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Abstract

In this paper we study the flow which is generated by a valveless pump-
ing mechanism in a closed micro-fluidic tube-system consisting of two
tubes with different radii. This system has been investigated by Ottesen
[J. T. Ottesen, J. Math. Biol. 46, 309,(2003)] at a macroscopic level. We
find that the results from the microscopic simulations qualitatively agree
with the macroscopic results. Especially, is it shown that the direction
of the flow changes with changing pumping frequency and the location
of the pumping device. We study the local flow generated in the system
and show that the stream velocities away from the pumping area can be
modeled by a superposition of a plug flow and a zero-mean oscillatory
flow.

Keywords: Valveless pumping; nonequilibrium molecular dynamics;
moment current; stream velocity; oscillatory flow
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1 Introduction

In the last decade phenomena on very small time and length scales have drawn

the attention of the research community and new disciplines, like synthesis of

nanomaterials, nanofluidics and nanotechnology, have emerged. Currently, mi-

croscopic devices such as miniaturised heat exchanges that cool integrated cir-

cuits, micro-chemical reactors in which hazardous materials are produced, lap-

on-a-chip and biochemical sensors are being developed [1, 2, 3]. For all these

systems very small volumes of fluid are moving through the components. It is

therefore of great importance to develop microscopic pumping devices which can

transport the fluid. Traditionally, the pumping devices have been composed of

valves, peristaltic moving walls, nozzles etc. [4]. However, such mechanic com-

ponents are not easily manufactured on very small scales and it is therefore

desirable to find an alternative.

Ottesen has recently proposed a very simple pumping mechanism which can

be applied to closed tube-systems [5, 6]. The system consists of two rubber

tubes with same length, but different radii and elasticities. The two tubes are

connected at both ends and form a closed torus. If the torus is filled with

a liquid, e.g. water, and if one of the tubes is symmetrically and periodically

compressed (for example by a mechanical finger) at a point of asymmetry on the

torus, i.e. not in the middle of the tube, a mean flow is generated in the system.

A remarkable feature of this system is that the direction of the mean flow is

changed by simply changing the pumping frequency or the pressure point. This

pumping device overcomes many technical difficulties present in the production

of traditional pumping components. Since no valve is needed, the mechanism is

referred to as valveless pumping.
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Previously this pumping mechanism has been applied and studied at a

macroscopic level, that is, at a length scale of the order of centimeters and

time scale of the order of seconds [5]. As it has been shown in numerous studies

are the fluid mechanisms not the same at a microscopic scale, see for example

[7, 8, 9, 10]. In narrow channels the velocity adjacent to the wall is characterised

by a very large variation indicating an abnormal decrease in viscosity [11, 12].

Furthermore, molecular dynamics studies of flows of Lennard-Jones

fluids in carbon nanotubes show large velocity slip at the wall-fluid

boundary [13, 14].

Hence, it is not obvious that the pumping mechanism can be applied to

microscopic systems. Ottesen [5, 6] has proposed a model for the pumping

mechanism based on the assumption that the velocity can be described by one-

parameter velocity profiles. While this choice reduces the parameter space con-

siderably and can account for the physical experiments, it is probably not offer

a correct description of the real physics. If molecular dynamics can capture the

features of the pumping mechanism, it will provide a valuable tool for investi-

gating the underlying fluid dynamics. The purpose of this paper is therefore

twofold: First, we investigate whether the remarkable phenomena seen in the

valveless pumping mechanism can be captured at much smaller time and length

scales. Then we wish to study the fluid dynamics of the system and propose a

more detailed model for the velocity profile. To do so, we use nonequilibrium

molecular dynamics (NEMD) where the length scale is of the order 10−7 meters

and the overall simulation time is of the order of 10−8 seconds.

The next section describes how the tube-system is implemented and how the

pumping device is modeled in the molecular dynamics simulations. In section 3

we present the results from the simulations and in section 4 we shall use these
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results to derive a model for local velocity profile. In the last section we will

make a final conclusions and give a few perspective remarks.

