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Introduction

The Poisson's ratio is one of the fundamental mechanical properties of materials and describes the changes in shape that result when a material is uniaxially loaded.

Mathematically, the Poisson's ratio of a material in a particular Ox i -Ox j plane for loading in the Ox i direction is defined by [START_REF] Lempriere | Poisson's ratio in orthotropic materials[END_REF]: strain in the orthogonal direction strain in the axial direction

j j ij i i Ox Ox ε ν ε = - = - Equation 1
This property has a positive value in conventional materials since they contract when pulled (i.e. -ve j ε and +ve i ε ) and expand when compressed (i.e. +ve j ε and -ve i ε ). However, the theory of elasticity states that Poisson's ratios can also assume negative values, a property referred to as auxetic behaviour [START_REF] Evans | Molecular network design[END_REF] which relates to materials that become wider when stretched and thinner when compressed. In fact, the theory of elasticity suggests that isotropic three-dimensional materials may exhibit

Poisson's ratios within the range 1 1 2 ν -≤ ≤ + [START_REF] Lempriere | Poisson's ratio in orthotropic materials[END_REF]; two-dimensional isotropic systems [START_REF] Wojciechowski | Remarks on "Poisson ratio beyond the limits of the elasticity theory[END_REF] can exhibit Poisson's ratios within the range 1 1 ν -≤ ≤ + ; whilst there are no limits on the Poisson's ratios for anisotropic materials.

Negative Poisson's ratios are known to result in many beneficial enhancements in the properties of materials such as an increased resistance to indentation [START_REF] Alderson | A triumph of lateral thought[END_REF][START_REF] Lakes | Indentability of conventional and negative Poisson's ratio foams[END_REF], and improved acoustic absorption properties [START_REF] Scarpa | Trends in acoustic properties of iron particle seeded auxetic polyurethane foam[END_REF][START_REF] Scarpa | Passive and MR fluid-coated auxetic PU foam -Mechanical, acoustic, and electromagnetic properties[END_REF]. These benefits make auxetic materials superior to conventional ones for various practical applications, with the result that there is considerable effort aimed at discovering new materials that exhibit auxetic behaviour. In fact, in recent years, auxetic behaviour has foams [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF]12], nano-and micro-structured polymers [2, 13 -19], cubic metals [START_REF] Baughman | Negative Poisson's ratios as a common feature of cubic metals[END_REF],

silicates [21 -26] and zeolites [START_REF] Grima | Do zeolites have negative Poisson's ratios?[END_REF]. In all of these materials, the negative Poisson's ratios can be explained in terms of the materials' particular nanostructure (in the case of the nanostructured polymers, metals, silicates and zeolites) or microstructure (in the case of the microstructured polymers and foams) and the way these nano/microstructures deform when the materials are subjected to uniaxial loads. An important feature that has emerged from the research in this field is that the Poisson's ratio is a scale-independent property [START_REF] Alderson | A triumph of lateral thought[END_REF]. In other words, the deformations can take place at the nano (molecular), micro or even at the macro level as the only requirement for auxetic behaviour is the right combination of the 'geometry' and the 'deformation mechanism'. In view of this, a very popular approach for studying auxetic systems is to study 'idealised structures' which could represent an idealised form of the nano/micro-structure of a material. These idealised structures can be studied mathematically by deriving analytical equations for their 'mechanical properties' in terms of various geometric and structural parameters. Although these analytical equations are sometimes tedious to derive, once available they provide researchers with a very important tool for gaining information about the behaviour of these structures and, more importantly, insight into the behaviour of the real materials which have nano/micro structures that are similar to these 'idealised structures'.

