covariance (i.e. there is minimum similarity between the molecules). [START_REF] Montgomery | Design and Analysis of Experiments[END_REF] In a first step, therefore, 126 different 1D, 2D and 3D descriptors were calculated for each compound in the dataset. Subsequent principal component analysis showed that the first 27 principal components explain 99% of the variance in the dataset. The maximum and minimum values of the first 7 principal component (80 % variance explained) vectors were used as inputs for a D-optimal design, resulting in an 2).

[Insert Table 2 approximately here]

A simple Euclidean distance measure was used to identify those compounds in "real" chemistry space that lie closest to the design points. A visual examination of the scores for the first vs. the second principal component show that the selected training set is diverse and well distributed over the whole dataset (Figure 5). Those compounds not included in the training set were used for external validation of the QSPR model (test set).

[Insert Figure 5 approximately here]

QSPR Model Development.

The diverse subset of 46 compounds was used to develop QSPR models for standard enthalpies and entropies of formation and molar heat capacities. Enthalpy models were constructed using experimental data, whereas entropy and heat capacity models were developed using computed data (DFT). Model construction was carried out using genetic algorithm driven linear regression methods. [START_REF] Rogers | Application of genetic function approximation in quantitative structure-activity relationships and quantitative structure-property relationships[END_REF] At the beginning of the optimization procedure, 500 equations were randomly selected and evolved until convergence was achieved. To guard against overfitting, the maximum equation length was set to 5 independent variables in accordance with the recommendation that a regression model with k independent variables and n compounds in the training set, should satisfy the n>4k criterion (in this study, n = 46 and k = 5). [START_REF] Tropsha | The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[END_REF] Care was taken to penalize equations with both large sum-of-squares errors and large numbers of independent variables. [50] The top 5 models for standard enthalpies, entropies and molar heat capacities, together with validation data, are given in Table 3. 3, Figure 6).

[Insert Table 3 and Figure 6 approximately here]

The standard deviation for the training set is 16.75 kcal mol -1 . However, it can be seen that a number of outliers are present in the training (O2-O5) and test (O1) sets. All of these, with the exception of O3 (tert-butylperoxymethyl oxirane) are furan derivatives and O4-O6 all contain acetoxy-substituents and O6 an additional nitro-group.

Removing the outliers from the dataset, results in an improved value of R 2 of 0.980 and a standard deviation of 8.45 kcal mol -1 . It should be noted, that, once outliers have been removed from the dataset, the standard deviation is approximately comparable to results obtained from PM3 calculations. Full tables of computed results are given in the supporting information.

The good agreement between experimental and predicted data, shows the value of using diverse subsets, such as those generated via D-optimal design for the development of QSPR equations. Examination of the top-performing models shows that a number of descriptors are repeatedly represented. The electrotopological S_ddsN descriptor [START_REF] Hall | The electrotopological state: structure information at the atomic level for molecular graphs[END_REF] appears in all five models, closely followed by the S_dssC [START_REF] Hall | The electrotopological state: structure information at the atomic level for molecular graphs[END_REF], molecular refractivity and atomic composition descriptors, all at three counts each. The presence of the S_ddsN descriptor and its negative contribution indicates that the presence and number of nitro-groups in the molecule has a significant bearing on the standard enthalpy of formation. Interestingly, three of the 6 outliers are nitro compounds (O1, O4, O6). The S_dssC descriptor makes a positive contribution to the equations. Again, it is probably not surprising that the descriptor should be present, as presence and number of double bonds in the system can be expected to have a significant bearing on the enthalpy of formation. Molecular refractivity is defined as

