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Abstract: 

This paper is concerned with the solution of the multi-objective single-model 

deterministic assembly line balancing problem (ALBP). Two bi-criteria objectives are 

considered: (1) minimizing the cycle time of the assembly line and the balance delay time of 

the workstations, and (2) minimizing the cycle time and the smoothness index of the workload 

of the line. A new population heuristic is proposed to solve the problem based on the general 

differential evolution (DE) method. The main characteristics of the proposed multi-objective 

DE (MODE) heuristic are: (a) it formulates the cost function of each individual ALB solution 

as a weighted-sum of multiple objectives functions with self-adapted weights. (b) It maintains 

a separate population with diverse Pareto-optimal solutions. (c) It injects the actual evolving 

population with some Pareto-optimal solutions. (d) It uses a new modified scheme for the 

creation of the mutant vectors.  

Moreover, special representation and encoding schemes are developed and discussed 

which adapt MODE on ALBPs. The efficiency of MODE is measured over known ALB 

benchmarks taken from the open literature and compared to that of two other previously 

proposed population heuristics, namely, a weighted-sum Pareto genetic algorithm (GA), and a 

Pareto-niched GA. The experimental comparisons showed a promising high quality 

performance for MODE approach. 

 

 

Key words: assembly line balancing, differential evolution, multi-objective optimization, 

Pareto optimality, evolutionary algorithms, manufacturing optimization. 
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1. Introduction  

Finding the global optimum to a general multi-objective optimization problem (MOOP) is 

NP-complete (Bäck 1996). Usually, there is no single optimal solution to a MOOP but rather a 

set of optimal solutions known as Pareto-optimal solutions. These are solutions that are non-

dominated by any other solution in the search space when all the objectives are considered, 

and they do not dominate each other in the set. Due to their intrinsic parallelism, multi-

objective evolutionary algorithms (EAs) have recently received a growing research attention 

for the solution of several real-world MOOPs (Coelo 1999, Van Veldhuizen and Lamont 

2000, Jones et al. 2002, Tiwari et al. 2002). 

This paper considers the simple (deterministic single-model) assembly line balancing 

problem (ALBP) with various objectives. ALBP is a decision problem arising when an 

assembly line has to be (re)-configured, and consists of determining the optimal partitioning of 

the assembly work among the workstations in accordance with some objectives (Baybars 

1986, Scholl 1999). These objectives usually take one of two forms: either minimizing the 

number of workstations (m) given the cycle time (c) of the line (SALBP-1), or minimizing c 

given m (SALBP-2). Any variant of the simple ALBP (SALBP) belongs to the NP-hard class 

of combinatorial optimization problems (Scholl 1999). 

Multi-objective (MO) ALB optimization has attracted the research attention in the last 

decade. In an interesting work, Kim et al. (1996), developed a MO genetic algorithm (MOGA) 

for SALBP with objective to maximize simultaneously the workload smoothness and work 

relatedness. Ponnambalam et al. (2000), applied a MOGA on SALBP with the objective to 

maximize line efficiency and to minimize workload smoothness index. MOGAs have also 

developed by (Malakooti and Kumar 1996, Celano et al. 1999, Rekiek et al. 2001, Chen et al. 

2002, Mansouri 2005) for solving the general ALBP (GALBP) with various cost and profit 

oriented objectives. McMullen and Frazier (1998) and Gamberini et al. (2006) addressed the 

stochastic MO GALBP, via simulated annealing, and a special MO heuristic, respectively.  

There is a lack in the literature for population heuristics (such as EAs) for solving the 

multi-criteria SALBP-2. Furthermore, the computational testing of most EAs has been 
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performed ignoring existing ALB test beds (Scholl and Becker 2006). Inspired in a sense, by 

the work of Murata et al. (1996) who addressed the MO flow-shop scheduling problem via a 

MOGA; this work presents a new population heuristic based on the differential evolution (DE) 

method to deal with MO SALBP-2. Two bi-criteria objectives are considered: (1) minimizing 

the cycle time and the balance delay time of the stations, and (2) minimizing the cycle time 

and the workload smoothness index of the line. The developed multi-objective DE (MODE) 

heuristic has the following features: 

(a) It formulates the compound objective function of each possible ALB solution as a 

weighted-sum of the individual objectives functions with self-adapted weights. The 

proposed self-adaptable scheme for estimating the weights can be very easily adjusted by 

the decision maker to vary the emphasis on the individual objectives.  