2 Molecular dynamics

We study fluid particles embedded in a two-dimensional domain which interact

through the cut and shifted Lennard-Jones potential:

φ(rij ) =







4ε

[

(

σ
rij

)12

−

(

σ
rij

)6
]

− φ(rc) if rij ≤ rc

0 otherwise

where σ and ε define a length scale and interaction strength, respectively, and rc

is the cutoff radius which is set to 21/6σ [15, 16]. This type of potential is often

referred to as the Weeks-Chandler-Anderson (WCA) potential. Any physical

parameter can now be expressed in appropriate units of σ, ε and particle mass

m. Here we will omit writing the physical units explicitly and simply apply

the reduced dimensionalless quantities. According to work of Delhommelle and

Evans [12] and Travis et al. [8] we will consider the tube walls as being a

framework of atoms initially arranged on a triangle lattice and with number

density fixed at 0.90. The atom is kept in place around its equilibrium (initial)

position by a restoring spring force F(r) = −k(req − r) where k = 150.15 is

the spring constant, r is the atom position and req is the equilibrium position.

The wall atoms interact with the fluid particles and the neighboring wall atoms

through the Lennard-Jones potential described above but with cutoff radius of

rc = 2.5. In this way the wall-fluid interaction has an attractive radius whereas

the fluid-fluid interaction is purely repulsive and we thereby include a ”wetting”

effect minimizing the adhesive slip at the wall-fluid boundary. The tube consists

of four layers of wall atoms. For a smaller number of layers we have observed

that the fluid particles may escape the tube in the pumping area. In the last
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tenth part of the hole tube the wall is located such that there will exists a

narrowing with half the width, see figure 1. By letting the length of the narrow

channel be only one tenth of the hole tube we minimise the density variations

generated by the pumping mechanism.

To simulate the pumping mechanism we let the equilibrium position, req , of

a wall atom move in an oscillatory manner if it is located in the pumping area.

Specifically, we only move the y-component of req = (req,x, req,y) according to:

req,y(t, x) = A sin(π(x − x0)/L) sin(ωt) (1)

where A is the amplitude, x0 is the position where the pumping area starts,

L is the length of the pumping area and ω is the angular pumping frequency.

If the wall atom is located in the upper wall A is negative, and vice versa, if

the wall atom is located in the lower wall A is positive. The amplitude A is

chosen such that the tube is not completely obstructed since this will increase

the fluid density too much. The lower figure in figure 1 shows the tube at

maximum compression. We believe this compression may be achieved by an

artificial muscles based on polymers hydrogel [17].

In order to keep the mean kinetic temperature constant, the wall atoms are

coupled to a Nosé-Hoover thermostat [18, 19, 20], such that the heat generated

in the viscous fluid is removed by heat conduction at the wall-fluid boundary.

In the simulations the mean temperature of the fluid is kept in the range 1.22 ≤

T ≤= 1.55. It should be noted that the heat generated depends on the pumping

frequency and we therefore let the wall temperature vary with frequency. Using

periodic boundary conditions in the x-direction we simulate a closed connected

tube system. The fluid particles are integrated forward in time using the leap-

frog integration scheme. Both the leap-frog scheme and Nosé-Hoover
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thermostat use a time step of dt = 0.005, the systems dimension is

Lx × Ly = 210× 42 and the fluid density is set to 0.6.

3 Simulations results

The direction of the fluid flow is determined by monitoring the momentum

current which is defined as the sample average of the moments of the fluid

particles:

p(t) =
1

N

N
∑

i=1

mivi(t)

where vi(t) is the velocity of particle i at time t. Since we apply periodic bound-

aries in the x-direction we are interested in the x-component of the momentum

current, px(t). The mean momentum current in the x-direction then follows as:

px =
1

t′

∫ t′

0

px(t)dt

where t′ is the duration of the simulation. Figure 2 a shows the moment current

, px(t), and the mean moment current, px for a system where the angular

pumping frequency is ω = 2π/20 and where the pumping mechanism is located

at a point of asymmetry x = 0.75Lx. As it can be seen, the momentum current is

oscillating, however, the mean momentum current tends to some non-zero value

meaning that there exists an uni-directional mean flow in the system. The power

spectrum of the moment current reveals that the signal is dominated by one

frequency which is simply ω/2π. The superimposed figure is the mean moment

current for the last 500 pumping cycles. It is seen that px(t) fluctuates but

remains non-zero. Figure 2 b gives the results obtained after the pumping device

is moved to the middle of the wider channel, that is, to a point of symmetry.

