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Auxetic materials and structures exhibit the unexpected behaviour of getting wider when stretched and thinner when compressed. This behaviour requires the structures (the internal structure in the case of materials) to have geometric features which must deform in a way that results in the structure expanding when stretched. This paper assesses the potential for auxetic behaviour of a novel class of two-dimensional periodic structures which can be described as 'connected stars' as they contain star-shaped units of different rotational symmetry which are connected together to form two-dimensional periodic structures. These structures will be studied through a technique based on force-field based methods (the EMUDA technique) and it will be shown that some, but not all, of these structures can exhibit auxetic behaviour. An attempt is made to explain Page 1 of 43 http://mc.manuscriptcentral.
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Introduction

Auxetic materials [START_REF] Evans | Molecular network design[END_REF] (i.e. materials with a negative Poisson's ratio) exhibit the unexpected behaviour of getting fatter when stretched and thinner when compressed.

In recent years, auxetic behaviour has been experimentally measured or predicted in various types of materials including foams [2 -7], nanostructured and liquid crystalline polymers [1, 8 -12], microstructured polymers [13 -15], cubic metals [START_REF] Baughman | Negative Poisson's ratios as a common feature of cubic metals[END_REF], silicates [17 -22] and zeolites [START_REF] Grima | Do zeolites have negative Poisson's ratios?[END_REF]. In all of these materials, the auxetic effect arises from the geometry of the nanostructure or microstructure of these materials and the way this deforms when subjected to uniaxial loads (deformation mechanism) [START_REF] Alderson | A triumph of lateral thought[END_REF].

It has also been shown that the Poisson's ratio is a scale-independent property, i.e. the deformation mechanism can operate at any scale ranging form the nano-level (molecular level) to the macroscale. In fact, in some cases, the same 'deformation mechanism' has been used to explain the presence of auxetic behaviour in very different systems. For example, the 'rotation of rigid units' model has been used to account for the auxetic behaviour in materials ranging from silicates and zeolites (where the auxetic effect is due to nanostructure of the materials) [22,[START_REF] Grima | Do zeolites have negative Poisson's ratios?[END_REF] to polymeric foams (where the auxetic effect is due to features at the micro-millimetre scale) [START_REF] Grima | An alternative explanation for the negative Poisson's ratio in auxetic foams[END_REF] and macrostructures [START_REF] Grima | Empirical Modelling Using Dummy Atoms (EMUDA): An alternative approach for studying 'auxetic' structures[END_REF].

The scale-independence of the Poisson's ratios offers the possibility to classify auxetics according to the type of 'geometry / deformation mechanism' that givers rise to the auxetic behaviour. Such a classification simplifies the study of auxetics as it allows the formulation of theories and explanations that can be applied to materials at various scales. As a consequence of this, an approach for studying auxetic systems is to study 'idealised structures' (in particular, two or three dimensional periodic 4 macrostructures) which expand when stretched. These 'structures', apart from being interesting in their own accord, provide researchers with useful information on which structural features may be implemented at the micro / nano level to produce auxetic materials which mimic the behaviour of these 'macrostructures'.

There are various techniques that can be used to study the properties (including the potential as auxetics) of structures, ranging from (i) the construction of real physical models which can be mechanically tested, to, (ii) the derivation of analytical expressions which describe the 'mechanical properties' of the structures in terms of various geometric and structural parameters. In this respect, we have recently proposed a new methodology for performing such studies where structures are constructed within standard molecular modelling packages using 'dummy atoms' and modelled using a force-field based energy expression which contains bond terms but no non-bond terms [START_REF] Grima | Empirical Modelling Using Dummy Atoms (EMUDA): An alternative approach for studying 'auxetic' structures[END_REF]. This new technique of 'empirical modelling using dummy atoms' (EMUDA) is likely to prove particularly useful to chemists in their quest to study and model (potentially) auxetic structures such as the ones discussed here since chemists may be more familiar with molecular modelling techniques than with techniques relating to modelling of structures. We have shown that this EMUDA technique is particularly suitable for studying the properties of two-dimensional hexagonal honeycombs deforming though stretching or hinging of the rib elements, and in particular, it correctly predicts (within 11% accuracy) the magnitudes of the Poisson's ratios, including in cases when the systems exhibit auxetic behaviour [START_REF] Grima | Empirical Modelling Using Dummy Atoms (EMUDA): An alternative approach for studying 'auxetic' structures[END_REF]. This paper assesses the potential for auxetic behaviour of a novel class of structures which can be described as 'connected stars' as they contain star-shaped units which are connected together to form two-dimensional periodic structures. This study will be performed through the EMUDA technique as this offers the possibility will not provide us with a tool for 'visualising' the deformation mechanisms) or construction of real physical models (which cannot be easily modified so as to assess the relative importance of the various structural properties).

