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Abstract

The influence of particle softness on the Poisson’s ratio of model solids has been investigated.

We have used the repulsive inverse power potential (∼ r−n for particle separations, r) between the

particles, which is conveniently characterised by one adjustable parameter, ε = 1/n. For large ε the

interaction is soft whereas in the ε → 0 limit the particles approach hard spheres. The pressure and

elastic constants of the solid phase have been calculated at various densities with constant temperature

molecular dynamics simulation for a range of the softness parameter in the range, n > 12. Density-

softness surfaces of these quantities were determined which revealed hitherto unrecorded trends in the

behaviour of the elastic moduli and Poisson’s ratio. It was found that the pressure and some elastic

properties e.g. the C12 elastic constant and the bulk modulus, manifest a maximum value or ‘ridge’

on this surface. The height of the maximum increases with density and interaction steepness (small

ε). The Poisson’s ratio varies essentially linearly with softness and is relatively insensitive to density.

However, at higher densities and for larger steepness a considerable lowering of the Poisson’s ratio is

observed. In order to identify possible mechanisms for reducing the value of Poisson’s ratio, ν, the

fluctuation and Born-Green contributions were analyzed. Changes in the Poisson’s ratio are mainly

determined by the fluctuation contribution which can cause a considerable decrease as well as increase

of its value.

PACS numbers: 62.20.Dc, 02.70.Ns, 81.40.Jj, 07.05.Tp, 81.40.Wx

Keywords: inverse-power potential, elastic constants, Poisson’s ratio, auxetics, molecular dynamics simulations
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I. INTRODUCTION

Elastic properties constitute one of the most fundamental physical properties of any material.

How a body behaves under applied stress or tension is an important question for technical and

industrial applications as well as having scientific interest. For relatively small deformations

the elastic response is characterised by a set of elastic moduli [1]. These quantities are also

relevant in the study of phase stabilities as the symmetry elements of solid phases are well

reflected in the number of independent elastic constants. In fact, elastic constants can be

considered to be order parameters indicative of phase stability and are therefore relevant in

the study of structural transformations [2]. Indeed the fundamental distinction between a solid

and fluid is marked by the absence of a (zero frequency) shear modulus in the latter [3].

Knowledge of the elastic constants greatly facilitates the design and manufacture of materials

with desirable physical properties. Most of the naturally occurring materials decrease their

transverse dimensions under uniaxial load. This is such a commonly observed phenomenon

that only relatively recently has it been realised that the inverse situation can be observed in

nature and introduced in constructed materials [4], [5] [6], [7]. Materials that expand in all

directions when pulled in one direction are called auxetics (from the Greek ‘auxetos’ which

can be increased). Auxetic materials are not only interesting scientifically for their rare and

counter-intuitive elastic behaviour but also for a number of potentially useful technological

applications [8]. This has focussed attention on what microstructurally is required to give rise

to auxetic behaviour.

Even though auxetic behaviour originates on a wide range of length scales in very different

naturally-occurring and man-made materials, its defining characteristic, in terms of the Pois-
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son’s ratio, ν, is always the same,

ν = −ηT

ηL

, (1)

where ηT and ηL are the strains in orthogonal (transverse and longitudinal) directions.

Poisson’s ratio, the Young’s, shear and bulk moduli are the basic parameters defining the

elastic response of isotropic materials. An auxetic response means a negative Poisson’s ratio,

which is a convenient situation as one can basically concentrate on one well defined quantity

irrespective of the complexity of the considered system or the lengthscale on which the effect

originates. In general, in many materials, physical properties depend on direction and also the

Poisson’s ratio depends on the direction of the applied stretching. In anisotropic materials,

such as crystals, ν can be positive in one direction and negative in another direction.

Materials with negative Poisson’s ratio are quite rare in nature so the impetus is for them

to be manufactured. However, despite considerable progress, the designing and preparation

of materials with ν < 0 still remains a nontrivial task and a real challenge. In particular

little progress has been reported on the synthesis of auxetics that derive this behaviour at

the molecular level [10]. This situation can be attributed to a lack of sufficient fundamental

knowledge on mechanisms leading to ν < 0. Most of the modelling to date has concentrated

on idealized microstructures which by cooperative motion of the members exhibit expansion

when they are stretched. The re-entrant honeycomb structure is the most well known example

that gives auxetic behaviour, and has almost become synonymous with auxeticity [11] [12].