As expected, px vanishes within the statistical error in agreement experimental

results [5].
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In reference [5] it is reported that the direction of the mean flow changes

many times as the pumping frequency varies. To see whether this can be repro-

duced by molecular dynamics simulations the mean moment current is computed

for various pumping frequencies ranging from 2π/100 to 2π/15. The results are

summarised in figure 3. The direction of the mean flow does change, however,

in the frequency range we were able to study using NEMD we observe only one

directional change. Simulations of smaller angular frequencies always show a

positive mean flow. For large ω the pumping mechanism leaves the pumping

area unoccupied by the fluid which results in high density away from the pump-

ing area and no mean flow. As shown in figure 4, the flow direction can also be

changed by varying the location of the pumping mechanism.

Since the flow exhibits oscillatory behavior we will characterise it through

the Stokes parameter Λ = r0/δ, where δ =
√

2ν/ω is the Stokes layer with ν

denoting the kinematic viscosity and r0 is the radius of the wider channel. Using

NEMD to simulate a simple Poiseuille flow we have found that ν ≈ 2.02 (with

a residual standard deviation of 1.510−4), see [21, 22] for details. We thereby

obtain Λ = 2.81 which is about nine times smaller than in the experiments [5].

It is generally agreed that instabilities are located in the Stokes boundary layer.

If the boundary layer is sufficiently small compared to the physical dimensions

of the system it can cause a transition to turbulence, see [23] and references

therein. To check whether such instabilities are likely to occur in the microscopic

simulations we evaluate the Reynolds number based on the Stokes layer Reδ =

u0δ/ν, where u0 is the maximum amplitude of the stream velocity (which has the

same value as the moment current in reduced units). We find that reynold ≈ 0

which is in the same order of magnitude as the physical system. Now, in an

oscillatory flow with zero mean instabilities are known to occur for Reδ > 100
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over a large range of the Stokes parameter [23]. Instabilities are consequently

not expect here. It must be stressed that a global kinematic viscosity is not well

defined in the microscopic NEMD since many of the physical parameters vary

in both time and space. Nevertheless, even large variations of the kinematic

viscosity does not considerably effect the values of the Reynolds number.

Focusing on the spatio-temporal variation of the fluid properties, we define

the local density, ρ, the translational kinetic energy, E, and the stream velocity,

u, from the microscopic quantities according to [15, 8]:

ρ(r, t) =
N

∑

i

miδ(r − ri(t)) (2)

E(r, t) =
1

ρ(r, t)

N
∑

i

miv
2

i δ(r − ri(t)) (3)

u(r, t) =
1

ρ(r, t)

N
∑

i

miviδ(r − ri(t)) (4)

Here δ(r − ri(t)) is the Dirac delta function. In practise the delta function is

replaced by a step function which evaluates to 1 if fluid particle i is located in the

sub-domain associated with a given area and zero otherwise. We determine the

quantities given in equations (2) - (4) in the y-direction in a slab of dimensions

0.1Lx × Ly with 0.2Lx ≤ x ≤ 0.3Lx. In the x-direction parallel to the mean

flow the stream velocity is written as:

ux(y, t) =
1

0.1Lx

∫

0.3Lx

0.2Lx

ux(r, t)dx (5)

where y ∈ [−r0; r0], and so forth for the energy and density. In order to decrease

the noise to signal ratio we divide the period of the pumping into 8 equally

sized time intervals and make sample averages over each interval. Since the

moment current shows regular oscillations we make averages over all cycles as

well. Figure 5 shows the density, the translational kinetic energy and the stream

velocity.
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First, we notice large spatial inhomogeneities near the wall-fluid boundary.

These microscopic structures do not differ from the corresponding equilibrium

situation, steady laminar flows (e.g. Poiseuille flows) or oscillatory flows with

zero mean and they only result in spatial variations of the transport coefficients

if the channel width is very small (less than 6 molecular diameters) [24, 21, 7, 9,

10, 25]. The observed temporal variation is due to the reduced volume generated

by the pump. This leads to oscillatory structural changes (see superimposed

figure) in the fluid as well as considerable variation in the transport coefficients.