The 'connected stars' structures

A macrostructure that has been extensively investigated for its auxetic properties is the 'hexagonal re-entrant honeycomb' [27 -29] deforming through hinging of the cell walls which as illustrated in Fig. 1a, can be considered as a construct made from 'arrow-shaped building blocks'. However, the re-entrant hexagonal honeycomb is not the only tessellate which can the constructed from 'arrows'. In fact, as illustrated in Fig. 1, 'star-shaped building blocks' which have rotational symmetry of order n = 3, 4 and 6 (shown in bold in Fig. 1) may be built by connecting n = 3, 4 and 6 'arrows' in such a way that the arms of the arrows form 'stars'. These building blocks can be used to construct the periodic structures illustrated in Fig 1b-d, which shall henceforth be referred to as STAR-3, STAR-4 and STAR-6 respectively, or collectively as STAR-n.

---Insert Fig. 1 here ---Given that these STAR-n structures contain the 'arrow-shaped' unit that is responsible for the auxetic behaviour in idealised hinging re-entrant hexagonal honeycomb, one may argue that these structures have a potential for exhibiting auxetic behaviour, and in fact, the STAR-4 system (or constructs which are very similar to it) have been quoted as auxetic by several authors [30 -32]. However, the STAR-3 and STAR-6 systems have not been invested as yet and no systematic investigation has been performed on the potential of these STAR-n structures as auxetics, possibly because of the increased complexity of the geometry when compared to the simpler re-entrant hexagonal honeycomb system.

In view of this, the EMUDA technique will be used to investigate these STAR-n systems (deforming though hinging at the vertices) in an attempt to obtain a better understanding of the potential of these systems as auxetics.

Modelling of the STAR-n systems

Description of the STAR-n systems through EMUDA

As illustrated in Fig. 2, the STAR-n systems can be constructed as periodic systems within a molecular modelling package using two types of dummy atoms, A and B.

Under this description, the variables that need to be monitored during the simulation are: (iii) the torsion angles φ ΑΒ and φ ΑΑ between four connected atoms A-A-B-A and B-A-A-B which must be set to ±180 0 and (0 or ±180 0 ) respectively (a requirement for constraining the systems system to remain planar).

---Insert Figure 2 here ---

The energy expression would thus be of the form: 

( ) ( ) ( ) ( ) 2 
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Simulation of the mechanical properties

The methodology used for the EMUDA simulations of the STAR-n was based on the methodology used by Grima et al. [START_REF] Grima | Empirical Modelling Using Dummy Atoms (EMUDA): An alternative approach for studying 'auxetic' structures[END_REF] for EMUDA modelling of hexagonal honeycombs and were performed using the molecular modelling package Cerius 2 V3.0.

In particular, the systems were constructed using dummy atoms 'A' and 'B' , 50,100, 200, 400,800 kcal mol rad

h h k k ∈ ).
---Insert Table 1 here ---

The numerical values of the on-axis mechanical properties were calculated from the second derivative of the minimised energy expression whilst the off-axis Poisson's ratios were calculated by transforming the 3x3 compliance sub-matrix relating to the YZ-plane.

In particular, for systems (such as the ones discussed here) where the on-axis loading does not produce a shear strain, i.e.: 

ε σ ε σ γ τ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
the on-axis Poisson's ratios and Young's moduli are given by: ( )

( ) ( ) ( ) 4 
sin n ζ = .