Here we propose an alternative method to deriving analytical equations for studying 'idealised structures' -a method where the 'structures' are constructed using 'dummy atoms' and then modelled using custom-made force-fields within a commercially available molecular modelling package. This approach of 'empirical modelling using dummy atoms' (EMUDA in short) will be tested on systems that honeycomb structure [28 -31]) in an attempt to validate the EMUDA methodology

The mechanical properties of hexagonal honeycomb structures

Hexagonal honeycomb structures deforming solely through hinging of the cell walls (the idealised hinging model) or solely through stretching of the cell walls (the idealised stretching model) have been extensively studied in view of their potential of exhibiting auxetic behaviour [28 -31]. Referring to Fig. 1, it has been shown through analytical modelling that these systems can exhibit both auxetic and conventional behaviour, and the sign of the Poisson's ratios depends on both the shape of the honeycomb and the deformation mechanisms: In fact, for the systems illustrated in Fig. 1, the strains in the Ox i directions (i = 1,2) for the hinging and stretching modes of deformation are given by: hinging

1 i i i dX d X d ε θ θ = & stretching 1 i i i dX dl X dl ε = , 1, 2 i = Equations 2
where X 1 and X 2 are dimensions of the unit cell along the Ox 1 and Ox 2 directions which are given by: ( )

1 2 sin X l θ = & ( ) ( ) 2 2 cos X h l θ = - Equations 3
and the analytical equations for the on-axis Poisson's ratios (from Equation 1to

Equations 3) and Young's moduli for these hexagonal honeycomb systems are given by [START_REF] Masters | Models for the elastic deformation of honeycombs[END_REF][START_REF] Evans | Auxetic 2-dimensional polymer networks -an example of tailoring geometry for specific mechanical -properties[END_REF]:

For the Hinging model:

( ) hinging hinging 2 1 12 hinging hinging 2 21 1 1 tan X X ε ν θ ν ε = =- =- Equations 4 ( ) hinging 1 1 2 2 2 cos h K X E X bl θ = & ( ) hinging 2 2 2 2 1 sin h K X E X bl θ = Equations 5
For the Stretching model: 

( ) stretching stretching 2 1 12 stretching 2 1 cot X X ε ν θ ε = - = & stretching stretching 1 2 21 stretching 2 1 2 sin cos 2 cos X X ε θ θ ν ε θ = - = +
stretching 1 1 2 2 sin s K X E X b θ = & ( ) ( ) stretching 2 2 2 1 2 cos s K X E X b θ = + Equations 7
where:

1 2 X X is the ratio of the unit cell dimensions X 1 and X 2 which is given by:

( ) ( ) ( ) ( ) ( ) 1 2 2 sin sin cos 2 cos h l l X X h l θ θ θ θ = = - - Equation 8
b is the thickness of the honeycombs in the third dimension; K h is the hinging force constant governing the resistance to 'hinging' of the 'θhinges' defined in the usual way, i.e. M = K h δθ, where M is the magnitude of the moment applied to the arm and δθ is the angular displacement of the arm of the honeycomb; K s is the stretching force constant governing the resistance to 'stretching' of the elements of the honeycombs defined in the usual way, i.e. F = K s δs, where F is the magnitude of the force applied along the length of a honeycomb element of length s and δs is the change in length of the element.

---Insert Fig. 1 here -- The equations confirm that the Poisson's ratios are independent of scale and depend only on the ratio the lengths of the honeycomb cell walls, h l , the angle θ between the cell walls (i.e. the geometry of the honeycomb) and the type of deformation mechanism (i.e. whether the system deforms through 'idealised hinging' or 'idealised stretching'). The equations also suggest that the magnitudes of the Young's moduli depend on scale, i.e. on the magnitude of b and l, but there are no restrictions on the range of values these geometric parameters can take.