Using NEMD simulations of Poiseuille flow it we estimate that the kinematic

viscosity varies up to 58 % during a pressure cycle due to density variation. This

in turn means on a microscopic scale the system exhibits rather large oscillations

in the Stokes layer, namely, around 25 % and the values discussed above are

therefore average values. As already mentioned we do not expect any further

instabilities due to the very low Reynolds number. This result is specific to the

system considered where the pumping area is relatively large compared to the

the total area system. If the system is sufficiently large, we therefore argue that

ρ follows the characteristics of the corresponding equilibrium situation if the

system is sufficiently large.

Figure 5 b) shows that the translational kinetic energy (or temperature)

exhibits very large temporal changes. Nevertheless, in the density range studied

here the kinematic viscosity shows a very weak of temperature dependence of

1% which is lower than the statistical error.

The velocity profiles are depicted in figure 5 c). The fluid flows in the pos-

itive direction for most of the pressure cycle then abruptly changes direction

moving in the opposite direction. As indicated by the temperature ans density

profiles this directional change is associated with a pressure increase and conse-
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quently a viscosity increase. This results in a decrease in the Stokes parameter.

Nevertheless, the inertia forces relative to the viscous forces are still dominating

due to the flow speed. Consequently, the the Reynolds number is relatively large

and we observe the plugged flow. As the flow speed decreases the viscous forces

relative to the inertia forces are increasing which is manifested in ”variable hat”

profiles characteristic of a zero-mean oscillatory flow with relatively small Stokes

parameter. During a pumping period, the dynamics can therefore be divided

into an inertia dominated regime characterised by a plugged flow and a viscous

dominated regime characterized by an oscillatory flow. In between these two

regimes the flow is believed to be a superposition of the two.

4 Model for the local stream velocity

The above discussion suggests the following empirical model for the x-component

of the stream velocity:

ux(y, t) = f1(t)u
p
x(y, t) + f2(t)u

o
x(y, t) (6)

where up
x(y, t) and uo

x(y, t) are spatio-temporal stream velocities for plugged

flow and zero-mean oscillatory flow, respectively, f1(t) and f2(t) are weighting

functions. We assume that f1(t) + f2(t) = 1 for all t, fn ∈ [0; 1], n = 1, 2

and that fn(t) is oscillating in time with the same angular frequency, ω, as the

pumping device. We therefore choose the following functional expressions for

the weighting functions:

f1(t) = sin2(ωt) and f2(t) = 1 − sin2(ωt) (7)

In this way the flow has two extremes, namely, one extreme for relatively high

Reynolds numbers where the flow is described fully by a plugged flow and one
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extreme for relatively low Reynolds numbers where it is given by a zero-mean

oscillatory flow. Between these two extremes the flow is a superposition of the

two. A zero-mean oscillatory flow with a pressure amplitude P is in complex

notation given by [26]:

uo
x(y, t) =

P

iωρ



1 −

cosh
(

1

r0

(Λ + iΛ) y
)

cosh (Λ + iΛ)



 eiωt (8)

Following [5] a plugged flow is assumed to be of the form:

up
x(y, t) =

γ + 2

γ

[

1−

(

y

r0

)γ]

up
x(t) (9)

where the parameter γ controls the flatness of the profile and where:

up
x(t) =

1

2r0

∫ r0

−r0

up
x(y, t)dy (10)

We assume that the plugged flow is temporal oscillatory with the same frequency

as the pumping device, with amplitude u0 and with a mean ux. Thus, we look

for solutions of the integral equations given in (9) and (10) obeying:

up
x(t) = u0 sin(ωt) + ux (11)

where

ux =
1

2tr0

∫ 2π
ω

0

∫ r0

−r0

ux(y, t)dydt (12)

a quantity deduced from the molecular dynamics simulations. Substituting

equations (9) - (12) into equation (6) we obtain the following expression for the

local stream velocity profile:

ux(y, t) =
P

iωρ



1 −

cosh
(

1

r0

(Λ + iΛ) y
)

cosh (Λ + iΛ)



 eiωt sin2(ωt)

+
γ + 2

γ

[

1 −

(

y

r0

)γ]

(u0 sin(ωt) + ux) cos2(ωt) (13)
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The physical solution is then simply the real part of equation (13). In the

following we use the physical parameters found in the molecular dynamics sim-

ulations, that is, Λ = 2.81, u0 = 0.325, r0 = 15.5, ux = −0.015 and ρ = 0.7 .