Cellular structures composed of geometrical elements which are vital for a negative ν, such as

the re-entrant honeycomb structure, can be achieved on different length scales and constitute

today the primary source of auxeticity [13].
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Recently, however, a new approach has been discovered for generating auxetics which does not

require re-entrant features but instead employs the relative rotation of rigid units [9]. These

rigid units appear not to be restricted to just a few geometries. In tetrahedral frameworks,

the auxetic effect is achieved through synchronization of the cooperative movements of the

tetrahedral units [9]. Thus, it is likely that the auxetic effects may also occur if a particular

form of translational-rotational coupling exists in the system. In contrast to several proposed

models which are ‘structural’ or mechanical in nature there are only a few thermodynamic

models exhibiting auxeticity (by ‘thermodynamic’ here we mean that the effect originates at

the molecular level). The example in this category is the thermodynamically stable system of

2D hard cyclic hexamers [14, 15].

The connection between auxeticity and the form of interaction between constituent objects or

particles still needs further clarification. In particular the relationship between an interaction,

or its different parts, and ν is still not well understood. Establishing such a connection would

help us understand mechanisms leading to auxetic behaviour and possibly help to explain

why auxetic materials are so rare in nature and not easily manufactured. In fact, the role

played by particle interactions in determining the elastic constants and Poisson’s ratio be-

haviour in general, needs to be investigated in a more systematic manner as part of this exercise.

As a step in this direction, we investigate the influence of repulsive interaction softness on the

elastic properties, and in particular on Poisson’s ratio. The softness of the repulsive core is an

important feature of any particle interaction. For any ensemble of interacting particles to be

thermodynamically stable a repulsive core is required in the interparticle interaction to prevent

the system from collapsing [16]. The nature of this core depends on the chemical architecture

of the particle, and can vary considerably from very soft to extremely hard. It is worth noting
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that particles of variable softness, usually defined through an effective repulsive potential, can

now be manufactured. There is, for example growing interest in soft semi-solid systems made

from colloidal and microgel particles with variable softness [17, 18][19]. So in these systems as

well, establishing any general correlation between elastic properties and microscopic particle

softness is desirable and can be helpful in developing better ν-controlled materials.

Among the different model interparticle potentials, the inverse-power or soft-sphere potential

form is particularly suitable for investigating the role of particle softness. First of all it has the

simple analytic form,

φ(r) = ε(
σ

r
)n, (2)

where r is the separation between two particles, σ is the particle diameter, ε sets the energy

scale and n is a parameter determining the potential steepness (the softness is ε ∼ n−1).

Thus, the single parameter, n, changed continuously can cover a wide spectrum of practically

important systems from the very soft to the extremely hard, i.e., from the long-ranged Coulomb

interaction (n = 1) to the hard sphere system (n →∞). Apart from its simplicity the inverse-

power potential has many features that make this potential attractive as a model system.

From its definition in (2), we see that the inverse power potential is a self-similar function,

which mixes the energy and distance scales. It can be simply represented as r∗−n, where

r∗ = r/σε1/n. An exceptional feature of the inverse power system is that the configurational

properties do not depend upon the density and temperature separately but upon a particular

dimensionless combination of them [20]. In effect the properties computed along one isotherm

are sufficient to determine the entire phase behaviour. Depending on the softness, the r−n

system freezes either into the fcc or bcc crystal structure, and this softness-driven transition

has been extensively studied [21–23].
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In this work we concentrate on thermodynamic properties, elastic constants and moduli of the

fcc solid phase of the inverse power potential. We investigate the basic thermodynamic and

mechanical quantities to establish how the interaction softness, ε, influences the elastic moduli

and Poisson’s ratio.