The EMUDA methodology

The lack of restrictions on the scale at which the idealised honeycombs can be constructed permits the construction of these 'honeycomb structures' at any scale including the nanometre scale, where they can be modelled using force-field based molecular modelling packages such as Cerius 2 . In such an environment, these idealised systems can be constructed by inserting 'dummy atoms' at the vertices of the honeycombs and connecting these by 'bonds' that would represent the 'ribs' of the honeycombs. In this particular case, an infinite sheet of a honeycomb system may be constructed within Cerius 2 through the use of periodic boundary conditions where one unit cell contains four dummy atoms as illustrated in Fig. 2. The shape and size of the honeycomb may be controlled by adjusting the magnitude of the distances and angles between connected atoms. This can be done by first labelling the dummy atoms in such a way that the different lengths/angles in the system may be uniquely identified (in this particular case, referring to Fig. 2, the dummy atoms may be labelled using two different labels, A and B 1 ) and then listing the variables that need to be monitored during the simulation. Referring to Fig. 1 and Fig. 2, in this particular case, these variables are: (iii) the torsion angles φ between four connected atoms X-X-X-X, were X can be A or B, which must be set to 0 o or ±180 o (a requirement for constraining the honeycomb system to stay planar).

The 'rules' for describing the behaviour of these variables can now be coded in a custom-made force-field file that involves bond-terms but no VDW or Coulombic 1 It should be noted that the simplified labelling system using only two different 'atom types' (A and B) as illustrated in Fig. 2b could be used since this simplified labelling system still permits the differentiation between the 'bonds' of length l (i.e. bonds A-B) from the 'bonds' of length h (i.e. bonds A-A and B-B) whilst all the A-B-B and A-A-B bond angles refer to θ-angles. the necessary information for setting up the 'energy expression' of this 'molecule' (or rather a 'mechanical system' that obeys the classical laws of physics). In this particular case, an equation for the 'potential energy' of the system can be written in the form [START_REF]Force-field Based Simulations' and 'Property prediction' User Guides[END_REF]:

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 0 0 0 all AB all AA all BB bonds bonds bonds 2 2 0 0 all ABB all AAB bond angles bond angles all X-X-X 1 1 1 AB AB AA AA BB BB 2 2 2 1 1 ˆˆ ABB ABB AAB AAB 2 2 1 1 cos 2 2 s s s h h t E k k k k k k φ = - + - + - + - + - + - ⎡ ⎤ ⎣ ⎦ ∑ ∑ ∑ ∑ ∑ -X torsion angles ∑ Equation 9
where the 'spring constants' k s , k h and k t define the resistance to 'stretching' (i.e. changes in bond lengths), 'hinging' (i.e. changes in bond angles), and 'going out of plane' respectively. Since the honeycomb systems are required to remain planar, k t must be set as high as possible. Furthermore, it is possible to make the 'stretching' or 'hinging' mechanism predominate by setting h s k k >> (for systems deforming primarily through stretching of the 'ribs' (i.e. stretching of the 'bonds')), or by setting s h k k >> (for systems deforming primarily through hinging of the 'θ-hinges').

Having set up the energy expression, the structures can be optimised ('minimised') using one of the minimisation algorithms in the modelling package so as to obtain the conformation with the lowest energy where the various bond lengths and angles will become equal, or as close as possible, to their respective ideal values that are defined in the force-field. The mechanical properties of the system can then be simulated using standard techniques for simulating the mechanical properties of [START_REF]Force-field Based Simulations' and 'Property prediction' User Guides[END_REF]. In Cerius 2 , this can be done in a number of ways, including by computing the stiffness matrix C and its inverse, the compliance matrix S from the second derivative of the energy expression since:

2 1 ij i j E c V ∂ ∂ε ∂ε = , 1,2, ,6 i j = … , Equation 10
where V is the volume of the unit cell and ε i are strain components. Other mechanical properties (including the on-and off-axis Poisson's ratios) can then be calculated from these matrices. Furthermore these periodic systems can be minimised with externally applied uniaxial stresses, a procedure that is particularly useful for the visualisation of the deformations in the structure that result from an externally applied uniaxial load.