Results

Tables 2 

{ } A B -1 -2
, 50,800 kcal mol rad

h h k k ∈ ).
---Insert Table 2 here ------Insert Table 3 here ------Insert Fig. 3 here ---These tables and figures clearly show that the three STAR-n systems have a potential for exhibiting auxetic behaviour. In fact, the values of the on-axis Poisson's ratios ( In this respect, the STAR-4 systems appear to be superior to the STAR-6 systems as these can exhibit lower (i.e. more negative) values of the on-axis Poisson's ratios.

However, the off-axis Poisson's ratio highlight an important difference in the properties of these systems, namely that whilst the Poisson's ratios for the STAR-3

and STAR-6 systems are independent on the direction of loading (a result of the symmetry of these systems), the STAR-4 systems are anisotropic and the magnitudes of the Poisson's ratio are dependent on the direction of loading. In these systems, maximum auxeticity is exhibited for loading parallel to the major axis whilst conventional behaviour is exhibited for loading at 45 0 to the major axis, thus making the STAR-6 systems 'more auxetic'.

Explaining the measured Poisson's ratios in terms of the deformation mechanisms

The presence or otherwise of auxetic behaviour, and the particular values of the Poisson's ratios in the STAR-n systems may be explained by looking at the deformations that result from uniaxial loading of these systems. It should be noted that this analysis is not trivial as the conditions required for the STAR-n systems to exhibit auxetic behaviour are different for systems with different symmetry, and hence each of the three STAR-n systems must be considered independently. ---Insert Fig. 7 here ------Insert Fig. 8 here ------Insert Fig. 9 here ---

The STAR-3 systems

The results in Table 2a suggest that in the case of the STAR-3 systems, auxeticity is only exhibited in situations when the force-constant A (see Table 3a for a comparison of the moduli). 

The STAR-4 systems

The results in Table 2b suggest that in the case of the STAR-4 systems, auxeticity is exhibited for most combinations of the force-constants, but for low ---Insert Fig. 10 here ---

The STAR-6 systems

The STAR-6 systems behave very similarly to the STAR-4 system and once again, auxetic behaviour is exhibited for most combinations of the force-constants. However, for these systems, the auxetic effect decreases under two conditions: This work is highly significant on two accounts: First, it has shown that these 'star' containing systems have a potential for auxetic behaviour. In particular, it has been shown that the systems made from stars of rotational symmetry of order 6 and 4

have a greater potential for exhibiting auxetic behaviour than the systems with rotational symmetry of order 3. We have also shown that the magnitudes of the Poisson's ratios are effected by the stiffness of the hinges which connect the different rod elements of the structure, and that the different systems are effected differently if the stiffness of the hinges are altered.

Secondly, this work has also shown the ease by which the EMUDA technique can be implemented to study the behaviour of periodic strictures under applied loads, and in particular to examine whether such systems are auxetic or not. In particular, we have been able to assess which systems are most promising as auxetics without the need of constructing real physical models or deriving analytical equations, hence accelerating the analysis of these systems, as the most promising systems can be given priority over the others in a more in-dept study, where, for example, the geometric parameters will also be set as variables. 

F

Tables:

Table 1 Parameters in Eqn. 

( A h k , B h k ) { } A B -1 -2
, 50,100, 200, 400,800 kcal mol rad

h h k k ∈ i.e. ( A h k , B h k ) = (50, 50); (50, 100); (50, 200); 
(50, 400); … (800, 400); (800, 800) kcal mol -1 rad -2 50kcal mol rad

h h k k = = (a) A -1 -2 B -1 -2
800kcal mol rad , 50kcal mol rad 50kcal mol rad • Fig4c: STAR-3 with k a = 50 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2

h h k k = = (b), A -1 -2 B -1 -2 50kcal mol rad , 800kcal mol rad h h k k = = (c), A B -1 -2 800kcal mol rad h h k k = = ( 
h h k k = = (a) A -1 -2 B -1 -2 800kcal mol rad , 50kcal mol rad h h k k = = (b), A -1 -2 B -1 -2 50kcal mol rad , 800kcal mol rad h h k k = = (c), A B -1 -2 800kcal mol rad h h k k = = ( 
• Fig4d: STAR-3 with k a = 800 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2