Methods for calculation of elastic constants are briefly discussed in Sec. II. Simulation results

are presented in Sec. III and concluding remarks are made in Sec. IV.
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II. CALCULATION OF ELASTIC CONSTANTS

Elastic constants are macroscopic characteristics of materials which can be determined experi-

mentally using various techniques including Brillouin scattering, ultrasonic wave propagation,

and neutron scattering. From a microscopic point of view they are N-particle averages which

in many cases can be obtained from molecular simulation. In the last two decades considerable

progress has been made in developing reliable simulation methods for the calculation of elastic

constants of many-particle systems [24],[25],[26],[27]. Both Molecular Dynamics (MD) and

Monte Carlo (MC) calculations can be performed for specified thermodynamic conditions and

in various statistical mechanical ensembles [28, 29]. For example, the isoenthalpic-isotension

ensemble was devised essentially to determine elastic constants by simulation [30]. So the

development of new simulation methods for calculating elastic properties has also had a wider

impact on the development of statistical thermodynamics.

The various approaches for calculating elastic constants can be divided into those exploiting

the defining stress-strain relations by deformation of the simulation cell, and those methods

exploiting fluctuation formulas for different ensembles. For example, in the strain-strain

fluctuation methods the elastic constants are obtained from the fluctuations in the shape of

the simulation cell i.e., from fluctuations of the h tensor constructed from the three vectors

forming the simulation cell [28, 31]. It was found, however that the strain-strain fluctuation

schemes converge slowly, at least in the dynamical MD scheme used [32, 33]. The elastic

constants are more efficiently determined in the ensemble in which the h tensor and hence the

strain are kept fixed and the stress tensor is allowed to fluctuate [24, 34].

For our purposes the most suitable approach is the method based on the fluctuation formulas
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in the canonical ensemble. This approach was invented by Squire, Holt and Hoover, [35] and

has been developed and exploited in many later works (e.g., see refs., [3] and [34]). It yields

isothermal elastic constants and has the advantage that all of the elastic constants can be

obtained from a single simulation. Another advantage of this approach is that the reference

state is not involved in the calculations. Also in the expressions for elastic constants the role

of the interaction potential is more transparent than in the h-fluctuation methods, and allows

for a resolution of the various contributions in the hamiltonian to the elastic properties. For

a system of particles interacting via a pairwise potential, Φ(r) the elastic constants can be

expressed as [34]:

Cαβλτ =
1

V
〈Σi<j∆rα

ij∆rβ
ij∆rλ

ij∆rτ
ij

1

r2
(Φ

′′ − Φ
′
/r)〉

− 1

kBTV
〈δ(

∑
∆rα

ij∆rβ
ijΦ

′
/r)δ(

∑
∆rλ

ij∆rτ
ijΦ

′
/r)〉+

NkBT

V
(δαλδβτ + δατδβλ), (3)

where ∆rα
ij = rα

i − rα
j and Greek indices refer to cartesian components. The symbol δ indicates

the deviation of the quantity from its mean i.e., δX = X− < X > and δαβ is the Kronecker

delta (unity when α = β, zero otherwise). V is the volume of the system of N particles,

kB is Boltzmann’s constant and T is the temperature. The first term in (3) is referred

to as the Born-Green term and the second is the fluctuation term. The last term is the

kinetic contribution, which is relatively small in solids. Thus, the elastic constants Cαβλτ can

be considered to be composed of the sum of two terms, CBG
αβλτ + CFL

αβλτ , where the kinetic

contribution is included in the first, the Born-Green term.

The above formula is for an unstressed system where the components of the reference stress

tensor Sαβ are zero. This quantity can be computed according to

Sαβ =
1

V
〈Σi<j∆rα

ij∆rβ
ijΦ

′
/r〉 − NkBT

V
δαβ. (4)

For a system with isotropic reference stress, i.e., Sαβ = −Pδαβ 6= 0 the appropriate expression
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is [34]

Bαβλτ = Cαβλτ + P (δαβδλτ − δαλδβτ − δατδβλ). (5)

For not too soft interactions (i .e., n > 6) the inverse power solids form the fcc crystal structure,

which has cubic symmetry. In what follows we restrict our discussion to a system with this

symmetry. For a system of spherical particles in a cubic box and axes parallel to the coordinate

axes, the following elastic constants, in the more condensed Voigt’s notation (where the indices

1, 2, 3, 4, 5, 6 are used for xx, yy, zz, xy, xz, yz, respectively) are not zero,

