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ABSTRACT:  

 

Auxetics (materials or structures) are systems with a negative 

Poisson’s ratio, a property that arises from the way various geometric 

features in the structure (or internal structure in the case of materials) 

deform when subjected to uniaxial loads. Such systems are normally 

studied by examining the behaviour of idealised representations of 

structures, which deform in a controlled fashion (e.g. deforming solely 

through hinging or stretching). Methods used for the analysis typically 

involve construction of real physical macro-models and/or derivation 

of analytical expressions for the mechanical properties. This paper 

proposes an alternative method for analysing such structures whereby 
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idealised ‘hinging’ or ‘stretching’ structures are constructed within a 

molecular modelling environment using dummy atoms and examined 

using standard molecular mechanics techniques. We will show that this 

methodology of ‘empirical modelling using dummy atoms’ (EMUDA) 

successfully reproduces the known properties of two-dimensional 

conventional and auxetic hexagonal honeycombs hence confirming the 

suitability of this technique for studying auxetic structures.  

 

 

Keywords: Auxetic; negative Poisson’s ratio; honeycomb; modelling; 

EMUDA 
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1. Introduction 

 

The Poisson’s ratio is one of the fundamental mechanical properties of materials and 

describes the changes in shape that result when a material is uniaxially loaded. 

Mathematically, the Poisson’s ratio of a material in a particular Oxi-Oxj plane for 

loading in the Oxi direction is defined by [1]: 

strain in the orthogonal  direction
strain in the axial  direction

j j
ij

i i

Ox
Ox

ε
ν

ε
= − = −  

Equation 1 

This property has a positive value in conventional materials since they contract when 

pulled (i.e. –ve jε  and +ve iε ) and expand when compressed (i.e. +ve jε  and –ve 

iε ). However, the theory of elasticity states that Poisson’s ratios can also assume 

negative values, a property referred to as auxetic behaviour [2] which relates to 

materials that become wider when stretched and thinner when compressed. In fact, the 

theory of elasticity suggests that isotropic three-dimensional materials may exhibit 

Poisson’s ratios within the range 11
2

ν− ≤ ≤ +
 
[1]; two-dimensional isotropic systems 

[3] can exhibit Poisson’s ratios within the range 1 1ν− ≤ ≤ + ; whilst there are no limits 

on the Poisson’s ratios for anisotropic materials.  

Negative Poisson’s ratios are known to result in many beneficial 

enhancements in the properties of materials such as an increased resistance to 

indentation [4, 5], and improved acoustic absorption properties [6,7]. These benefits 

make auxetic materials superior to conventional ones for various practical 

applications, with the result that there is considerable effort aimed at discovering new 

materials that exhibit auxetic behaviour. In fact, in recent years, auxetic behaviour has 
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been predicted and/or experimentally measured in various types of materials including 

foams [8, 12], nano- and micro-structured polymers [2, 13 - 19], cubic metals [20], 

silicates [21 - 26] and zeolites [27]. In all of these materials, the negative Poisson’s 

ratios can be explained in terms of the materials’ particular nanostructure (in the case 

of the nanostructured polymers, metals, silicates and zeolites) or microstructure (in the 

case of the microstructured polymers and foams) and the way these nano/micro-

structures deform when the materials are subjected to uniaxial loads. An important 

feature that has emerged from the research in this field is that the Poisson’s ratio is a 

scale-independent property [4]. In other words, the deformations can take place at the 

nano (molecular), micro or even at the macro level as the only requirement for auxetic 

behaviour is the right combination of the ‘geometry’ and the ‘deformation 

mechanism’. In view of this, a very popular approach for studying auxetic systems is 

to study ‘idealised structures’ which could represent an idealised form of the 

nano/micro-structure of a material. These idealised structures can be studied 

mathematically by deriving analytical equations for their ‘mechanical properties’ in 

terms of various geometric and structural parameters. Although these analytical 

equations are sometimes tedious to derive, once available they provide researchers 

with a very important tool for gaining information about the behaviour of these 

structures and, more importantly, insight into the behaviour of the real materials 

which have nano/micro structures that are similar to these ‘idealised structures’.  