• Fig5a: STAR-4 with k a = 50 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad -2 • Fig5b: STAR-4 with k a = 800 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad -2 • Fig5c: STAR-4 with k a = 50 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2 • Fig5d: STAR-4 with k a = 800 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2

• Fig6a: STAR-6 with k a = 50 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad -2 • Fig6b: STAR-6 with k a = 800 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad -2 • Fig6c: STAR-6 with k a = 50 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2 • Fig6d: STAR-6 with k a = 800 kcal mol -1 rad -2 , k b = 800 kcal mol -1 rad -2

  systems very efficiently and relatively easily when compared to more established (and laborious) methods of derivation of analytical equations (which

  (i) the bond lengths AB and AA where the length AB refers to the dimension of the stars whilst AA refers to the length of the elements which connect the stars with each other;(ii) the bond angles ÂBA and ÂAB where the angle ÂBA refers to the acute angle in the stars whilst the angle ÂAB angles which are equivalent to the θ-hinges in the re-entrant honeycombs.

k

  using 3D periodic boundary conditions and aligned in the YZ-plane (which contains the (100) plane of the unit cell) as illustrated in fig.2. This results in an infinite number of tessellates down the X-direction, which during the simulation were kept aligned with each other at a separation of 1Å from each other by constraining the unit a, β and γ to remain fixed during the simulation at 1Å, 90 0 and 90 0 respectively whilst leaving the unit cell parameters b, c and α as variables.Custom-made force-fields were constructed with the parameters set as described in Table1, i.e. for each of the three different STAR-n structures, one set of parameters was chosen for the geometric -five different combinations were used for the two hinging force-constant (the combinations allowed from

  whilst the off-axis Poisson's ratios yz ν after axis rotation by an angle ζ about the third direction is given by:

  -3 show the on-axis Poison's ratios and Young's moduli of the STAR-n systems having different values of A h k and B h k whilst Fig. 3 show the in-plane off-axis Poisson's ratios of a selection of these system (

  In view of this we have performed simulations where a selection of the STARn systems were loaded in the Z-direction with loads within the range of ±0.1E z . The shapes of resulting 'loaded' structures were then compared (see Fig.4 -6) and the variation of various angles were monitored in an attempt to obtain a better understanding of the way that the various geometric parameters of the different systems change as a result of the applied loads (see Fig.7 -9).

  illustrated in Fig.1, the geometry of the STAR-3 systems may be described as a regular 'hexagonal honeycomb' with 'three-pointed stars' located at its vertices. In such systems, the values of the Poisson's ratios depend on the relative extent of deformations of these two structural components, i.e. the 'honeycomb' and the 'stars'. (Deformations where the 'stars' open up when the system is stretched result in auxetic behaviour whilst deformations of the 'hexagonal honeycomb' result .) This is illustrated very clearly in the simulations (see Fig.

4 and Fig. 7 )k

 7 which show that: stars can be treated as rigid units and uniaxial loading will primarily result in a deformation of the hexagonal honeycomb which makes the system exhibit a high positive Poisson's ratio. In fact, the STAR-3 structure with A h k = 50 kcal mol -1 rad -2 and B h k = 800 kcal mol -1 rad -2 deforms in a such a way that as illustrated in Fig 4b and Fig. 7b, the angle θ changes at a much higher rate than β 1 and β 2 with the result that the system exhibits Poison's a ratio of +0.873. remaining low, the stars start to loose their rigidity open up with the result that deformations of the 'stars' will start to occur concurrently with the deformations of the 'hexagonal honeycomb'. A similar net result can be achieved if the value of A h k is increased whilst B h k remains high, as this wouldrestrict deformations of the 'hexagonal honeycomb' with the result that the two types of deformations will be permitted to occur concurrently. These changes will result in a lowering of the Poisson's ratios, an effect which is seen very clearly in the STAR-1 rad -2 which exhibit Poisson's ratios of +0.292 and +0.247 respectively (compared to +0.873 for the system with A h k = 50 kcal mol -1 rad -2 and B h k = 800 kcal mol -1 rad -2 ). It should be also