C11 = C22 = C33,

C12 = C13 = C23,

C44 = C55 = C66. (6)

Thus, in this symmetry only three elastic constants need to be considered. The Bαβλτ have the

same symmetry as the elastic constants Cαβλτ , so the Voigt notation can be used and

B11 = C11 − P,

B12 = C12 + P,

B44 = C44 − P. (7)

The elasticity of a system with cubic symmetry can be equivalently described by three elastic

moduli: the bulk modulus B, the shear modulus G and the cubic modulus Gc [3]. They are

related to the elastic constants in the following way,

B = (B11 + 2B12)/3,

G = (B11 −B12 + 3B44)/5,

10
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Gc = (B11 −B12 − 2B44)/2. (8)

The Poisson’s ratio for a stretch along one of the cube axes is, [36]

ν =
B12

B12 + B11

=
C12 + P

C12 + C11

. (9)

Similarly as for the elastic constants, the Born-Green and the fluctuation contribution to the

above moduli can be considered separately using the decomposition, Bαβ = BBG
αβ +BFL

αβ , where

BBG
11 = CBG

11 −P,BBG
12 = CBG

12 + P, BBG
44 = CBG

44 −P and BFL
11 = CFL

11 , BFL
12 = CFL

12 , BFL
44 = CFL

44 .

Knowing BBG
αβ and BFl

αβ we also have B, G, Gc as a sum of Born-Green and fluctuation terms,

e.g., B = BBG +BFL where BFL = (BFL
11 +2BFL

12 )/3, and BBG = (BBG
11 +2BBG

12 )/3. Obviously

the Poisson’s ratio ν is not νBG + νFL, but it is nevertheless informative to define and inspect

the quantities νBG and νFL, as we discuss in the next section.
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III. SIMULATION RESULTS

As a general remark, it is most convenient to keep formulae and calculated properties in

a set of reduced units (uniquely appropriate for the r−n system) where we do not need to

include the temperature in a formula. Temperature effects are removed by taking into account

the unique scaling feature of the inverse power system. We have in these units, for length,

σ̃ = σ(βε)−
1
n , so r̃ = rσ−1(βε)−

1
n = r/σ̃. For density ρ̃ = ρσ̃3 and packing fraction ζ̃ = πρ̃/6.

For energy in kBT , we have ũ = βu and for the potential φ̃ = βφ = r̃−n. For the force there

is F̃ = Fσ̃/kBT , and X̃ = Xε−1σ3(βε)1+ 3
n = Xσ̃3/kBT , where X stands for pressure, elastic

constant or modulus. Time is in t̃ = t(kBT/mσ̃2)1/2 = t(T ∗ε/mσ̃2)1/2. In what follows we

omit the tilde, so keep in mind that we are dealing with temperature-scaled quantities (also

for kBT/ε = 1 the conventional reduced units are recovered).

Molecular dynamics simulations were performed for particles interacting via the inverse power

potential (2) for a range of densities in the solid phase, ζ ≥ 0.56 and several values of n

ranging between 14 to 144. The MD simulations were carried out on N = 256 particle systems

with periodic boundary conditions and a standard interaction cut-off of 2.5, and 2.0 for

n > 70. The canonical Nosé-Hoover equations of motion [37] were solved using the 4−th order

Runge-Kutta algorithm, with a time step, ∆t = 0.001 or 0.0005 (for n > 70). The reduced

temperature was T = 1. The data were calculated from averages over 0.5− 1 million time step

runs after equilibration and the initial positions of the particles were on fcc lattice sites. The

statistical convergence of the elastic moduli by the fluctuation method is quite slow compared

with the usual thermodynamic averages (e.g., energy and pressure). These runs are long

enough to obtain elastic properties with sufficient accuracy to observe trends on the ζ, ε surface.
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In the simulations, the symmetry relations (6) were exploited in the calculations of C11, C12

and C44. It was verified that the calculated pressure P = (Sxx + Syy + Szz)/3 obeys the exact

relation (for the inverse power interaction), P/kBTρ = 1 + n < u > /3, where < u > is the

average potential energy per particle.