Here we propose an alternative method to deriving analytical equations for 

studying ‘idealised structures’ – a method where the ‘structures’ are constructed using 

‘dummy atoms’ and then modelled using custom-made force-fields within a 

commercially available molecular modelling package. This approach of ‘empirical 

modelling using dummy atoms’ (EMUDA in short) will be tested on systems  that 
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have already been extensively studied through analytical modelling (the hexagonal 

honeycomb structure [28 - 31]) in an attempt to validate the EMUDA methodology 

 

 

2. The mechanical properties of hexagonal honeycomb structures  

 

Hexagonal honeycomb structures deforming solely through hinging of the cell walls 

(the idealised hinging model) or solely through stretching of the cell walls (the 

idealised stretching model) have been extensively studied in view of their potential of 

exhibiting auxetic behaviour [28 - 31]. Referring to Fig. 1, it has been shown through 

analytical modelling that these systems can exhibit both auxetic and conventional 

behaviour, and the sign of the Poisson’s ratios depends on both the shape of the 

honeycomb and the deformation mechanisms:  

(a) for o o0 90θ< <  (i.e. for the re-entrant honeycombs):  

hinging hinging
12 21, veν ν = −     (auxetic behaviour) 

stretching stretching
12 21, veν ν = +  (conventional behaviour) 

(b) for o o90 180θ< < (i.e. for the non re-entrant honeycombs):  

hinging hinging
12 21, veν ν = +   (conventional behaviour) 

stretching stretching
12 21, veν ν = −   (auxetic behaviour) 
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In fact, for the systems illustrated in Fig. 1, the strains in the Oxi directions (i = 

1,2) for the hinging and stretching modes of deformation are given by: 

 hinging 1 i
i

i

dX d
X d

ε θ
θ

=   & stretching 1 i
i

i

dX dl
X dl

ε =     ,        1, 2i =  

Equations 2 

where X1 and X2 are dimensions of the unit cell along the Ox1 and Ox2 directions 

which are given by: 

 ( )1 2 sinX l θ=  & ( )( )2 2 cosX h l θ= −  

Equations 3 

and the analytical equations for the on-axis Poisson’s ratios (from Equation 1 to 

Equations 3) and Young’s moduli for these hexagonal honeycomb systems are given 

by [30, 31]: 

 

For the Hinging model: 

( )
hinging

hinging 2 1
12 hinging hinging

221 1

1 tan X
X

εν θ
ν ε

= = − = −   

Equations 4 

( )
hinging 1
1 2 2

2cos
hK XE

Xbl θ
=   & 

( )
hinging 2
2 2 2

1sin
hK XE

Xbl θ
=  

Equations 5 

For the Stretching model: 

( )
stretching

stretching 2 1
12 stretching

21

cot X
X

εν θ
ε

= − =  &  
stretching

stretching 1 2
21 stretching 2

12

sin cos
2 cos

X
X

ε θ θν
ε θ

= − =
+

 

Equations 6 
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( )
stretching 1
1 2

2sin
sK XE

Xb θ
=  & 

( )( )
stretching 2
2 2

12 cos
sK XE

Xb θ
=

+
 

Equations 7 

where: 

 1

2

X
X

 is the ratio of the unit cell dimensions X1 and X2 which is given by: 

( )
( )( )

( )
( )

1

2

2 sin sin
cos 2 cos h

l

lX
X h l

θ θ
θθ

= =
−−

 

Equation 8 

 

b is the thickness of the honeycombs in the third dimension; 

 

Kh is the hinging force constant governing the resistance to ‘hinging’ of the ‘θ-

hinges’ defined in the usual way, i.e. M = Kh δθ,  where M is the magnitude of 

the moment applied to the arm and δθ is the angular displacement of the arm 

of the honeycomb; 

 

Ks is the stretching force constant governing the resistance to ‘stretching’ of 

the elements of the honeycombs defined in the usual way, i.e. F = Ks δs, where 

F is the magnitude of the force applied along the length of a honeycomb 

element of length s and δs is the change in length of the element.  

 

--- Insert Fig. 1 here --- 
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The equations confirm that the Poisson’s ratios are independent of scale and depend 

only on the ratio the lengths of the honeycomb cell walls, h l , the angle θ  between 

the cell walls (i.e. the geometry of the honeycomb) and the type of deformation 

mechanism (i.e. whether the system deforms through ‘idealised hinging’ or ‘idealised 

stretching’). The equations also suggest that the magnitudes of the Young’s moduli 

depend on scale, i.e. on the magnitude of b and l, but there are no restrictions on the 

range of values these geometric parameters can take.  

 

 

 

3. The EMUDA methodology  

 

The lack of restrictions on the scale at which the idealised honeycombs can be 

constructed permits the construction of these ‘honeycomb structures’ at any scale 

including the nanometre scale, where they can be modelled using force-field based 

molecular modelling packages such as Cerius2. In such an environment, these 

idealised systems can be constructed by inserting ‘dummy atoms’ at the vertices of the 

honeycombs and connecting these by ‘bonds’ that would represent the ‘ribs’ of the 

honeycombs. In this particular case, an infinite sheet of a honeycomb system may be 

constructed within Cerius2 through the use of periodic boundary conditions where one 

unit cell contains four dummy atoms as illustrated in Fig. 2.  
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--- Insert Fig. 2 here --- 

 