Testing of the EMUDA methodology through modelling of various 'idealised

hinging' or 'idealised stretching' honeycombs

Methods used:

The simulations were performed using Cerius files were constructed with different combinations of (h, l), (k h , k s ) and θ as listed in Table 1. These force-field files describe honeycomb structures that deform solely, (in practice predominantly), through hinging of the θ-angles or through stretching of the 'bonds' (the honeycomb ribs), where, referring to Table 1, the force-field files with (k h , k s ) = (50 kcal mol -1 rad -2 , 10,000 kcal mol -1 Å -1 ) were designed to describe the 'idealised hinging structures', since k h << k s , whilst the force-field files with (k h , k s ) = (10,000 kcal mol -1 rad -2 , 50 kcal mol -1 Å -2 ) were designed to describe the 'idealised stretching structures', since k h >> k s . In all simulations, k t was set at the maximum value permitted by the software (999 kcal mol -1 ).

Note that to avoid cumbersome conversion factors, the 'stiffness constants' will be given in kcal mol -1 rad -2 (for angles) or kcal mol -1 Å -2 (for lengths), while lengths will be given in Å. The units of the stiffness constants relate to one mole (N A = ---Insert Table 1 here ---(c) Calculations: For each of these twelve force-field files, the unminimised structure was first minimised using the SMART minimiser up to the default Cerius 2 high convergence criteria, which includes a condition that the RMS force must be less than 0.001 kcal mol -1 Å -1 . The numerical values of the mechanical properties were calculated using the second derivative method. This produced the full 6×6 stiffness and compliance matrices. However, since the honeycombs are two-dimensional systems aligned in the YZ-plane, only a sub-section of the full 6×6 stiffness and compliance matrices are of interest, namely the 3×3 sub-matrix, which relate solely to Y and Z directions. These 3×3 stiffness and compliance 'sub-matrices' relate stress to strain for a 2D system in the YZ-plane and are defined through: 

σ ε σ ε τ γ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ & 22 23 
ε σ ε σ γ τ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , Equations 11
where the terms c ij and s ij in the 3×3 matrices refer to the respective terms in the original 6×6 matrices.

The Young's moduli E y and E z for loading in Yand Z-directions respectively and the in-plane on-axis Poisson's ratios ν yz and ν zy for loading in Yand Z-directions can be calculated from the terms in the compliance matrix, and are given by: In addition to these second derivative calculations, minimisations of these systems at various uniaxially applied external loads were also performed in an attempt to 'visualise' the effect of stress on the various geometric parameters of these systems.

Finally, it should be note that the unit cell used in these simulations, i.e. the one which contains only four atoms, is the smallest rectangular unit cell for such systems. In order to ensure that the quality of the results obtained were independent of the unit cell, a convergence test was carried out were a selection of the simulations were repeated with 'superlattices' of (2x2) and (4x4) units containing 16 and 64 dummy atoms per unit cell respectively.

Results and discussion:

All the 'energy minimisations' and 'second derivative calculations' with the smallest unit cells were observed to proceed to completion in less than two minutes on the SGI O2 workstation. However, the simulation time was considerably longer when the larger unit cells were used as illustrated in Table 2. This increase in the computational time did not result in any significant differences in the values of the on-axis mechanical properties (see ---Insert Table 2 here ---Images illustrating the deformations for a selection of the honeycombs as a result of the uniaxially applied loads are shown in Fig. 3 and in the supplementary information in electronic format (where they are shown as an animation). These images illustrate very clearly that the 'hinging re-entrant' and the 'stretching non reentrant' honeycombs exhibit auxetic behaviour, whilst the 'hinging non re-entrant' and the 'stretching re-entrant' honeycombs exhibit conventional behaviour.

These observations are confirmed by the numerical values of the Poisson's ratios obtained from the second derivative method (see Table 3). A comparison of the simulated on-axis Poisson's ratios and Young's moduli with the equivalent values as predicted by the analytical models described in section 2 suggests that the values of the Poisson's ratios and moduli simulated through the EMUDA method are generally in very close agreement with those predicted by the analytical models (within ±3% in the case of the stretching models and within ±11% in the case of the hinging models, see Table 3). In this respect, it should be noted that the extent of agreement of the EMUDA simulated mechanical properties to those predicted by the analytical models is related to the magnitude of the Young's moduli (see Fig. 4), and in fact, the properties of the 'stretching models' compared better with the analytical model than the 'hinging models' as a result of the lower moduli of the 'stretching models'. This relationship between the 'quality of the EMUDA results' and the moduli can be explained by the fact that an increase in the Young's modulus as predicted by the analytical expression of the idealised structures signifies that the structures are not ---Insert Fig. 3 here ------Insert Table 3 here ------Insert Fig. 4 here ---