  rad-2 , are characterised by having a high Young's modulus (see Table3a) since a high A h k will restrict deformations of the BAB angles which will in turn restrict changes in the shape of the stars. However, the high values of the force-constants high A h k and the small value of B h k will result in a situation where the deformations of the 'stars' (i.e. changes in β 1 and β 2 ) will occur at a higher rate than deformations of the 'hexagonal honeycomb' (i.e. changes in θ, see Fig 4c and Fig. 7c) with the net result that the system can exhibit negative Poisson's ratios (ν zy = -0.163).

k

  to the extent that the STAR-4 system with A h k = 50 kcal mol -1 rad -2 and B h k = 800 kcal mol -1 rad -2 exhibits conventional behaviour. In these systems, a combination of force-constants where B results in a situation where the 'ABA triangles' in the stars assume a rigid shape (the β angles in Fig.8eremain constant) with the consequence that when loads are applied, these triangles rotate relative to each other (due to changes in the α angles) with the net effect that as illustrated in Fig.10, the main deformation is one involving changes in the shape of the 'AAAA quadrilateral' which opens / closes in a 'wine-rack' type fashion hence producing the observed positive Poisson's ratios. This type of behaviour is observed in the system with A h k = 50 kcal mol -1 rad -2 and B h k = 800 kcal mol -1 rad -2 where as illustrated in Fig.8b, uniaxial loading results primarily in changes in the α angles whilst the β angles remain constant. For other combinations of the force-constants, the auxetic effect in the STAR-4 systems is due to deformations which involve 'opening up of the stars' where as illustrated in Fig.8a,c & d, uniaxial loading results in changes in the α and β angles which increase in magnitude when the system is loaded.

k

  (i) for low values of A h k , the auxeticity decreases as B h k increases, to the extent that the STAR-6 system with A can be explained in a similar way to that of the analogous STAR-4 systems since, as illustrated in Fig.11a, these systems behave in such a way where the 'ABA triangles' in the stars assume a rigid shape (the β angles in Fig.9eremain constant) with the consequence that when loads are applied, some of these triangles rotate relative to each other (due to changes in the α angles) with the net effect that as illustrated in Fig.11a, the main deformation is one involving changes in the shape of the 'AAAAAA hexagon' which generates positive Poisson's ratios. Furthermore, as illustrated in Fig.11b, the behaviour of systems where B h k << A h k can also be explained using similar arguments since in such systems, the high value of A h k forces the 'BAB triangles' in the stars assume a rigid shape (the α angles in Fig.9eremain constant) with the consequence that when loads are applied, the changes in the β angles result in the net effect that as illustrated in Fig.11b, the main deformation is one involving changes in the shape of the 'BBBBBB hexagon' which generates positive Poisson's ratios.---Insert Fig.11 here ---This work has examined through the EMUDA technique (a method of analysis based on force-field molecular modelling simulations) the potential as auxetics of a novel class of two dimensional periodic structures which can be described as 'connected stars' where the stars have rotational symmetry of order 3, 4 or 6.
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 2 Figure 2: EMUDA constructs of STAR-3 (a), STAR-4 (b) and STAR-6 (c) systems
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 34 Figure 3: Off-axis plots showing the Poisson's ratio of the STAR-3 system (a) STAR-

  d). An animated version of this figure is available in the supplementary information in electronic format.
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 5 Figure 5: The deformation mechanism of STAR-4 when

  d). An animated version of this figure is available in the supplementary information in electronic format.
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 9 Figure 9: A graphical representation of the way that the various geometric parameters
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 10 Figure 10: The conventional STAR-4 units with the AAAA quadrilateral highlighted.
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 11 Figure 11: The conventional STAR-6 units with the AAAAAA hexagon (a) and the
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  Fig4a: STAR-3 with k a = 50 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad -2 • Fig4b: STAR-3 with k a = 800 kcal mol -1 rad -2 , k b = 50 kcal mol -1 rad-2 