d Mw n n MR × + - = 2 1 2 2 ( 1 
)
where n is the refractive index, M w the molecular weight and d the density. As n usually does not change significantly, the molecular refractivity is effectively a measure of volume and therefore the size of the molecule, albeit coupled to polarizability information. [START_REF] Hansch | Searching for Allosteric Effects via QSARs[END_REF] The atomic composition index, finally, is an information content descriptor and the name is programmatic in this context -the descriptor encodes the elemental composition of a molecule. It is intuitively comprehensible, why such a descriptor should encode information about enthalpies of formation. available data is tightly clustered and not suitable for the development of high quality models. QSPRs for the standard entropy of formation of small oxygen-containing heterocycles were therefore developed using calculated data. As discussed above, density functional methods perform marginally better than PM3. Therefore, data from the PBE/DNP calculations was used to develop the equations. The models appear to be very stable and predictive with R 2 = 0.988, R 2 adjusted = 0.987 and R 2 cross-validated = 0.984 in the training and R 2 = 0.958 and R 2 adjusted = 0.957 in the test set, using model S1. The standard deviation is 1.99 cal mol -1 K -1 in the training set (Table 3, Figure 7).

Standard

The descriptors which appear most frequently in the top 5 models (Table 3) are the 1 κ and 3 χ descriptors [START_REF] Hall | The molecular connectivity chi indexes and kappa shape indexes in structure property modeling[END_REF] as well as the rotatable bond count.

[Insert Figure 7 aproximately here] As there is no real difference between the heat capacity data computed using DFT and semiempirical methods, data generated using density functional theory was used to derive the QSPR equations. Again, the models show extremely good performance, both in terms of training and validation sets (Table 3, Figure 8). The While the QSPRs for both the entropy of formation as well as the heat capacities were developed using computed data, one would have to expect that similar robust models could be developed for experimental data on the basis of the fact that all three different computational methods (see above) are in close agreement with each other and with the available experimental data; i.e. the computed results must be close the experimental values, were these available.

Summary and Conclusions.

Several computational ways of obtaining thermochemical parameters for small oxygen-containing heterocycles were investigated and compared and QSPR models for the prediction of standard enthalpies and entropies of formation as well as standard heat capacities were developed. Robust and predictive quantitative structureproperty relationships were developed for all three thermodynamic parameters on the basis of experimental or validated computed data. It could be shown that QSPR models can be a fast and powerful tool for the prediction of thermodynamic parameters of small oxygen-containing heterocycles. 
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Experimental (as available) and calculated standard enthalpies of formation for oxygen containing heterocycles

All values are given in kcal mol -1 . Experimental data were taken from ref [1] or ref [2] All values are given in cal mol -1 K -1 . Experimental data were taken from ref [1] or ref [2].

Name 

  2 and TSAR 3.3 software packages[28] and experimental thermochemistry data was taken from the Computational Chemistry Benchmark and Comparison Database[START_REF] Johnson | NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database[END_REF] (CCBCD) or the Chemistry Webbook,[29] both maintained by NIST. QSPR equations were developed on the basis of experimental (enthalpies of formation) or computational data (entropies of formation and heat capacities) if insufficient experimental data was available. To develop the QSPR models, D-optimal design was used to split the dataset into a training and a test set. Regression equations were derived using genetic 5

6

 6 

  and experimental values than the other two methods (Figure2).

[ 3 .

 3 Insert Figure4about here] Given the fact, that all three different computational methodologies give very good agreement between predicted and experimentally determined values, it is suggested 8 provide high-quality data, suitable for the development of quantitative structure-property relationships in the absence of experimental data. Thermochemical data from Quantitative Structure-Property Relationships (QSPRs)

  candidate points in virtual space, representing 55 % of the compounds in the dataset (Table

1

 1 Standard Enthalpy of Formation. In the case of standard enthalpies of formation, internal as well as external validation suggests that the models are extremely robust: both adjusted (R 2 adj ) as well as cross-validated (R 2 cv ) coefficients of determination are not significantly different, indicating that the models are both robust and predictive. The top-performing model (H1) has a coefficient of determination of 0.921 for the training set and 0.852 for the external test set (Table