In fact, one could argue that the scenarios studied here, i.e. where the honeycomb structures deform solely through 'hinging' or through 'stretching' represent unrealistic and highly idealised scenarios, as in reality, one would expect that there is superposition of effects given by stretching and hinging of the ribs2 . In such systems, for loading by a stress i σ in an i Ox (i = 1,2) direction, the strains in the i Ox direction are given by: stretching + hinging stretching hinging i i i

ε ε ε = + Equation 13
where stretching i ε is the strain due to stretching and hinging i ε is the strain due to hinging.

But since a strain i ε in an Ox i direction is related to a stress i σ in the same direction through: direction due to hinging given by Equations 5.

1 i i i E ε σ =
By rearranging Equation 15, the Young's modulus for loading in an Ox i direction (i = 1, 2) for systems deforming through concurrent stretching and hinging is given by: stretching hinging stretching + hinging stretching hinging .

i i i i i E E E E E = + Equation 16
Furthermore, since from Equation 1 the strain in the orthogonal j Ox direction are given by:

ji j ji i i i E ν ε ν ε σ - = - = Equation 17
and since in analogy to Equation 13: By rearranging Equation 19, the Poisson's ratio in the Ox i -Ox j plane for loading in the Ox i direction (i,j= 1, 2) for systems deforming through concurrent stretching and hinging is given by: stretching hinging hinging stretching stretching + hinging stretching hinging

ij i ij i ij i i E E E E ν ν ν + = + Equation 20
In an attempt to assess the suitability of the EMUDA modelling technique for simulating such more realistic systems, the simulations described in section 4.1 were repeated with force constants (k h , k s ) = (50 kcal mol -1 rad -2 , 50 kcal mol -1 Å -2 ). As illustrated in Table 4, the simulated values of the moduli and Poisson's ratios for these predicted by the analytical model derived here and given by Equation 16and Equation 20(within ±1%, generally the EMUDA Poisson's ratios agree to the values of the analytical model to the 4 th decimal place).

All this is very significant as it confirms that the EMUDA technique is suitable for simulating the mechanical properties of these structures, and in particular, it can be used easily and successfully to:

(1) assess whether a particular idealised structure constructed from 'rods' deforming solely through 'hinging' or 'stretching' exhibits conventional or auxetic behaviour, and to what extent it does so;

(2) determine how changes in the geometric and structural characteristics affect the mechanical properties;

(3) visualise and measure the effect of stresses on the geometry of these structures and hence elucidate the 'deformation mechanism/s';

(4) simulate more realistic systems constructed from 'rods' which deform through 'concurrent hinging and stretching' (i.e. it can simulate the superposition of effects given by stretching and hinging of the rods).

In other words, the EMUDA technique offers an excellent alternative to the construction of analytical expressions and/or real physical models that can be tedious, expensive and/or time consuming to derive or produce (especially by chemists who may be more familiar with molecular modelling techniques than with techniques relating to modelling of 'structures'). In this respect, it should be noted that EMUDA analytical expression in the sense that like the analytical models (but unlike the real physical models), the EMUDA models can be very easily modified to study the effect of changes in the various structural characteristics (a new physical model would need to be constructed for each modification introduced), and like the physical models (but unlike the analytical models) the EMUDA models allows the user to immediately and easily 'visualise' the changes in the shape and size of the structure.