The parameter γ is set to 10 throughout, leaving only the pressure amplitude

P as a fitting parameter. Figure 6 shows eight velocity profiles for different

times. As it can be seen the qualitative features of the dynamics are captured,

i.e. the flow exhibit a plugged flow character as well as a zero-mean oscillatory

flow dynamics. However, equation 13 does not show the same abrupt directional

changes as the simulations. This may be because the flow in the microscopic

simulations is not fully developed and due to the local variations in transport

coefficients. A quantitative comparison between molecular dynamics and the

model could be performed by including the local variations in the model, in

particular in the expression of the Stokes parameter.

The local temporal dynamics can be investigated by integrating equation (5)

with respect to y:

ux(t) =
1

2r0

∫ r0

−r0

ux(y, t)dy (14)

Figure 7 a) compares the values of ux(t) obtained with molecular dynamics

simulations and the results obtained from equation (13) for the model. It is

clearly seen that the model predicts a less abrupt increase of ux(t), but the power

spectrum given in figure 7 b clearly reveals that the signal is composed of a the

main frequency ω/2π as well as a higher frequency component in agreement with

molecular dynamics. A third frequency is associated with a small amplitude is

present in the molecular dynamics simulation. The comparison of power spectra

deduced from the model and the molecular dynamics simulations proves that

the empirical model for the local velocities captures the main dynamical features
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of the system. Note however, that the model is local and the study of different

sections sections of the system requires changing the Stokes parameter.

5 Conclusion and perspectives

We have shown that the pumping mechanism suggested by Ottesen [5] can be

successfully applied on very small time and length scales, and that, the system

can be studied using NEMD. We have used the results obtained in the molecular

dynamics to propose an empirical model for the local stream velocity, namely,

a model that is a superposition of a plug flow and a zero-mean oscillatory flow.

This model features two frequency components in the temporal variations of

the stream velocity which are also found in the molecular dynamics simulations.

However, the power spectrum of the model does not capture a third frequency

of very small amplitude and the model does not predict the very abrupt change

in flow. We argue that this may be because the flow is not fully developed in

microscopic simulations and because the model does not take into account the

variation of viscosity.

Instead of moving the walls, we have implemented the pump mechanism by

applying an oscillatory pressure gradient in the pumping area. We have ob-

served that this does not change the overall dynamical features in any way. In

particular, we still observe the directional change of the flow. The original work

done by Ottesen was concerned with modeling the cardio-vascular system, and

the two rubber tubes had different elasticity. In the present simulations the two

tubes have the same physical properties including same elasticity, because they

are made of identical atoms with identical interaction potentials. In both sys-

tems the directional change is observed, indicating that the this is independent

of the details of the physical properties of the tubes.
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We have here focused on a two dimensional system. It is debated

whether the transport coefficients are well defined in two dimensions,

because of the algebraic decay of the autocorrelation functions [27].

Nevertheless, many physical phenomena are observable in both two

and three dimensions, e.g. the characteristic quadratic velocity profile

in a Poiseuille flow [22]. We therefore believe that the present sim-

ulations captures the true fluid dynamics. However, a more detailed

study will include the third spatial dimension as well as a more real-

istic model for the wall, for example by simulating valveless pumping

in a carbon nanotube [13, 14].

The pumping mechanism can be applied in various situations and molecular

dynamics can in our opinion play an important role in predicting its applicabil-

ity. For example, the work can be extended to very viscous fluids like polymers

melts, or to charges particles.

14

Page 14 of 25

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

References

[1] N-T. Nguyen, X. Huang. Miniature valveless pumps based on printed circuit

board technique Sensors and Actuators A, 88, 104 (2000).

[2] J. Ouellette. A new wave of microfluidic devices. Ind. Phys., Aug./Sept.

(2003).

[3] J. C. T. Eijkel, A. van den Berg. Nanofluidics: what is it and what can we

expect from it? Microfluidics and Nanofluidics, 1, 246 (2005).

[4] P. Woias. Micropumps - summarising the first two decades, In Proc. of

SPIE. Microfluidics and BioMEMS (2001)

[5] J.T. Ottesen. Valveless pumping in a closed fluid-filled elastic tube-system;

one-dimensional theory with experimental validation. J Math Biol, 46,

(2003).