The shape and size of the honeycomb may be controlled by adjusting the 

magnitude of the distances and angles between connected atoms. This can be done by 

first labelling the dummy atoms in such a way that the different lengths/angles in the 

system may be uniquely identified (in this particular case, referring to Fig. 2, the 

dummy atoms may be labelled using two different labels, A and B1) and then listing 

the variables that need to be monitored during the simulation. Referring to Fig. 1 and 

Fig. 2, in this particular case, these variables are: 

(i) the bond lengths AA , BB  and AB , which for an 

unloaded honeycomb, their values should be equal to 

0 0AA BB h= =  and 0AB l= ; 

(ii) the bond angles ˆAAB  and ˆABB , which for an unloaded 

honeycomb, their values should be equal to 

00
ˆ ˆAAB ABB θ= = ; 

(iii) the torsion angles φ between four connected atoms X-X-X-

X, were X can be A or B, which must be set to 0o or ±180o 

(a requirement for constraining the honeycomb system to 

stay  planar). 

The ‘rules’ for describing the behaviour of these variables can now be coded in a 

custom-made force-field file that involves bond-terms but no VDW or Coulombic 
                                                 
1 It should be noted that the simplified labelling system using only two different ‘atom types’ (A and B) 
as illustrated in Fig. 2b could be used since this simplified labelling system still permits the 
differentiation between the ‘bonds’ of length l (i.e. bonds A-B) from the ‘bonds’ of length h (i.e. bonds 
A-A and B-B) whilst all the  A-B-B and A-A-B bond angles refer to θ–angles.    
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interactions (or through the use of ‘restraints’).  Such a force-field file must contain all 

the necessary information for setting up the ‘energy expression’ of this ‘molecule’ (or 

rather a ‘mechanical system’ that obeys the classical laws of physics). In this 

particular case, an equation for the ‘potential energy’ of the system can be written in 

the form [32]: 

( ) ( ) ( )

( ) ( )

( )

2 2 2

0 0 0
all AB all AA all BB
bonds bonds bonds

22

0 0all ABB all AAB
bond angles bond angles

all X-X-X

1 1 1AB AB AA AA BB BB
2 2 2

1 1 ˆ ˆˆ ˆ                ABB ABB AAB AAB
2 2

1                1 cos 2
2

s s s

h h

t

E k k k

k k

k φ

= − + − + −

+ − + −

+ −⎡ ⎤⎣ ⎦

∑ ∑ ∑

∑ ∑

-X
torsion angles

∑

 

Equation 9 

where the ‘spring constants’ ks, kh and kt define the resistance to ‘stretching’ (i.e. 

changes in bond lengths), ‘hinging’ (i.e. changes in bond angles), and ‘going out of 

plane’ respectively. Since the honeycomb systems are required to remain planar, kt 

must be set as high as possible. Furthermore, it is possible to make the ‘stretching’ or 

‘hinging’ mechanism predominate by setting h sk k>>  (for systems deforming 

primarily through stretching of the ‘ribs’ (i.e. stretching of the ‘bonds’)), or by setting 

s hk k>>  (for systems deforming primarily through hinging of the ‘θ-hinges’). 

 Having set up the energy expression, the structures can be optimised 

(‘minimised’) using one of the minimisation algorithms in the modelling package so 

as to obtain the conformation with the lowest energy where the various bond lengths 

and angles will become equal, or as close as possible, to their respective ideal values 

that are defined in the force-field. The mechanical properties of the system can then 

be simulated using standard techniques for simulating the mechanical properties of 
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molecular systems [32]. In Cerius2, this can be done in a number of ways, including 

by computing the stiffness matrix C and its inverse, the compliance matrix S from the 

second derivative of the energy expression since: 

  
21

ij
i j

Ec
V

∂
∂ε ∂ε

=   , 1, 2, ,6i j = … ,    

Equation 10 

where V is the volume of the unit cell and εi are strain components. Other mechanical 

properties (including the on- and off-axis Poisson’s ratios) can then be calculated 

from these matrices. Furthermore these periodic systems can be minimised with 

externally applied uniaxial stresses, a procedure that is particularly useful for the 

visualisation of the deformations in the structure that result from an externally applied 

uniaxial load. 