However, the real strength of this new technique is that it is not restricted to the study honeycomb of systems and it may be used to simulate the properties of virtually any system composed from rods that deforms through hinging or stretching. This is very significant as it provides researchers with a quick, easy and inexpensive alternative for studying structures that could potentially exhibit negative Poisson's ratios. In this respect, it is important to note that the observation that the quality of simulated results improves as the Young's moduli are lowered suggests that when modelling novel systems, care should be taken that the parameters are chosen in such a way that the moduli are kept low. (For example, these simulations suggest that if the moduli of planar parallel systems arranged at 1Å to each other in the YZ-plane are lower than 10 4 GPa, then the simulated properties will be accurate within ±10%, see ). We hope that this will encourage software manufacturers to put more effort into the design of 'molecular modelling packages' in view of the increased marketability of 'modified versions' of these packages.

Conclusions

This work has shown that the effect of mechanical loads on the shape of structures composed from rods that deform through relative changes of the angles between the rods (i.e. hinging of the rods) or stretching of the rods can be modelled using standard The units as used in the EMUDA simulations can be converted to SI to be compared with the analytical equations in section 2 through the conversion factors given in Table 5.

---Insert Values used:

(h, l) (2Å, 1Å) (k h , k s )
(50 kcal mol -1 rad -2 , 10,000 kcal mol -1 Å -2 ) or (10,000 kcal mol -1 rad -2 , 50 kcal mol -1 Å -2 ) θ 30 0 , 45 0 or 60 0 (for re-entrant honeycombs) 120 0 , 135 0 or 150 0 (for non re-entrant honeycombs) 

  /or experimentally measured in various types of materials including

  extensively studied through analytical modelling (the hexagonal

  e. for the non re-entrant honeycombs):

  (i)the bond lengths AA , BB and AB , which for an unloaded honeycomb, their values should be equal to

  through the use of 'restraints'). Such a force-field file must contain all

  2 V3.0 (Molecular Simulations Inc., San Diego USA) on an O2 R5000 SGI workstation and involved: (a) the construction of the unminimised honeycomb structure within the molecular modelling environment; (b) writing of the custom-made force-field files; and (c) the calculations, i.e., the simulation of the minimum energy structure and the calculation of the mechanical properties.

  Construction of the unminimised model: An 'unminimised' honeycomb model was constructed through the graphical interface and the 'Crystal Builder' module of Cerius 2 using four dummy atoms per unit cell, which were assigned force-field types 'A' and 'B' as illustrated in Fig.2. The honeycomb was aligned along the YZ-plane (that contains the (100) plane of the unit cell) with 'bonds' of length h aligned parallel to the Z-axes (that corresponds to the [001] direction). This construction results in an infinite number of tessellates of 'honeycombs' down the X-direction, which were kept aligned with each other at a separation of 1Å during the simulation. This was done by constraining the unit cell parameters a, β and γ to remain 'fixed' during the simulation at 1Å, 90 o and 90 o respectively whilst allowing b, c and α to vary.(b) Construction of the custom-made force-field files: Twelve different force-field

  × 10 23 ) of angles or lengths, and can be converted to SI units through the conversion factors listed in Appendix I.

  the desired mode of deformation. In such scenarios, the assumption that the 'desired mode of deformation' is the 'predominant mode of deformation' can no longer be made as other modes of deformation start to compete effectively with the desired one.

19 '

 19 concurrent stretching and hinging' systems compare extremely well with those

  advantage that they combine the strengths of physical models and

10 l

 10 (in m) l (in Å) × 10 -10 Å → m : × 10 -10 K h (in J rad -2 ) k h (in kcal mol -1 rad -2 ) × 4184N A kcal → J : × 4.184 × 10 3'moles' → 'units' :× N A K s (in J m -2 ) k s (in kcal mol -1 Å -2 ) × 4184N A × 10 20 kcal → J : × 4.184 × 10 3'moles' → 'units' : × N A Å -2 → m -2 : ÷ (10 -10 ) 2
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 1 Figure 1: The (a) re-entrant and (b) non re-entrant hexagonal honeycombs made from rod elements of lengths h and l at an angle θ to teach other. Note that in the

Figure 2 :

 2 Figure 2: An EMUDA construct of the hexagonal honeycombs built from types

Figure 3 :

 3 Figure 3: The effect of loads on (a) a non re-entrant honeycomb deforming

Figure 4 :