3. 3 . 3

 33 Standard Heat Capacity. Again, very little experimental heat capacity data is available (19 out of 84 compounds) for model development and the data is tightly clustered.

  highest performing model C1 gave R 2 = 0.994, R 2 adjusted = 0.993 and R 2 cross-validated = 0.993 in the training set and R 2 = 0.964 and R 2 adjusted = 0.963 for the validation set.The most frequently observed descriptor here, is the molecular area (vdW area)descriptor. Its presence is probably not surprising as it describes the van der Waals area of the molecule and therefore also its size. As the heat capacity is defined as the amount of heat required to change the temperature of a substance by one degree, larger molecules will need more heat than smaller ones, which, in turn explains the correlation with the molecular area descriptor. The only other descriptors appearing 13 0 χ and the methyl group count, both at two counts each. 0 χ describes the immediate bonding environment of atoms in a molecule, while containing relatively information about the connectivity of the molecular skeleton.

Figure 1 :

 1 Figure 1: Ethylene oxide (1), 1,3,5-trioxane (2) and furan (3).

Figure 2 :

 2 Figure 2: Experimentally determined Entropies of formation vs. results derived using

Figure 3 :

 3 Figure 3: Comparison of entropies of formation calculated using DFT (PBE/DNP)

Figure 4 :

 4 Figure 4: Experimentally determined molar heat capacities vs. results derived from

Figure 5 :

 5 Figure 5: Principal Component Analysis of all descriptors (PC1 -PC2: EV = 55 %)

Figure 6 :

 6 Figure 6: Predicted vs. experimental standard enthalpies of formation for both

Figure 7 :

 7 Figure 7: Predicted vs. computational standard entropies of formation for both

Figure 8 :

 8 Figure 8: Predicted vs. computational standard heat capacities for both training

Table 3 :

 3 QSPR Models for standard enthalpies and entropies of formation and molar heat capacities. (R 2 = coefficient of determination; R 2 adjusted = adjusted coefficient of determination, R 2 cv = cross-validated coefficient of determination; cRB = number of rotatable bonds; HA = number of hydrogen bond acceptors; S_ddsN = E state keys (sums) = S_ddsN; MD = molecular density; 3 κ = 3-Kappa (Kier and Hall); MR = molecular refractivity; SC_c = Subgraph counts (3): chain; AC = atomic composition; S_dssC = E-state keys (sums): S_dssC; 3 χ = 3-Chi (chain) (Kier and Hall); 1 κ = 1-Kappa (atom modified) (Kier and Hall); VDM = Vertex distance/magnitude; S_ssO = E-state keys (sums): S_ssO; AlogP = AlogP; S_sCH 3 = E-state keys: S_sCH 3 ; MA = molecular area; MF = number of methyl groups; SC_p = subgraph counts (0): path) 20
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  Kier and Hall.[START_REF] Hall | The electrotopological state: structure information at the atomic level for molecular graphs[END_REF] Each atom in a molecular graph is represented by an E-state, which encodes the electronic state of an atom as influenced by the other electronic states of all the other atoms in the molecule, within the context of the molecular graph. The E-

	state for a given atom, therefore, varies from molecular structure to molecular
	structure.
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Electro topological descriptors, or E-state indices, were introduced by

Table Headings Table 1 :

 Headings1 Experimentally determined and calculated geometries for ethylene oxide (1), 1,3,5-trioxane (2) and furan (3) (Bond lengths are given in Ångströms (Å), bond angles in degrees (º), ∆S f 298.15 and C p 298.15 in cal mol -1 K -1 ).