 

 

4. Testing of the EMUDA methodology through modelling of various ‘idealised 

hinging’ or ‘idealised stretching’ honeycombs 

 

4.1 Methods used:  

The simulations were performed using Cerius2 V3.0 (Molecular Simulations Inc., San 

Diego USA) on an O2 R5000 SGI workstation and involved: (a) the construction of 

the unminimised honeycomb structure within the molecular modelling environment; 

(b) writing of the custom-made force-field files; and (c) the calculations, i.e., the 

simulation of the minimum energy structure and the calculation of the mechanical 

properties.  
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(a) Construction of the unminimised model: An ‘unminimised’ honeycomb model was 

constructed through the graphical interface and the ‘Crystal Builder’ module of 

Cerius2 using four dummy atoms per unit cell, which were assigned force-field types 

‘A’ and ‘B’ as illustrated in Fig. 2. The honeycomb was aligned along the YZ-plane 

(that contains the (100) plane of the unit cell) with ‘bonds’ of length h aligned parallel 

to the Z-axes (that corresponds to the [001] direction). This construction results in an 

infinite number of tessellates of ‘honeycombs’ down the X-direction, which were kept 

aligned with each other at a separation of 1Å during the simulation. This was done by 

constraining the unit cell parameters a, β and γ to remain ‘fixed’ during the simulation 

at 1Å, 90o and 90o respectively whilst allowing b, c and α to vary.  

 

(b) Construction of the custom-made force-field files: Twelve different force-field 

files were constructed with different combinations of (h, l), (kh, ks) and θ as listed in 

Table 1. These force-field files describe honeycomb structures that deform solely, (in 

practice predominantly), through hinging of the θ-angles or through stretching of the 

‘bonds’ (the honeycomb ribs), where, referring to Table 1, the force-field files with 

(kh, ks) = (50 kcal mol-1 rad-2, 10,000 kcal mol-1 Å-1) were designed to describe the 

‘idealised hinging structures’, since kh << ks, whilst the force-field files with (kh, ks) = 

(10,000 kcal mol-1 rad-2, 50 kcal mol-1 Å-2) were designed to describe the ‘idealised 

stretching structures’, since kh >> ks. In all simulations, kt was set at the maximum 

value permitted by the software (999 kcal mol-1). 

Note that to avoid cumbersome conversion factors, the ‘stiffness constants’ 

will be given in kcal mol-1 rad-2 (for angles) or kcal mol-1 Å-2 (for lengths), while 

lengths will be given in Å. The units of the stiffness constants relate to one mole (NA = 
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6.022 × 1023) of angles or lengths, and can be converted to SI units through the 

conversion factors listed in Appendix I. 

 

--- Insert Table 1 here --- 

 

(c) Calculations: For each of these twelve force-field files, the unminimised structure 

was first minimised using the SMART minimiser up to the default Cerius2 high 

convergence criteria, which includes a condition that the RMS force must be less than 

0.001 kcal mol-1 Å-1.  The numerical values of the mechanical properties were 

calculated using the second derivative method. This produced the full 6×6 stiffness 

and compliance matrices. However, since the honeycombs are two-dimensional 

systems aligned in the YZ-plane, only a sub-section of the full 6×6 stiffness and 

compliance matrices are of interest, namely the 3×3 sub-matrix, which relate solely to 

Y and Z directions. These 3×3 stiffness and compliance ‘sub-matrices’ relate stress to 

strain for a 2D system in the YZ-plane and are defined through: 

 
22 23 24

32 33 34

42 43 44

y y

z z

yz yz

c c c
c c c
c c c

σ ε
σ ε
τ γ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 & 
22 23 24

32 33 34

42 43 44

y y

z z

yz yz

s s s
s s s
s s s

ε σ
ε σ
γ τ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

Equations 11 

where the terms cij and sij in the 3×3 matrices refer to the respective terms in the 

original 6×6 matrices.  

The Young’s moduli Ey and Ez for loading in Y- and Z-directions respectively 

and the in-plane on-axis Poisson’s ratios νyz and νzy for loading in Y- and Z-directions 

can be calculated from the terms in the compliance matrix, and are given by: 

  
22

1y
y

y
E

s
σ
ε

= =   
33

1z
z

z
E

s
σ
ε

= =   
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  32

22

z
yz

y

s
s

εν
ε

= − = −   23

33

y
zy

z

s
s

ε
ν

ε
= − = −  

Equations 12 

 

In addition to these second derivative calculations, minimisations of these systems at 

various uniaxially applied external loads were also performed in an attempt to 

‘visualise’ the effect of stress on the various geometric parameters of these systems. 

Finally, it should be note that the unit cell used in these simulations, i.e. the 

one which contains only four atoms, is the smallest rectangular unit cell for such 

systems. In order to ensure that the quality of the results obtained were independent of 

the unit cell, a convergence test was carried out were a selection of the simulations 

were repeated with ‘superlattices’ of (2x2) and (4x4) units containing 16 and 64 

dummy atoms per unit cell respectively.  

 

 

 

4.2 Results and discussion:  

 

All the ‘energy minimisations’ and ‘second derivative calculations’ with the smallest 

unit cells were observed to proceed to completion in less than two minutes on the SGI 

O2 workstation. However, the simulation time was considerably longer when the 

larger unit cells were used as illustrated in Table 2. This increase in the computational 

time did not result in any significant differences in the values of the on-axis 

mechanical properties (see Table 2, and hence it may be concluded that the smallest 
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unit cell containing only four ‘dummy atoms’ is a suitable representation for this 

infinite system for simulations of this type.  