The results for the pressure, P , are shown in Fig. 1 in which P is plotted as a function of

softness for nine packing fractions in the solid phase. The lowest (dashed) curve is the melting

line, determined using the Gibbs-Duhem method by Agrawal and Kofke [23] [38] for a number

of values of the potential softness parameter. The points at ε = 0 are from the equation of

state formula for the hard sphere solid [39]. From Fig. 1 it can be seen that P (ζ, ε) is not

a monotonically evolving surface but has an increasingly strong ε or softness dependence at

higher densities. The pressure surface contains, at any packing fraction, a maximum Pmax

which grows in height with density. The maximum indicates that the surface separates into

two regions, one where (∂P/∂ε)ζ is positive and the other (at higher ε) where it is negative.

We can characterise the two regions respectively by either a positive or negative softness

‘compressibility’, defined as χ = (∂P/∂ε)−1
ζ . In other words to increase pressure at a given

packing fraction in the left region on the figure we have to make the potential softer, and to

increase pressure in the right region it needs to be harder (i.e., by increasing n).

The maximum pressure curve, Pmax, marked on the figure as a bold solid line, starts on the

melting line at n ≈ 19 or ε ≈ 0.053). It increases significantly for smaller ε < 0.02 (i.e., n > 50)

and goes towards ∞ for ε → 0, i.e. the hard sphere limit. Figure 2 shows Pmax as a function

of the ε value where it occurs. This curve is well represented by the second order polynomial,

ζ(ε) = ζ0 − 4.2367ε + 12.1813ε2, where ζ0 = 0.7405 ∼= π
√

2/6 is the value of the close-packed
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packing fraction of the hard sphere fcc structure, ζHS
cp [39]. Thus, for any ζ, a maximum on

the P (ζ, ε) surface exists at some value of the softness and its magnitude tends to infinity in

the hard sphere limit, i.e., ζ = ζHS
cp at the boundary ε → 0.

In Fig. 3 the softness dependence of the elastic constants is shown. At the lower density

(ζ = 0.58), the ε-dependence of all three quantities is relatively weak and they are almost flat

lines, with the relative order C11 > C44 > C12 > 0, indicating a weak ε dependence. This

behaviour changes significantly on increasing density to ζ = 0.66, where the ε-dependence

become stronger and more importantly its form is different for the three elastic constants.

Additionally, two regions become visible, depending on ε . In the first, representing the harder

systems for which ε is less than 0.02, the values of C11 and C44 are relatively insensitive

to ε while the C12 increases with softness. For softer systems, with ε > 0.02, all three

quantities decrease significantly and monotonically with increasing softness. In this second

region the form of the softness dependence is similar for the three elastic constants and can

be approximated well by an exponential. The emergence of a well-defined maximum in the

softness dependence of the C12 is a new observation.

In Fig. 4 examples of the elastic moduli defined in equation (8) are shown. The general

softness-density dependence of these moduli is similar to that of the elastic constants, with

a weak dependence at low densities and significant differences at higher packing fractions.

Furthermore there are also two regions in the ε dependence at high density. In fact the

distinction is even more pronounced as now both B and Gc display non-monotonic character,

in having a maximum. Values of the bulk modulus can also be inferred from the ratio of the

pressure and density differences. Thus, taking into account the definition B = ζ(∂P/∂ζ) and

the results for the pressure surface in Fig. 1, one can expect that, for a given packing fraction,
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the maxima in B and P have similar ε values.

The above results suggest that there might be a non-trivial softness dependence in other elastic

properties. The quantity of primary interest here, the Poisson’s ratio, is shown in Fig. 5. In

its softness dependence two regions can also be distinguished. For ε > 0.02, ν(ε) is nearly

linear in ε and, apart from the lowest density on the figure, is almost independent of density.