Table 2 :

 2 Results from principal component analysis.

Table 1

 1 

			BLYP			RPBE			PBE			HCTH			PM3
		Expt.	DNP	DND	DN	DNP	DND	DN	DNP	DND	DN	DNP	DND	DN	
	(1) d O1-C2	1.452	1.453	1.452	1.529	1.445	1.445	1.518	1.438	1.437	1.510	1.424	1.424	1.493	1.432
	d C2-C3	1.459	1.475	1.474	1.490	1.475	1.475	1.490	1.438	1.469	1.485	1.461	1.460	1.477	1.484
	d C2-H4	1.084	1.093	1.096	1.091	1.096	1.098	1.093	1.095	1.097	1.092	1.093	1.094	1.090	1.096
	∠ O1-C2-C3 59.203	59.504	59.499	60.846	59.326	59.327	60.615	59.261	59.261	60.542	59.142	59.150	60.357	58.806
	∠ C2-O1-C3 61.594	60.997	61.007	58.318	61.350	61.349	58.786	61.481	61.481	58.923	61.715	61.70	59.283	62.388
	∠ H4-C2-H5 116.750 115.659 115.529 115.898 115.635 115.485 115.919 115.713 115.583 115.901 115.503 115.366 115.551 111.654
	∠ O1-C2-H4 114.704 114.987 115.032 114.042 115.136 115.126 114.183 115.228 115.164 114.334 115.063 115.088 114.355 116.313
	∆ S f (298.15)	58.08	59.55	59.55	59.93	59.63	59.60	59.93	59.54	59.52	59.87	59.36	59.31	59.61	58.03
	C p (298.15)	11.44	11.61	11.61	12.03	11.61	11.83	12.14	11.78	11.71	12.07	11.18	11.08	11.36	11.51
	(2) d O-C	1.422	1.431	1.431	1.477	1.428	1.427	1.471	1.418	1.419	1.463	1.410	1.409	1.451	1.410
	d C-H eq		1.095	1.095	1.089	1.096	1.097	1.091	1.091	1.096	1.090	1.092	1.093	1.087	1.097
	d C-H axial		1.111	1.111	1.107	1.110	1.112	1.108	1.112	1.112	1.108	1.108	1.109	1.104	1.107
	∠ O-C-O	112.2	111.708 111.708 111.127 111.577 111.868 111.268 111.784 111.800 111.211 111.861 111.925 111.297 107.523
	∠ C-O-C	110.3	109.542 109.524 110.124 109.061 109.046 109.773 108.525 108.943 109.620 109.569 109.495 110.585 112.979
	∆ S f (298.15)	68.09	71.88	71.88	72.79	71.49	71.51	72.31	71.71	71.36	71.91	74.89	73.75	71.75	70.62
	C p (298.15)	19.57	20.67	20.67	21.79	20.46	20.41	21.29	20.52	20.23	20.97	20.97	20.68	20.53	21.53
	(3) d O1-C2	1.362	1.382	1.382	1.382	1.378	1.378	1.416	1.371	1.371	1.409	1.362	1.361	1.398	1.378
	d C2-C4	1.361	1.365	1.365	1.382	1.368	1.368	1.374	1.364	1.364	1.370	1.364	1.363	1.368	1.373
	d C4-C5	1.4338	1.438	1.438	1.438	1.437	1.437	1.451	1.431	1.431	1.444	1.426	1.426	1.438	1.441
	d C3-H7	1.0760	1.082	1.082	1.082	1.085	1.085	1.083	1.084	1.084	1.082	1.080	1.082	1.078	1.085
	d C4-H8	1.0760	1.084	1.084	1.084	1.087	1.087	1.086	1.086	1.086	1.085	1.082	1.084	1.081	1.086
	∠ O1-C2-C4 110.700 110.348 110.348 110.348 110.497 110.497 109.677 110.449 110.449 109.603 110.391 110.427 109.683 110.238
	∠ C2-O1-C3 106.60	106.322 106.322 106.322 106.347 106.347 106.171 106.477 106.477 106.309 106.827 106.796 106.850 106.857
	∠ C2-C4-C5 106.00	106.491 106.491 106.491 106.329 106.329 107.237 106.313 106.313 107.242 106.195 106.175 107.042 106.334
									21						

as available) and calculated standard entropies of formation for oxygen- containing heterocycles

  .All values are given in cal mol -1 K -1 . Experimental data were taken from ref[1] or ref[2].