 

--- Insert Table 2 here --- 

Images illustrating the deformations for a selection of the honeycombs as a 

result of the uniaxially applied loads are shown in Fig. 3 and in the supplementary 

information in electronic format (where they are shown as an animation). These 

images illustrate very clearly that the ‘hinging re-entrant’ and the ‘stretching non re-

entrant’ honeycombs exhibit auxetic behaviour, whilst the ‘hinging non re-entrant’ 

and the ‘stretching re-entrant’ honeycombs exhibit conventional behaviour.  

These observations are confirmed by the numerical values of the Poisson’s 

ratios obtained from the second derivative method (see Table 3). A comparison of the 

simulated on-axis Poisson’s ratios and Young’s moduli with the equivalent values as 

predicted by the analytical models described in section 2 suggests that the values of 

the Poisson’s ratios and moduli simulated through the EMUDA method are generally 

in very close agreement with those predicted by the analytical models (within ±3% in 

the case of the stretching models and within ±11% in the case of the hinging models, 

see Table 3). In this respect, it should be noted that the extent of agreement of the 

EMUDA simulated mechanical properties to those predicted by the analytical models 

is related to the magnitude of the Young’s moduli (see Fig. 4), and in fact, the 

properties of the ‘stretching models’ compared better with the analytical model than 

the ‘hinging models’ as a result of the lower moduli of the ‘stretching models’. This 

relationship between the ‘quality of the EMUDA results’ and the moduli can be 

explained by the fact that an increase in the Young’s modulus as predicted by the 

analytical expression of the idealised structures signifies that the structures are not 
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easily deformed through the desired mode of deformation. In such scenarios, the 

assumption that the ‘desired mode of deformation’ is the ‘predominant mode of 

deformation’ can no longer be made as other modes of deformation start to compete 

effectively with the desired one.  

--- Insert Fig. 3 here --- 

--- Insert Table 3 here --- 

--- Insert Fig. 4 here --- 

 

In fact, one could argue that the scenarios studied here, i.e. where the honeycomb 

structures deform solely through ‘hinging’ or through ‘stretching’ represent unrealistic 

and highly idealised scenarios, as in reality, one would expect that there is 

superposition of effects given by stretching and hinging of the ribs2.  In such systems, 

for loading by a stress iσ  in an iOx  (i = 1,2) direction, the strains in the iOx  direction 

are given by: 

 stretching + hinging stretching hinging
i i iε ε ε= +  

Equation 13 

where stretching
iε  is the strain due to stretching and hinging

iε  is the strain due to hinging. 

But since a strain iε  in an Oxi direction is related to a stress iσ  in the same direction 

through: 

1
i i

iE
ε σ=  

Equation 14 

                                                 
2 In reality, one would also expect that the ‘rod elements’ will ‘flex’ to some extent, but the flexure 
mode of deformation [29] is not being included in these simulations due to the difficulty to represent 
flexure through the EMUDA methodology.   
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where Ei is the Young’s modulus in the Oxi direction, then from Equation 13 and 

Equation 14: 

 stretching + hinging stretching hinging
i i i

i i iE E E
σ σ σ

= +  

Equation 15 

where stretching + hinging
iE  is the Young’s modulus in the Oxi direction due to concurrent 

stretching and hinging, stretching 
iE  is the Young’s modulus in the Oxi direction due to 

stretching given by Equations 7 whilst hinging
iE  is the Young’s modulus in the Oxi 

direction due to hinging given by Equations 5.  

 

By rearranging Equation 15, the Young’s modulus for loading in an Oxi direction (i = 

1, 2) for systems deforming through concurrent stretching and hinging is given by: 

 
stretching  hinging

stretching + hinging
stretching  hinging

. 
 

i i
i

i i

E EE
E E

=
+

 

Equation 16 

 

Furthermore, since from Equation 1 the strain in the orthogonal jOx  direction are 

given by: 

 ji
j ji i i

iE
ν

ε ν ε σ
−

= − =   

Equation 17 

 

and since in analogy to Equation 13: 

 stretching + hinging stretching hinging
j j jε ε ε= +  
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Equation 18 

 

then from Equation 17 and Equation 18: 

 
stretching + hinging stretching hinging

stretching + hinging stretching hinging

. . .
    ij i ij i ij i

i i iE E E
ν σ ν σ ν σ− − −

= +  

Equation 19 

 

where stretching + hinging
ijν  is the Poisson’s ratio in the Oxi –Oxj plane for loading in the Oxi 

direction due to concurrent stretching and hinging, stretching
ijν  is the Poisson’s ratio in 

the Oxj –Oxj plane for loading in the Oxi direction due to stretching given by 

Equations 6 whilst hinging
ijν  is the Poisson’s ratio in the Oxi –Oxj plane for loading in 

the Oxi direction due to hinging given by Equations 4.  