 4 Figure 4: The percentage differences (absolute values) of the Poisson's ratios

Table 2 ,

 2 and hence it may be concluded that the smallest

	unit cell containing only four 'dummy atoms' is a suitable representation for this
	infinite system for simulations of this type.
	F o
	r
	P
	e e r
	R e v i e w
	O n
	l y
	15

  is the Young's modulus in the Ox i direction, then from Equation13and

	where E i Equation 14:				
	stretching + hinging i i E σ	=	stretching i i E σ	+	hinging i i E σ
						Equation 15
	where stretching + hinging i E F o stretching and hinging, stretching is the Young's modulus in the Ox i direction due to concurrent i E is the Young's modulus in the Ox i direction due to
	r P stretching given by Equations 7 whilst hinging i E	is the Young's modulus in the Ox i
	e e r
			R e v i e w
						O n
						l y
						Equation 14
						17

Table 4 .

 4 Note that these values of the moduli refer to planar parallel systems arranged at 1Å to each other in the third direction.)

	It should also be noted that this work suggests that molecular modelling
	programs could be easily transformed into tools that may be used by architects and
	structural engineers for visualising and analysing structures/mechanisms and to
	understand how the structures behave when subjected to mechanical loads, in the
	same way that finite element (FE) modelling software normally used by engineers has

table 5

 5 

	here ---

TABLES : Table 1 Parameters in Eqn. 5:

 :1 

Table 1 : Note that

 1 

Table 2 : The CPU time and the on-axis Poisson's ratios and Young's moduli for the 'idealised hinging model' and the 'idealised stretching model' with θ = 45 o , as predicted by the EMUDA model for different sizes of the unit cell relative to the smallest unit cell containing four 'dummy atoms'. Note that despite the differences in the CPU times, the properties of the systems with different unit cell sizes compare very well with each other and the values predicted by the analytical models (AM).

 2 

	Mechanism	Type	E y = E 1 (GPa)	E z = E 2 (GPa)	ν yz = ν 12	ν zy = ν 21	CPU Time (sec)
		EMUDA (1x1)	752.58	2420.15	-0.536	-1.724	84
	Hinging	EMUDA (2x2)	752.41	2419.56	-0.536	-1.724	106
		EMUDA (4x4)	752.45	2419.71	-0.536	-1.724	509
		AM	760.00	2540.31	-0.547	-1.828	n/a
		EMUDA (1x1)	379.10	253.99	0.544	0.365	71
	Stretching	EMUDA (2x2)	379.04	253.94	0.544	0.365	106
		EMUDA (4x4)	379.04	253.94	0.544	0.365	480
		AM	379.93	254.03	0.547	0.366	n/a

Table 3

 3 

	θ (degrees)	Method	E y = E 1 (GPa)	E z = E 2 (GPa)	ν yz = ν 12	ν zy = ν 21
	30 0	AM	408.00	6301.91	-0.255	-3.928
		EMUDA	407.11	5678.19	-0.251	-3.504
		deviation	-0.22 %	-9.90 %	-1.32 %	-10.81 %
	45 0	AM	760.00	2540.31	-0.547	-1.828
		EMUDA	752.45	2419.72	-0.536	-1.724
		deviation	-0.99 %	-4.75 %	-1.98 %	-5.72 %
	60 0	AM	1604.00	1604.27	-1.000	-1.000
		EMUDA	1557.78	1557.80	-0.961	-0.961
		deviation	-2.88 %	-2.90 %	-3.88 %	-3.88 %
	120 0	AM	963.00	2673.79	0.600	1.667
		EMUDA	934.67	2596.31	0.577	1.602
		deviation	-2.94 %	-2.90 %	-3.88 %	-3.89 %
	135 0	AM	363.00	5318.99	0.261	3.828
		EMUDA	359.40	5067.11	0.256	3.610
		deviation	-0.99 %	-4.74 %	-1.99 %	-5.71 %
	150 0	AM	162.00	15927.54	0.101	9.928
		EMUDA	161.11	14353.74	0.099	8.855
		deviation	-0.55 %	-9.88 %	-1.31 %	-10.81 %

Table 3a : The on-axis Poisson's ratios and Young's moduli for the 'idealised hinging models' as predicted by the analytical model (AM) and as simulated by the EMUDA model, together with the deviations between these values.