	Name (Whole Molecule) Oxirane Propylene oxide Chloromethyl oxirane cis-1,2-Epoxycyclopentane Cyclohexene oxide Propoxymethyl oxirane 1-Methylethoxymethyl oxirane cis-1,2-Epoxycycloheptane cis-2,3-Epoxybicyclo[2.2.1]heptane Butoxymethyl oxirane 2-Methylpropoxymethyl oxirane tert-Butoxymethyl oxirane cis-1,2-Epoxycyclooctane cis-9-Oxabicyclo[6.1.0]nonane tert-Butylperoxymethyl oxirane Glycidyl butyrate 3-Methylbutoxymethyl oxirane 2-Propenoic acid Phenoxymethyl oxirane Phenylmethoxymethyl oxirane Oxetane β-Propiolactone 3,3-Dimethyl oxetane 4-Methylene oxetanone 3,3-Dimethyl oxetanone 3,3-Bis-chloromethyl oxetane 3-Ethyl-3-chloromethyl oxetane Tetrahydrofuran γ-Butyrolactone Tetrahydrofuran methanol Dihydro-5-methyl furanone 5-Hexyldihydro-2 furanone 2,3-Dihydrofuran 2,3-Dihydro-5-methyl-furan 5-Nitro-2-acetoxy-2,5-dihydrofurfural diacetate Furan 2-Furanmethanol 2-Furancarboxaldehyde Furylethylene 2-Nitrofuran F o r P e (experimental) ∆H f 298.15 -12.58 -22.63 -25.8 -23.2 -29.21 -65.15 -71.56 -36.4 -12.9 -69.77 -74.69 -76.41 -39.46 -39.46 -64.415 -119.9 -78.44 -94.22 -27.82 -32.98 -19.25 -67.61 -35.43 -45.47 -84.29 -48.75 -46.2 -44.03 -87.33 -88.20 -97.16 -118.60 -17.27 -30.21 -307.20 -8.29 -50.62 -36.10 6.60 -6.90 e r R e (PM3) ∆H f 298.15 -8.12 -16.56 -18.98 -17.05 -24.89 -60.03 -60.40 -28.69 0.97 -65.25 -66.04 -67.13 -29.11 -32.19 -51.28 -106.00 -70.66 -77.74 -17.58 -20.23 -26.69 -62.23 -41.12 -37.08 -75.79 -45.74 -47.26 -51.28 -91.44 -97.12 -97.74 -124.28 -24.79 -33.58 -273.94 -4.02 -51.77 -37.25 11.923 -10.36 v i e w O ∆H f 298.15 (Benson) -12.50 -21.80 -27.20 -66.00 -70.40 -71.00 -73.20 -79.50 -65.30 -118.10 -77.30 -91.20 -27.00 -28.90 -18.60 -67.60 -33.50 -45.50 -81.30 -44.40 -42.30 -43.30 -88.40 -21.40 -29.90 -8.00 -52.30 -34.10 5.30 n l ∆H f 298.15 Model H1 -37.04 -44.98 -14.58 -28.00 -32.38 -66.78 -77.76 -37.81 -17.09 -61.09 -72.22 -79.96 -40.15 -40.64 -129.64 -106.11 -63.22 -107.19 -45.42 -42.15 -42.04 -50.49 -51.48 -53.72 -83.93 -57.02 -47.55 -41.63 -65.49 -70.62 -77.34 -57.70 -26.44 -35.96 -312.21 -6.93 -43.52 -37.89 -5.49 28.43 y Furancarboxylic acid -94.40 -91.80 -95.10 -74.19 Methyl furoate -96.80 -83.65 -90.30 -94.69 3-2-Furanyl-2-propenal -25.30 -23.05 -25.00 -42.84 5-Nitro-2-furancarboxylic acid methyl ester -87.70 -86.77 -67.79 3-5-Nitro-2-furyl-2-propenal -15.50 -27.88 -28.06 2-Diacetoxymethyl furan -184.70 -172.73 -199.40 -206.30 2-Diacetoxymethyl-5-nitrofuran -184.40 -180.65 -187.61 1,3-Diphenylisobenzofuran 48.40 70.07 28.98 1,3-Dioxolane -72.10 -82.46 -72.70 -69.06 Ethylene carbonate -120.10 -125.012 -127.20 -87.18 2-Methyl-1,3-dioxolane -83.70 -89.47 -83.00 -85.99 2-Methoxy-1,3-dioxolane -115.50 -129.65 -118.60 -119.91 Propylene carbonate -139.22 -131.69 -136.50 -113.23 2-Methyl-4-methylene-1,3-dioxolane -91.50 -68.01 -81.92 2-Phenyl dioxolane -49.07 -53.65 -50.80 -59.18 2-Ethoxy-4,4,5,5-tetramethyl-1,3-dioxolane -162.40 -154.69 -162.90 -149.97 2-Methyl-2-phenyl-1,3-dioxolane -62.60 -58.75 -63.30 -67.19 1,3-Dioxol-2-one -100.05 -94.76 -64.11 2,4-Dimethyl-1,3-dioxole -101.10 -69.43 -81.79 Tetrahydropyran -53.16 -57.39 -53.60 -43.02 Tetrahydropyran-2-one -90.30 -95.91 -75.84 Dihydropyran-2,6-dione -127.20 -134.10 -131.20 -109.20 2-2-Methoxyethoxy-tetrahydropyran -134.56 -136.10 -134.60 -124.68 3,4-Dihydropyran -26.96 -33.28 -29.90 -30.85 1,3-Dioxane -81.99 -87.76 -83.40 -81.59 2-Methyl-1,3-dioxane -95.4 -92.22 -93.80 -92.33 4-Methyl-1,3-dioxane -90.45 -91.23 -92.70 -92.87 2-Hydroxymethyl-1,3-dioxane -132.00 -132.54 -129.60 -121.21 5,5-Dimethyl-1,3-dioxane -100.67 -99.11 -98.30 -98.84 trans-4,5-Dimethyl-1,3-dioxane -98.20 -94.46 -99.00 -99.23 cis-2,4-Dimethyl-1,3-dioxane -102.30 -95.26 -102.10 -100.19 2,4,6-Trimethyl-1,3-dioxane -106.80 -100.23 -112.30 -106.12 cis-2,2,4,6-Tetramethyl-1,3-dioxane -119.10 -105.84 -124.80 -110.48 trans-2,2,4,6-Tetramethyl-1,3-dioxane -116.00 -108.19 124.80 -108.47 1,4-Dimethyl-2,6,7-Trioxabicyclo[2.2.2]octane -133.88 -132.37 -137.82 Trioxatricyclo[3.3.1.1(3,7)]decane -119.32 -128.55 -119.30 dioxane -74.40 -64.80 -76.50 dioxane -83.81 -71.51 -89.00 1,4-Dioxane -75.36 -83.11 -75.40 1,4-Dioxane-2,5-dione -146.30 -156.37 Methyl furoate 88.17 91.32 96.40 -142.22 Furancarboxylic acid 81.10 82.84 84.27 -81.82 2-Nitrofuran 78.98 80.47 -81.37 Furylethylene 77.47 77.96 76.56 2,5,5-Trimethyl-2-phenyl-1,3-2-Furancarboxaldehyde 76.12 76.26 79.97 -77.86 2-Furanmethanol 80.03 81.11 83.34 5,5-Dimethyl-2-phenyl-1,3-Furan 65.28 64.06 63.78 -112.86 5-Nitro-2-acetoxy-2,5-dihydrofurfural diacetate 153.23 150.23 2,4,10-F o r P e e r R e v i e w O n l y 3,6-Dihydro-1,2-dioxin -9.26 -7.50 -69.06 1,3,5-Trioxane -111.32 -122.41 -111.20 -109.23 Paraldehyde -152.10 -136.91 -142.40 -153.74 cis-2,4,6-Trimethyl-1,3,5-trioxane -152.06 -136.35 -142.40 -154.77 F o r P e e r R e v i e w O n l y ∆S f 298.15 (experimental) ∆S f 298.15 (DFT) ∆S f 298.15 (PM3) ∆S f 298.15 (Benson) Oxirane 58.08 59.54 58.06 57.40 Propylene oxide 68.69 66.38 67.37 67.59 Chloromethyl oxirane 75.01 75.60 77.23 cis-1,2-Epoxycyclopentane 71.89 72.83 Cyclohexene oxide 77.45 76.86 Propoxymethyl oxirane 93.49 98.17 105.29 1-Methylethoxymethyl oxirane 91.85 95.73 101.93 cis-1,2-Epoxycycloheptane 82.27 81.25 cis-2,3-Epoxybicyclo[2.2.1]heptane 76.31 75.26 Butoxymethyl oxirane 103.19 106.23 114.71 2-Methylpropoxymethyl oxirane 97.98 102.74 112.04 tert-Butoxymethyl oxirane 102.33 97.98 106.79 cis-1,2-Epoxycyclooctane 88.12 86.71 cis-9-Oxabicyclo[6.1.0]nonane 88.15 85.48 tert-Butylperoxymethyl oxirane 105.40 108.86 116.91 Glycidyl butyrate 108.05 108.75 119.61 3-Methylbutoxymethyl oxirane 104.63 113.32 121.46 2-Propenoic acid 99.97 107.43 116.81 Phenoxymethyl oxirane 96.62 100.22 105.77 Phenylmethoxymethyl oxirane 105.02 109.95 116.24 Oxetane 64.87 66.29 64.59 64.02 β-Propiolactone 69.26 68.08 42.60 3,3-Dimethyl oxetane 76.51 77.37 75.97 4-Methylene oxetanone 73.13 72.92 33.52 3,3-Dimethyl oxetanone 82.22 82.43 56.46 3,3-Bis-chloromethyl oxetane 98.93 92.93 95.23 3-Ethyl-3-chloromethyl oxetane 90.46 91.63 96.40 Tetrahydrofuran 72.11 67.57 72.57 66.94 γ-Butyrolactone 71.40 74.21 Tetrahydrofuran methanol 82.75 85.15 87.78 Dihydro-5-methyl furanone 81.19 81.36 5-Hexyldihydro-2 furanone 115.12 118.59 2,3-Dihydrofuran 65.91 68.07 67.27 2,3-Dihydro-5-methyl-furan 71.16 76.68 74.81 cis-2,4,6-Trimethyl-1,3,5-trioxane 88.48 96.30 84.25 Paraldehyde 89.5 90.77 94.95 82.07 O n l y 2,4,10-Trioxatricyclo[3.3.1.1(3,7)]decane 80.40 79.74 21.33 5,5-Dimethyl-2-phenyl-1,3-dioxane 109.84 111.99 111.63 2,5,5-Trimethyl-2-phenyl-1,3-dioxane 118.33 115.27 188.74 1,4-Dioxane 72.92 72.92 73.49 71.61 1,4-Dioxane-2,5-dione 80.84 80.79 3,6-Dihydro-1,2-dioxin 72.54 72.82 78.36 1,3,5-Trioxane 68.09 71.42 70.62 58.68 y l n O R e v i e w 2-Methyl-1,3-dioxane 77.59 80.98 79.32 4-Methyl-1,3-dioxane 80.59 83.38 80.79 2-Hydroxymethyl-1,3-dioxane 85.14 86.76 89.96 5,5-Dimethyl-1,3-dioxane 84.48 86.32 82.55 trans-4,5-Dimethyl-1,3-dioxane 87.69 88.47 87.54 cis-2,4-Dimethyl-1,3-dioxane 87.22 89.22 88.13 