(b) It maintains a separate population with diverse Pareto-optimal solutions to the problem. 

This population is iteratively updated per generation. 

(c) It injects the evolving population with elite solutions taken from the Pareto population.  

(d) It uses a novel scheme for the creation of the offspring vectors during DE evolution. 

MODE’s performance is measured over public available benchmarks and compared to 

that of two known MOGAs proposed by Kim et al. (1996) and Murata et al. (1996), 

respectively. The rest of the paper is organized as follows: Section 2 formulates SALBP. 

Section 3 analyzes the basic DE model for optimization over continuous spaces. Section 4 

presents the way DE can be applied on ALBPs, while section 5 introduces MODE for MO 

SALBP-2. Computational results concerning the performance of the algorithms are provided 

in section 6, while conclusions and directions for future work are pointed out in section 7. 

 

2. Decision making in ALBPs 

2.1. Formulation of SALBP. 

SALBP can be stated as follows: m workstations are arranged along an assembly line. 

Manufacturing a single product on the line requires the partitioning of the total work into a set 

V={1,…,n} of n elementary operations called tasks. Each task j is performed on exactly one 
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station and requires a deterministic processing time jt . Let zS (z=1,…,m) be the station load of 

station z (i.e., the set of tasks assigned to z), with a cumulated task time ∑ ∈
=

zSj jz ttS  

(z=1,…,m). The tasks are partially ordered by precedence relations defining a directed acyclic 

graph (DAG) G=(V,E); with V the set of nodes denoting the tasks in G, and E the set of edges 

representing the precedence constraints among the tasks. The assembly line is associated with 

a cycle time c denoting the maximum processing time available for each station. The objective 

typically takes one of two forms: either minimizing m given c (SALBP-1), or minimizing c 

given m (SALBP-2). Figure 1 illustrates an example of a precedence graph for an 8-tasks 

ALBP. The numbers inside the nodes of the graph correspond to the task labels, and those 

outside the nodes to the processing times.  

< Insert Figure 1 about here > 

In this work, the bi-criteria SALBP-2 is considered with main objective to minimize the 

cycle time c for a given fixed number of stations m, and secondary objectives to minimize:  

(a) The balance delay time (BD) of the line (see Eq. (1)). BD reflects the unused capacity of 

the line, i.e., the summation of the idle times of all the stations.  

(b) The smoothness index (SX) (Eq. (2)) measuring the equality of the distributed work 

among the stations. The lower the value of SX the smoother the line, resulting in reduced 

in-process inventory. An SX equal to zero indicates a perfect balance of the workload 

among the stations.  

( )∑
=

−=
m

z

ztScBD
1

      `(1) 

( )∑
=

−=
m

z

ztScSX
1

2
      (2) 

 

2.2. The multi-objective SALBP-2 

In MO SALBP-2 we ideally seek for a feasible solution that simultaneously optimizes c, 

as well as, BD and SX. Since this is almost impossible for any MOOP (Bäck 1996), what we 
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really attempt to do is to optimize each individual objective to the greatest possible extend. 

MOOPs considered in this study can be formulated as in the following: 

(A) MO SALBP-2 version 1: 

Minimize BDwcwF ⋅+⋅= 211              (3) 

subject to: 

a partition of the set V={1,…,n} into m disjoint subsets zS (z = 1,…,m) : ∀ edge (i,j)∈E,  

i, j ∈V  and  j∈FLi  the following holds, i∈ AS  and  j∈ BS with A ≤ B              (3.a) 

  sumz ttS ≤   for all  z = 1,…,m                                          (3.b) 

   

  where, ∑=
=

n

j
jsum tt

1

 is the sum of all the tasks’ processing times and , 

        FLi = the set of immediate successors (followers) of task i. 

 

(B) MO SALBP-2 version 2: 

Minimize SXwcwF ⋅+⋅= 212            (4) 

Subject to the constraints (3.a), (3.b) 

 

Constraints (3.a) and (3.b) ensure the feasibility of an ALB solution. In particular, 

constraint (3.a) guarantees the feasible assignment of the tasks to the m stations. That is, each 

task is assigned to exactly one station, and the successors of any task i are not assigned to an 

earlier station than that of i. Note that, (i, j) denotes an edge between i and j, with j being the 

immediate successor of i. Constraint (3.b) ensure that the station times of all the stations do 

not exceed the line’s total processing time ( sumt ).  