 3a 

	θ (degrees)	Method	E y = E 1 (GPa)	E z = E 2 (GPa)		ν yz = ν 12	ν zy = ν 21
	30 0	AM	612.60	286.45		0.764	0.357
		EMUDA	608.13	286.43		0.756	0.356
		deviation	-0.73 %	-0.01 %		-1.00 %	-0.28 %
	45 0 F o AM EMUDA	379.93 379.04	254.03 253.94		0.547 0.544	0.366 0.365
		r deviation	-0.23 %	-0.04 %		-0.50 %	-0.30 %
	60 0 120 0	AM P EMUDA e 267.38 267.20 deviation -0.07 % e AM 160.43 r EMUDA 160.32	267.38 267.20 -0.07 % 445.63 445.34		0.333 0.332 -0.34 % -0.200 -0.199	0.333 0.332 -0.34 % -0.556 -0.554
	135 0 150 0	deviation AM EMUDA deviation AM EMUDA	-0.07 % R 181.45 e -0.07 % 531.9 181.03 531.72 v -0.23 % -0.03 % i 242.38 723.98 e w 240.64 723.86	-0.35 % -0.261 -0.260 -0.50 % -0.302 -0.299	-0.33 % -0.766 -0.763 -0.30 % -0.903 -0.900
		deviation	-0.72 %	-0.02 %	n O -0.98 %	-0.28 %
						l y
							30

Table 3b : The on-axis Poisson's ratios and Young's moduli for the 'idealised stretching models' as predicted by the analytical model (AM) and as simulated by the EMUDA model, together with the deviations between these values.
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Table 4

 4 

	θ (degrees)	Method	E y = E 1 (GPa)	E z = E 2 (GPa)	ν yz = ν 12	ν zy = ν 21
	30 0	AM	245.04	274.00	0.15274	0.17079
		EMUDA	245.08	274.04	0.15270	0.17080
		deviation	0.016 %	0.016 %	-0.027 %	0.005 %
	45 0	AM	253.29	230.94	0.18231	0.16622
		EMUDA	253.35	231.18	0.18200	0.16610
		deviation	0.025 %	0.105 %	-0.168 %	-0.073 %
	60 0	AM	229.18	229.18	0.14286	0.14286
		EMUDA	229.22	229.22	0.14290	0.14290
		deviation	0.016 %	0.016 %	0.030 %	0.030 %
	120 0	AM	137.51	381.97	-0.08571	-0.23810
		EMUDA	137.53	382.03	-0.08570	-0.23810
		deviation	0.016 %	0.016 %	-0.017 %	0.002 %
	135 0	AM	120.97	483.54	-0.08707	-0.34804
		EMUDA	120.64	483.61	-0.08690	-0.34850
		deviation	-0.269 %	0.013 %	-0.193 %	0.133 %
	150 0	AM	96.95	692.50	-0.06043	-0.43166
		EMUDA	96.97	692.61	-0.06040	-0.43170
		deviation	0.016 %	0.016 %	-0.056 %	0.009 %

Table 4 : The on-axis Poisson's ratios and Young's moduli for the 'hinging + stretching models' as predicted by the analytical model (AM) derived here and as simulated by the EMUDA model, together with the deviations between these values.
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Table 5 The conversion factors required for comparing the EMUDA results with those predicted by the analytical model.

 5 

	FIGURES:
	F o
	r
	P
	e e r
	R e v i e w
	O n
	l y
	33

http://mc.manuscriptcentral.com/tandf/jenmol

In reality, one would also expect that the 'rod elements' will 'flex' to some extent, but the flexure mode of deformation[START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF] is not being included in these simulations due to the difficulty to represent flexure through the EMUDA methodology.
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