[6] J.T. Ottesen. Symmetric compressions of a fluid-filled torus of asymmetric

elasticity generates mean flow of frequency dependent size and orientation.

MIRIAM’s in proceedings, in print.

[7] I. Bitsanis, T.K. Vanderlick, M. Tirrell, H.T. Davis. Tractable Molecular

Theory of Flow in Strongly Inhomogeneous Fluids. J. Chem. Phys. 89,

13152 (1988).

[8] K.P. Travis, B.P. Todd, D.J. Evans. Departure from Navier-Stokes hydro-

dynamics in confined liquids. Phys. Rev. E. 55, 4288 (1997).

[9] K.P. Travis, K.E. Gubbins. Poiseuille flow in Lennard-Jones fluids in narrow

slit pores J. Chem. Phys. 112, 1984 (2000).

15

Page 15 of 25

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

[10] J.S. Hansen, J.T. Ottesen Molecular dynamics simulations of oscillatory

flows in microfluidic channels. Submitted to Microfluidics and Nanofluidics.

[11] J. Castillo-Tejas, J.F.J. Alvarado, G. Gonzales-Alatorre, G. Luna-

Barcenas, I.C. Sanchez, R. Macias-Salinas , O. Manero. Nonequilibrium

molecular dynamics of the rheological and structural properties of the lin-

ear and branched molecules. Simple shear and Poiseuille flows; instabilities

and slip. J. Chem. Phys. 123, 54907 (2005).

[12] J. Delhommelle, D.J. Evans. Configurational temperature profile in con-

fined fluids I. Atomic fluid. J. Chem. Phys. 114, 6229 (2001). J. Delhom-

melle, D.J. Evans. Configurational temperature profile in confined fluids II.

Molecular fluid. J. Chem. Phys. 114, 6236 (2001).

[13] V.P. Stokhan, D. Nicholson, N. Quirke. Fluid flow in nanopores: An exam-

ination of hydrodynamic boundary conditions. J. Chem. Phys. 115, 3878

(2001)

[14] V.P. Stokhan, D. Nicholson, N. Quirke. Fluid flow in nanopores: Accu-

rate boundary conditions for carbon nanotubes. J. Chem. Phys. 117, 8531

(2002)

[15] D.A. McQuarrie. Statistical mechanics. Harper & Row, New York (1976).

[16] D. Rapaport The art of molecular dynamics simulation. Cambridge Uni-

versity Press, Cambridge (1995).

[17] S. J. Kim, H. I. Kim, S. J. Park, I. Y. Kim, S. H. Lee, T. S. Lee, S. I. Kim.

Behavior in electric fields of smart hydrogels with potential application as

bio-inspired actuators. Smart Mater. Struct. 14, 511 (2005).

16

Page 16 of 25

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
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Figure 1: Two snap shots of the simulation box. The white circles represent

the wall atoms and the filled black circles represent the fluid particles.

Upper figure shows the hole tube system. Lower figure shows the pumping

area at maximum compression. See text for further details.

Figure 2: px(t) (thin line) and px (thick line) versus time for ω = 2π/20. a)

Pumping device located at point of asymmetry. The superimosed figure

shows the mean moment current for t ∈ [5000; 15000] b) Pumping device

located at the point of symmetry.

Figure 3: Mean momentum current versus pumping frequency. The error bars

represent the standard deviation for the last 500 pumping cycles .

Figure 4: Mean momentum current versus the location of the pump given as

fraction of tube length. The pumping frequency is 2π/20. The error bars

are the same as in figure 3.

Figure 5: Spatio-temporal variations of a) density, b) stream velocity in the

x-direction, ux and c) translational kinetic energy. The data have been

collected in the slab 0.2Lx < 0.3Lx, ω = 2π/20 . In a): The superimposed

figure shows the fluid structure near the wall fluid boundary.

Figure 6: Velocity profiles as predicted by the model in equation (13).

Figure 7: a) Stream velocities obtained by the molecular dynamics simulations

(full lines) and for the empirical model (dashed lines). b) The correspond-

ing power spectra, where + is the results from the molecular dynamics

simulations and × is from the model.
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