2,4,6-Trimethyl-1,3-dioxane 92.77 96.05 94.19 cis-2,2,4,6-Tetramethyl-1,3-dioxane 100.70 102.09 171.31 trans-2,2,4,6-Tetramethyl-1,3-dioxane 96.13 98.89 171.31 1,4-Dimethyl-2,6,7-Trioxabicyclo[2.2.2]octane 84.14 92.22 w e i v e R P e e r 2,4-Dimethyl-1,3-dioxole 78.55 83.58 Tetrahydropyran 73.76 74.07 73.96 Tetrahydropyran-2-one 78.08 79.09 Dihydropyran-2,6-dione 79.45 82.58 85.49 2-2-Methoxyethoxy-tetrahydropyran 108.69 112.52 117.64 3,4-Dihydropyran 73.51 73.45 74.89 1,3-Dioxane 72.32 73.56 70.60 r e e P F o r 2-Methyl-4-methylene-1,3-dioxolane 80.33 82.15 2-Phenyl dioxolane 94.31 95.26 94.46 2-Ethoxy-4,4,5,5-tetramethyl-1,3-dioxolane 110.91 115.63 131.87 2-Methyl-2-phenyl-1,3-dioxolane 95.45 100.11 171.58 1,3-Dioxol-2-one 69.24 68.79 r o F Propylene carbonate 76.94 80.42 50.21 2-Methoxy-1,3-dioxolane 76.76 85.11 95.87 5-Nitro-2-furancarboxylic acid methyl ester 106.05 3-5-Nitro-2-furyl-2-propenal 104.72 103.55 2-Diacetoxymethyl furan 118.49 118.27 134.23 2-Diacetoxymethyl-5-nitrofuran 131.52 137.66 1,3-Diphenylisobenzofuran 121.94 124.13 1,3-Dioxolane 63.41 65.16 71.02 65.38 Ethylene carbonate 69.73 71.65 40.02 2-Methyl-1,3-dioxolane 76.51 77.73 74.10 2. Experimental (Name (Whole Molecule) 3-2-Furanyl-2-propenal 87.09 88.97 92.35 3. Experimental (	88.25 82.89 82.36 76.59 76.07 78.26 64.25 154.97 ∆S f 298.15 (Model S1) 71.45 77.83 93.39 93.36 77.19 100.48 100.46 100.39 90.94 90.94 105.21 107.50 103.24 97.46 104.00 60.23 65.12 74.53 70.35 93.36 91.11 67.31 72.21 81.40 79.33 72.54 91.28 65.44 91.28 114.44 109.78 116.01 72.25 82.14 70.35 70.66 78.88 79.41 79.38 79.433 86.52 86.45 93.46 100.36 87.19 100.36 86.55 86.34 105.39 74.48 105.27 72.59 72.33 84.18 79.36 77.49 84.36 77.49 90.54 111.82 96.92 68.47 76.38 77.35 67.05 77.37 61.69 105.79 105.83 117.75 133.98 120.31 65.21 70.28 72.26 88.33
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as available) and calculated standard molar heat capacities for oxygen- containing heterocycles.

  

  (Whole Molecule) 

	3,6-Dihydro-1,2-dioxin	20.78	21.76 21.608	26.10	20.22
	1,3,5-Trioxane	19.57	20.34 21.526		19.63
	Paraldehyde		37.75	38.31		37.93
	cis-2,4,6-Trimethyl-1,3,5-trioxane		36.21 38.382		37.73
		C p 298.15	C p 298.15	C p 298.15	C p 298.15	C p
	(experimental)	(DFT)	(PM3)	(Benson)
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