Furthermore, Poisson’s ratio is well represented by the static model in which the particles are

fixed on the fcc lattice sites [40], νstatic = (n+6)/(3n+6). For less soft systems Poissons’s ratio

loses its linear character and becomes strongly density dependent. For each packing fraction

ν goes towards its limiting, hard sphere value, νHS which decreases from about 1/3 close to

the melting density to about 1/5 at the close packing [40]. Figure 5 also shows that the static

limiting case (bold line on the figure) is a relatively good description of the Poisson’s ratio, at

least for some range of the ζ, ε. The static model means that the fluctuation contributions are

not taken into account, and that for the Poisson’s ratio formula, only the Born-Green terms

are retained. This approximation gives a ‘Born-Green Poisson’s ratio’,

νBG = BBG
12 /(BBG

12 + BBG
11 ), (10)

which is shown in Fig. 6 for several packing fractions. From the figure it can be seen that

νBG is a fairly regular, almost linear function of ε with a slope practically equal to that of the

static model line. Only for the soft systems (ε > 0.05) is a slight bend away from linearity

observed. Also we note that the density dependence is considerably weaker than the softness

dependence. A variation of ζ over the entire solid phase causes only a minor change (typically

a few percent) in the νBG value for any ε. As can be seen in the figure, on increasing ζ, the

nearly colinear curves approach from below the static model line. Thus, the static result can
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be a good starting point for quantitative description of νBG, and it can be seen that significant

changes in Poisson’s ratio are achieved by varying ε rather than ζ in the available parameter

range.

A comparison between Figs. 5 and 6 indicates that changes in ν(ζ, ε) are mainly determined

by the fluctuation terms and more importantly they can cause a considerable decrease as well

as increase of the Poisson’s ratio. Their role becomes more transparent after writing Poisson’s

ratio in a form explicitly featuring νBG,

ν

νBG

= (1− BFL
12

BBG
12

)(1− BFL
12 + BFL

11

BBG
12 + BBG

11

)−1. (11)

From the above definition it follows that to lower the value of the Poisson’s ratio , i.e., to get

ν/νBG < 1, in the inverse power system, the following condition has to be obeyed,

BFL
12

BBG
12

>
BFL

11

BBG
11

, (12)

or

BFL
12

BFL
11

>
BBG

12

BBG
11

. (13)

Figure 7 shows a plot of the two ratios in equation (13) against ε, to explore the above

criterion. The division of two fluctuation quantities unfortunately leads to some scatter in

the data points. Nevertheless certain trends can be identified, and these are represented

by the fitted lines (second order polynomials) shown on the figure. It is evident from

this figure that it is the fluctuation ratio BFL
12 /BFL

11 which changes most with packing

fraction and the softness parameter. This ratio predominately decreases with increasing

ε and its magnitude is comparable to the Born-Green ratio for intermediate values of the
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softness. The generally opposite softness dependence of these ratios means that all possi-

bilities, of BFL
12 /BFL

11 being less than, equal to, and greater than BBG
12 /BBG

11 occur on the

figure. Hence, respectively ν > νBG, ν = νBG and ν < νBG, can be satisfied at any given density.

From Fig. 7 it can be seen that at lower densities, the fluctuation ratio bends toward the

Born-Green ratio for ε → 0 (see the data for ζ = 0.58). This indicates that for some range of

the softness and packing fractions close to the melting the Poisson’s ratio is lower than that of

the hard spheres. That ν < νHS (and the possible presence of a small minimum in Fig. 5 for

ζ = 0.58) is an unexpected result. The lowest value of ν for the lower packing fractions close

to the melting value is therefore not the hard sphere value.
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IV. CONCLUSIONS

In this work the influence of interparticle interaction softness on the solid phase elastic prop-

erties has been investigated, particularly for Poisson’s ratio, ν. The canonical ensemble MD

simulation method of Nosé and Hoover was used and the stress fluctuation scheme was applied

to obtain the isothermal elastic constants of the fcc phase. The elastic constants and elastic

moduli were determined for a range of the softness parameter (ε ≡ 1/n) of the soft-sphere

potential and covering most of the solid phase. This data was used to construct density-softness

surfaces of these properties. The determination of the elastic constants from the simulations is

time consuming and so the results to date only indicate trends. More quantitative conclusions

will have to wait for more extensive simulations to be carried out. One characteristic

feature which emerges from these studies is the existence of a maximum in the pressure and

the elastic constant C12 on a plot of these quantities against the particle softness (ε) for

constant density (ζ) systems. Locating the elastic constant maxima in terms of the value of

softness for each density (as we have done for the pressure) requires more extensive simulations.