  

  

  

  and k t are the spring constants which define the resistance to 'stretching' (i.e. changes in bond lengths) and 'going out of plane' respectively, where in this case, since the structures are meant to remain planar and not deform through stretching, the force constants k s and k t

	• k s must be set as high as possible;		
	• A h k and B h k are the 'hinging spring constants' where A h k defines the F o resistance to 'hinging of the ÂAB angles' whilst B
		r							
		P							
		e e r						
	where:	∑	angles ∑ i + e R v e w 1 1 cos 2 2 t k φ -⎡ ⎣	⎤ ⎦
	•	0 AB , parameters AB , AA , ÂAB and ÂBA respectively for the unloaded 0 AA , 0 ÂAB and 0 ÂBA represent the values of the geometric O n
		structures, where for the STAR-n structures to exhibit rotational l y
		symmetry of order n, the angles	0 ÂAB and	0 ÂBA must fulfil the
		condition imposed by Euclidean geometry on the sum of interior angles
		of a polygon that	n	0	+	n	(	) ( ) ÂBA 0 360 AAB 0 2 4 90 n -= -	0	;
										8

h k defines the resistance to 'hinging of the ÂBA angles'. Note that these hinging force constants do not necessarily have the same values, but if the structures have to deform through hinging, these force constants must be smaller than k s and k t .

Table 2 )

 2 suggest that the three systems can exhibit negative Poisson's ratios for

	some (but not all) values of A h k and B h k . Furthermore, since all Young's moduli are
	less than 10,000GPa, the simulated properties of the STAR-n systems are likely to be
	within ±10% of the actual values [26].

Table 2

 2 also suggests that the STAR-4 and STAR-6 systems have a greater potential for exhibiting auxetic behaviour than the STAR-3 systems as these can achieve negative on-axis Poisson's ratios for a much larger range of force-constants.
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Table 1 :

 1 Parameters used for the custom-made force-fields

	Table 2				
			k	B h	50	100	200	400	800
	k	A h					
	50		ν yz	0.292	0.484	0.667	0.793	0.872
	100	ν zy F ν yz o r 0.292 0.103 ν zy 0.103	0.496 0.288 0.287	0.667 0.486 0.486	0.793 0.658 0.658	0.873 0.782 0.782
	200 400 800		ν yz ν zy ν yz ν zy ν yz	-0.036 P -0.036 e -0.121 e 0.100 0.100 -0.036 -0.121 -0.036 r -0.163 -0.116	0.281 0.281 0.096 0.096 -0.036	0.475 0.475 0.269 0.269 0.087	0.642 0.642 0.453 0.453 0.247
				ν zy	-0.163	w e i v e R -0.116 -0.036	0.087	0.247
								O n
								l y
								23

Table 2a :

 2a The on-axis Poisson's ratios for the STAR-3 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).

			k	B h	50		100	200	400	800
	k	A h					
	50		ν yz		-0.794	-0.690	-0.476	-0.228	0.079
				ν zy		-0.794	-0.678	-0.530	-0.228	0.079
	100		ν yz		-0.835	-0.760	-0.633	-0.432	-0.163
	200	ν zy F ν yz o ν zy	-0.845 -0.834 -0.834	-0.760 -0.785 -0.785	-0.633 -0.697 -0.697	-0.432 -0.549 -0.549	-0.163 -0.331 -0.331
	400		r ν yz -0.799	-0.765	-0.701	-0.590	-0.415
	800		ν zy ν yz ν zy	-0.799 P -0.719 e r -0.765 -0.694 e -0.719 -0.694	-0.701 -0.647 -0.647	-0.590 -0.562 -0.562	-0.415 -0.424 -0.425
							R e v i e w
								O n
								l y
								24

Table 2b :