 

By rearranging Equation 19, the Poisson’s ratio in the Oxi –Oxj plane for loading in 

the Oxi direction (i,j= 1, 2) for systems deforming through concurrent stretching and 

hinging is given by: 

 
stretching hinging hinging stretching

stretching + hinging
stretching hinging

ij i ij i
ij

i i

E E
E E

ν ν
ν

+
=

+
 

Equation 20 

 

In an attempt to assess the suitability of the EMUDA modelling technique for 

simulating such more realistic systems, the simulations described in section 4.1 were 

repeated with force constants (kh, ks) = (50 kcal mol-1 rad-2, 50 kcal mol-1 Å-2).  As 

illustrated in Table 4, the simulated values of the moduli and Poisson’s ratios for these 
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‘concurrent stretching and hinging’ systems compare extremely well with those 

predicted by the analytical model derived here and given by Equation 16 and Equation 

20 (within ±1%, generally the EMUDA Poisson’s ratios agree to the values of the 

analytical model to the 4th decimal place).  

 

All this is very significant as it confirms that the EMUDA technique is suitable for 

simulating the mechanical properties of these structures, and in particular, it can be 

used easily and successfully to: 

(1) assess whether a particular idealised  structure constructed from 

‘rods’ deforming solely through ‘hinging’ or  ‘stretching’ exhibits 

conventional or auxetic behaviour, and to what extent it does so; 

(2) determine how changes in the geometric and structural 

characteristics affect the mechanical properties;  

(3) visualise and measure the effect of stresses on the geometry of 

these structures and hence elucidate the ‘deformation 

mechanism/s’; 

(4) simulate more realistic systems constructed from ‘rods’ which 

deform through ‘concurrent hinging and stretching’ (i.e. it can 

simulate the superposition of effects given by stretching and 

hinging of the rods). 

In other words, the EMUDA technique offers an excellent alternative to the 

construction of analytical expressions and/or real physical models that can be tedious, 

expensive and/or time consuming to derive or produce (especially by chemists who 

may be more familiar with molecular modelling techniques than with techniques 

relating to modelling of ‘structures’). In this respect, it should be noted that EMUDA 

Page 19 of 37

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 20

models offer the advantage that they combine the strengths of physical models and 

analytical expression in the sense that like the analytical models (but unlike the real 

physical models), the EMUDA models can be very easily modified to study the effect 

of changes in the various structural characteristics (a new physical model would need 

to be constructed for each modification introduced), and like the physical models (but 

unlike the analytical models) the EMUDA models allows the user to immediately and 

easily ‘visualise’ the changes in the shape and size of the structure. 

However, the real strength of this new technique is that it is not restricted to 

the study honeycomb of systems and it may be used to simulate the properties of 

virtually any system composed from rods that deforms through hinging or stretching. 

This is very significant as it provides researchers with a quick, easy and inexpensive 

alternative for studying structures that could potentially exhibit negative Poisson’s 

ratios. In this respect, it is important to note that the observation that the quality of 

simulated results improves as the Young’s moduli are lowered suggests that when 

modelling novel systems, care should be taken that the parameters are chosen in such 

a way that the moduli are kept low. (For example, these simulations suggest that if the 

moduli of planar parallel systems arranged at 1Å to each other in the YZ-plane are 

lower than 104 GPa, then the simulated properties will be accurate within ±10%, see 

Table 4. Note that these values of the moduli refer to planar parallel systems arranged 

at 1Å to each other in the third direction.) 

 It should also be noted that this work suggests that molecular modelling 

programs could be easily transformed into tools that may be used by architects and 

structural engineers for visualising and analysing structures/mechanisms and to 

understand how the structures behave when subjected to mechanical loads, in the 

same way that finite element (FE) modelling software normally used by engineers has 
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been successfully used to model molecular systems (e.g. carbon single-walled 

nanotubes [33, 34]). We hope that this will encourage software manufacturers to put 

more effort into the design of ‘molecular modelling packages’ in view of the 

increased marketability of ‘modified versions’ of these packages.  