Two other moduli, B and Gc defined in Section 2 also exhibit maxima. In all cases the

height of the maximum increases with increasing density. In the case of the pressure the

maximum line starts at the melting density for n ≈ 19 and terminates at close packing of

the hard sphere fcc structure (ζ = 0.7405). For all calculated elastic properties it is possible

to distinguish two regions in their density-softness dependence. One, roughly for ε > 0.02

where a weak ζ-dependence and fairly regular ε-dependence is present. In this region the

Poisson’s ratio is predominately linear and hardly modified by density. In the second region of

larger interaction steepness (smaller ε), considerable variation in ν with density and softness

is evident. From the point of view of the auxetic behaviour this may be an interesting
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region as considerable lowering of the value of the Poisson’s ratio can be achieved by slight

modification of the interaction softness, particularly at higher packing fraction. Therefore for

steep interaction particle systems, small variations in the density and softness can have a sig-

nificant affect on the Poisson’s ratio. This possibility seems not to have been fully exploited yet.

It was demonstrated that the Born-Green Poisson’s ratio, νBG, is well represented by the static

case and is almost density independent, suggesting that the fluctuation part plays an important

role in determining Poisson’s ratio. It was found that it is the ratio of the fluctuation part of

the elastic constants, BFL
12 /BFL

11 that is responsible for significant changes both in magnitude

and form of ν(ζ, ε). We have found that for the inverse power potential fcc solid, ν > νBG

for such ζ, ε for which the ratio BFL
12 /BFL

11 < BBG
12 /BBG

11 . Therefore an important, potentially

useful outcome of this work is the observation that the fluctuation part can not only diminish

ν but also may causes an increase of its value.

To obtain the desired effect, (i.e., a decrease of Poisson’s ratio value) augmentation of the

fluctuation part should take place in an appropriate range of softness and state parameters. It

is not sufficient to just make the system harder (i.e., decrease ε) to get a noticeable lowering

of Poisson’s ratio (see the data for ζ = 0.58 in Fig. 5), but it is also necessary to increase the

packing fraction. For the inverse power solid the appropriate range can be considered to be in

the region ca. n > 50 and ζ ≥ 0.66 (it worth to add that in this region the relative contributions

of the fluctuation part to the Poisson’s ratio becomes greater than that of the Born-Green part

or νFL/νBG > 1). It is perhaps not surprising that the fluctuation term is so important in

potentially lowering Poisson’s ratio, as it is the cooperative motion of the building components

that has been found responsible for giving auxeticity in most the known examples.
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FIG. 1: The pressure, P (ζ, ε) - surface, of the inverse-power solid. The lowest line is the melting

curve determined by Agrawal and Kofke [38]. The edge (ε = 0) points are taken from the hard sphere

equation of state by Hall [39]. The bold line is the demarcation or maximum pressure line.
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FIG. 2: The softness and packing fractions for which the maximum pressure line in Fig. 1 is the locus.

The points are from maximum condition (∂P/∂ε)ζ = 0 and are well represented by the polynomial:

ζ0 − 4.2367ε + 12.1813ε2, drawn in the figure as the solid line. ζ0, marked as the open circle, is the

close packed density of the fcc hard sphere structure.
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FIG. 3: The elastic constants defined in equations (3) and (6) against the interaction softness ε for

the fcc solid of the inverse power system, and for two packing fractions (indicated on the figure).
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FIG. 4: The bulk, shear and cubic moduli defined in equation (8) of the inverse power solid against

the interaction softness for the same conditions as in Fig. 3.
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FIG. 5: The Poisson’s ratio, ν, of the fcc solid of the inverse power system against the interaction

softness ε for different packing fractions (symbols). The bold line represents the static case and the

edge (ε = 0) points are the Poisson’s ratio of the fcc hard sphere solid by Tretiakov and Wojciechowski

[40].
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FIG. 6: The Born-Green Poisson’s ratio, νBG (i.e., ν with no fluctuation contributions) as a function

of the particle softness. The lines for different packing fractions go toward the static case line in the

limit of close packing.
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FIG. 7: The ratio of the Born-Green parts and fluctuation parts (symbols) of elastic constants for

the three packing fraction used in Fig. 5. The symbols used for the different packing fractions are the

same in the two figures
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