 2b The on-axis Poisson's ratios for the STAR-4 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).

			k	B h	50		100	200	400	800
	k	A h					
	50		ν yz		-0.451	-0.418	-0.314	-0.078	0.132
				ν zy		-0.451	-0.413	-0.315	-0.070	0.132
	100		ν yz		-0.406	-0.435	-0.396	-0.274	-0.071
	200	ν zy F ν yz o ν zy	-0.398 -0.265 -0.265	-0.434 -0.375 -0.375	-0.396 -0.403 -0.404	-0.274 -0.347 -0.347	-0.071 -0.204 -0.204
	400		r ν yz -0.082	-0.248	-0.342	-0.349	-0.264
	800		ν zy ν yz ν zy	-0.082 P 0.126 e r -0.249 -0.126 e 0.129 -0.139	-0.343 -0.219 -0.220	-0.349 -0.288 -0.288	-0.264 -0.262 -0.262
							R e v i e w
								O n
								l y
								25

Table 2c :

 2c The on-axis Poisson's ratios for the STAR-6 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).

	Table 3				
			k	B h	50	100	200	400	800
	k	A h					
	50		Ε y	327.289	376.889	449.014	512.033	574.482
				Ε z	327.011	386.145	449.014	512.059	574.911
	100	F Ε y o 547.885 r Ε z 548.637	649.393 648.256	766.636 766.636	889.917 889.917	1013.120 1013.140
	200 400 800		Ε y Ε z Ε y 1669.728 941.265 P 941.176 e e 1081.853 1081.853 1839.148 r Ε z 1669.505 1839.080 R Ε y 3026.268 3204.512 e 1277.368 1277.286 2108.192 2108.192 3516.669 w e i v Ε z 3026.176 3204.512 3516.669	1508.000 1508.318 2481.513 2481.513 4012.680 4012.519	1748.038 1748.282 2922.012 2922.182 4697.261 4697.261
								O n
								l y
								26

Table 3a :

 3a The on-axis Young's moduli for the STAR-3 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).

			k	B h	50	100	200	400	800
	k	A h					
	50		Ε y	955.840	1471.865	2335.957	3573.726	4994.756
				Ε z	955.840	1446.278	2599.496	3573.854	4990.767
	100 200	Ε y 1234.035 F Ε z 1248.439 o r Ε y 1938.774	1860.500 1860.500 2503.317	2846.003 2846.003 3531.822	4399.666 4399.859 5262.050	6480.881 6481.722 7810.059
	400 800		Ε z 1938.774 P Ε y 3136.566 e e 2503.317 3672.285 Ε z 3136.566 3672.420 r Ε y 5282.341 5753.740 R v 3531.822 4670.496 4670.496 6642.753 w e i e Ε z 5282.341 5753.740 6642.753	5262.327 6411.900 6411.900 8233.163 8233.841	7810.059 9135.757 9141.603 10825.205 10827.198
								O n
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Table 3b :

 3b The on-axis Young's moduli for the STAR-4 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).

			k	B h	50	100	200	400	800
	k	A h					
	50		Ε y	672.133	1094.260	1811.233	2838.490	4241.062
				Ε z	672.133	1082.263	1812.842	2537.878	4241.242
	100	F Ε y o 849.907 r Ε z 834.168	1322.891 1321.755	2134.517 2136.113	3466.565 3466.565	5385.610 5385.900
	200 400 800		Ε y Ε z Ε y Ε z Ε y Ε z	1166.398 P 1169.016 e e 1686.426 1686.284 1653.057 2279.670 r 1656.068 2283.314 R 2335.575 2819.284 e 2567.526 2569.307 3241.176 3255.314 4383.466 w e i v 2388.174 3116.236 4386.735	4060.419 4065.041 4852.484 4854.369 6109.109 6110.975	6391.001 6392.227 7415.097 7416.197 8785.030 8786.574
								O n
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Table 3c :

 3c The on-axis Young's moduli for the STAR-6 systems for various combinations of the force-constants k h (in kcal mol -1 rad -2 ).
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