 

5. Conclusions   

 

This work has shown that the effect of mechanical loads on the shape of structures 

composed from rods that deform through relative changes of the angles between the 

rods (i.e. hinging of the rods) or stretching of the rods can be modelled using standard 

force-field based molecular modelling methods through a technique, which is being 

referred to as ‘Empirical Modelling Using Dummy Atoms’ (EMUDA). It has also 

been shown that this EMUDA technique can reproduce the properties of conventional 

and auxetic hexagonal honeycombs deforming through stretching or hinging of the 

ribs of the honeycomb to an acceptable level of accuracy, which is dependent on the 

stiffness of the honeycombs. All this suggests that the EMUDA technique is likely to 

offer a very effective alternative for studying the properties of novel ‘auxetic’ systems 

that very frequently are assumed to deform in such ways (i.e. through hinging or 

stretching) without the need of constructing more expensive real physical models or to 

derive analytical expressions for the Poisson’s ratios, with the result that it will 

facilitate the discovery, analysis and development of new auxetic systems.  
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Appendix I 

 

The units as used in the EMUDA simulations can be converted to SI to be compared 

with the analytical equations in section 2 through the conversion factors given in 

Table 5. 

  

--- Insert table 5 here --- 
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TABLES: 

 

 

Table 1 
 

 

Parameters 

in Eqn. 5: 

Values used:  

(h, l)  

 

(2Å, 1Å) 

 

(kh, ks) (50 kcal mol-1 rad-2, 10,000 kcal mol-1 Å-2)  or 

(10,000 kcal mol-1 rad-2, 50 kcal mol-1 Å-2) 

 

θ 300, 450 or 600  (for re-entrant honeycombs) 

1200, 1350 or 1500  (for non re-entrant honeycombs) 

 

Table 1: Note that 0 0AA BB h= =  , 0AB l=  and 
00

ˆ ˆAAB ABB θ= =  
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Table 2 

 

 

 
Table 2: The CPU time and the on-axis Poisson’s ratios and Young’s moduli for the ‘idealised 
hinging model’ and the ‘idealised stretching model’ with θ = 45o, as predicted by the EMUDA 
model for different sizes of the unit cell relative to the smallest unit cell containing four ‘dummy 
atoms’. Note that despite the differences in the CPU times, the properties of the systems with 
different unit cell sizes compare very well with each other and the values predicted by the 
analytical models (AM).  
 

 

 

 

Mechanism Type Ey = E1 
(GPa) 

Ez = E2 
(GPa) νyz = ν12 νzy = ν21 

CPU 
Time 
(sec) 

EMUDA (1x1) 752.58 2420.15 -0.536 -1.724 84 

EMUDA (2x2) 752.41 2419.56 -0.536 -1.724 106 

EMUDA (4x4) 752.45 2419.71 -0.536 -1.724 509 
Hinging  

 

AM 760.00 2540.31 -0.547 -1.828 n/a 

EMUDA (1x1) 379.10 253.99 0.544 0.365 71 

EMUDA (2x2) 379.04 253.94 0.544 0.365 106 

EMUDA (4x4) 379.04 253.94 0.544 0.365 480 
Stretching  

 

AM 379.93 254.03 0.547 0.366 n/a 
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Table 3 

 

θ (degrees) Method Ey = E1 (GPa) Ez = E2 (GPa) νyz = ν12 νzy = ν21 

300 AM 408.00 6301.91 -0.255 -3.928 

 EMUDA 407.11 5678.19 -0.251 -3.504 

 deviation -0.22 % -9.90 % -1.32 % -10.81 % 

450 AM 760.00 2540.31 -0.547 -1.828 

 EMUDA 752.45 2419.72 -0.536 -1.724 

 deviation -0.99 % -4.75 % -1.98 % -5.72 % 

600 AM 1604.00 1604.27 -1.000 -1.000 

 EMUDA 1557.78 1557.80 -0.961 -0.961 

 deviation -2.88 % -2.90 % -3.88 % -3.88 % 

1200 AM 963.00 2673.79 0.600 1.667 

 EMUDA 934.67 2596.31 0.577 1.602 

 deviation -2.94 % -2.90 % -3.88 % -3.89 % 

1350 AM 363.00 5318.99 0.261 3.828 

 EMUDA 359.40 5067.11 0.256 3.610 

 deviation -0.99 % -4.74 % -1.99 % -5.71 % 

1500 AM 162.00 15927.54 0.101 9.928 

 EMUDA 161.11 14353.74 0.099 8.855 

 deviation -0.55 % -9.88 % -1.31 % -10.81 % 
 
Table 3a: The on-axis Poisson’s ratios and Young’s moduli for the ‘idealised hinging models’ as 
predicted by the analytical model (AM) and as simulated by the EMUDA model, together with 
the deviations between these values. 
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θ (degrees) Method Ey = E1 (GPa) Ez = E2 (GPa) νyz = ν12 νzy = ν21 

300 AM 612.60 286.45 0.764 0.357 

 EMUDA 608.13 286.43 0.756 0.356 

 deviation -0.73 % -0.01 % -1.00 % -0.28 % 

450 AM 379.93 254.03 0.547 0.366 

 EMUDA 379.04 253.94 0.544 0.365 

 deviation -0.23 % -0.04 % -0.50 % -0.30 % 

600 AM 267.38 267.38 0.333 0.333 

 EMUDA 267.20 267.20 0.332 0.332 

 deviation -0.07 % -0.07 % -0.34 % -0.34 % 

1200 AM 160.43 445.63 -0.200 -0.556 

 EMUDA 160.32 445.34 -0.199 -0.554 

 deviation -0.07 % -0.07 % -0.35 % -0.33 % 

1350 AM 181.45 531.9 -0.261 -0.766 

 EMUDA 181.03 531.72 -0.260 -0.763 

 deviation -0.23 % -0.03 % -0.50 % -0.30 % 

1500 AM 242.38 723.98 -0.302 -0.903 

 EMUDA 240.64 723.86 -0.299 -0.900 

 deviation -0.72 % -0.02 % -0.98 % -0.28 % 
 
 
 
Table 3b: The on-axis Poisson’s ratios and Young’s moduli for the ‘idealised stretching models’ 
as predicted by the analytical model (AM) and as simulated by the EMUDA model, together with 
the deviations between these values. 
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Table 4 

 

θ (degrees) Method Ey = E1 (GPa) Ez = E2 (GPa) νyz = ν12 νzy = ν21 

300 AM 245.04 274.00 0.15274 0.17079 

 EMUDA 245.08 274.04 0.15270 0.17080 

 deviation 0.016 % 0.016 % -0.027 % 0.005 % 

450 AM 253.29 230.94 0.18231 0.16622 

 EMUDA 253.35 231.18 0.18200 0.16610 

 deviation 0.025 % 0.105 % -0.168 % -0.073 % 

600 AM 229.18 229.18 0.14286 0.14286 

 EMUDA 229.22 229.22 0.14290 0.14290 

 deviation 0.016 % 0.016 % 0.030 % 0.030 % 

1200 AM 137.51 381.97 -0.08571 -0.23810 

 EMUDA 137.53 382.03 -0.08570 -0.23810 

 deviation 0.016 % 0.016 % -0.017 % 0.002 % 

1350 AM 120.97 483.54 -0.08707 -0.34804 

 EMUDA 120.64 483.61 -0.08690 -0.34850 

 deviation -0.269 % 0.013 % -0.193 % 0.133 % 

1500 AM 96.95 692.50 -0.06043 -0.43166 

 EMUDA 96.97 692.61 -0.06040 -0.43170 

 deviation 0.016 % 0.016 % -0.056 % 0.009 % 
 
Table 4: The on-axis Poisson’s ratios and Young’s moduli for the ‘hinging + stretching models’ as 
predicted by the analytical model (AM) derived here and as simulated by the EMUDA model, 
together with the deviations between these values. 
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Table 5 

 

 
Parameter SI units 

(as used in analytical 

equation) 

Parameter in the 

EMUDA model 

Conversion 

factor 

Calculated as … 

h (in m) 

 

h (in Å) × 10-10 Å → m   :   × 10-10 

l (in m) 

 

l (in Å) × 10-10 Å → m   :   × 10-10 

Kh (in J rad-2) kh (in kcal mol-1 rad-2) × 4184NA kcal → J   :   × 4.184 × 103 

‘moles’ → ‘units’   :   × NA 

 

Ks (in J m-2) ks (in kcal mol-1 Å-2) × 4184NA × 1020 kcal → J   :   × 4.184 × 103 

‘moles’ → ‘units’   :   × NA 

Å-2  → m-2   :   ÷ (10-10)2
 

 

 

Table 5 The conversion factors required for comparing the EMUDA results with 

those predicted by the analytical model.  
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FIGURES: 

 

Figure 1 
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Figure 2 
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Figure 3 

 

  

 (a)  (b)

  

 (c)  (d)
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Figure 4 
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Captions:  

 

Figure 1: The (a) re-entrant and (b) non re-entrant hexagonal honeycombs made 

from rod elements of lengths h and l at an angle θ to teach other. Note that in the 

EMUDA models, the axes Ox1 and Ox2 will be set parallel to the Y and Z axes 

respectively.  

 

Figure 2: An EMUDA construct of the hexagonal honeycombs built from types 

of dummy atoms ‘A’ and ‘B’.  

 

Figure 3: The effect of loads on (a) a non re-entrant honeycomb deforming 

through hinging; (b) a non re-entrant honeycomb deforming through stretching; 

(c) a re-entrant honeycomb deforming through hinging, and (d) a re-entrant 

honeycomb deforming through stretching. 

 

Figure 4: The percentage differences (absolute values) of the Poisson’s ratios 

from the EMUDA model when compared to the analytical model.  
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