The weights w1 and w2 in Eqs.(3),(4), specify the relative importance of the corresponding 

objectives. The determination of the suitable values for these weights is in general a difficult 

task and constitutes a critical research question in MOO. This issue will be discussed deeper in 

section 5 of this study. Moreover, a new methodology will be introduced for a dynamic self-

adapted estimation of these weights. 
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3. Differential evolution (DE) 

DE is a population heuristic introduced by Storn and Price (1997) for global optimization 

over continuous search spaces. DE has been applied with success on many numerical 

optimization problems outperforming other popular heuristics including GAs (Ali and Törn 

2004, Kaelo and Ali 2006). Recently, the application of DE has been extended with success to 

combinatorial optimization problems with discrete decision variables, such as, the machine 

layout problem (Nearchou 2006), and machine flow-shop scheduling problems (FSSPs) 

(Onwubolu and Davendra 2006, Nearchou and Omirou 2006). 

DE utilizes Νp, D-dimensional parameter vectors kix , , i=1,2,…,Νp, as a population to 

search the feasible region Ω of a given problem. The index k denotes the iteration (or 

generation) number of the algorithm. The initial population (where, k = 0), 

Φ = },,,{ 00,20,1
,pNxxx K ,                   (5) 

is taken to be uniformly distributed in Ω. At each iteration, all vectors in Φ are targeted for 

replacement. Therefore, Νp competitions are held to determine the members of Φ for the next 

iterations. This is achieved by using mutation, crossover and acceptance operators. In the 

mutation phase, for each target vector kix , ,i = 1,…,Νp, a mutant vector kix ,

)
is obtained by 

)( ,,,, kkkki xxFxx s γβα −+= ⋅
)

,                   (6) 

where α,β,γ ∈{1,…,Νp} are mutually distinct random indices and are also different from the 

current target index i. The vector kx ,α is known as the base vector and sF >0 is a scaling 

parameter. The crossover operator (Eq.(7)) is then applied to obtain the trial 

vector kiy  , from kix ,

)
and kix , .  

   






≠>

=≤
=

iR
LL

ki

iR
LL

kiL

ki
ILCRx

ILCRx
y

       

       

andif 

orif 

,

,

,

)

,      (7) 

Where, Ii is a randomly chosen integer in the set I, i.e., Ii∈Ι ={1,2,…,D}; the superscript L 

represents the L-th component of respective vectors;
LR ∈(0,1), drawn randomly for each L. 
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The ultimate aim of the crossover rule is to obtain the trial vector kiy  , with components 

coming from the components of the target vector kix , and the mutated vector kix ,

)
. This is, 

ensured by introducing the crossover rate CR and the set Ι. Notice that for CR=1 the trial vector 

kiy  , is the replica of the mutated vector kix ,

)
. The process (mutation and crossover) continues 

until all members of Φ are considered. After all Νp trial vectors kiy  , have been generated, 

acceptance is applied. In the acceptance phase, the cost of the trial vector, )(  , kiyCost , is 

compared to )( ,kixCost , the value at the target vector and the target vector is updated using 



 <

=+
otherwise

if

   

)( )ost(    

,

,,,

1,

ki

kikiki

ki
x

xCostyCy
x       (8) 

Mutation, crossover and acceptance phases continue until some stopping conditions are met. 

 

4. Applying DE on ALBPs.  

 Since DE is quite similar to an EA, without lose the generality, in the following analysis 

we will use terms borrowed from the field of Evolutionary Computation such as, the genotype 

(is the real-valued vector evolved in DE), the phenotype (is the actual ALB solution 

corresponding to a genotype). Every component of a vector is called a gene. Therefore, 

applying DE on ALBP domain needs the specification of the following five characteristics:  

(a) a representation mechanism, i.e., a way of encoding the phenotypes to genotypes. (b) An 

evaluation mechanism, i.e. a way of computing the cost-function for each genotype. (c) A way 

of initializing a population of genotypes. (d) The application of mutation, crossover and 

acceptance operators on the population. (e) Values to the parameters: Νp, CR and sF . 

Characteristics (c)-(e) are in general same as in the standard DE, the differences rely on the 

way one implement the first two. 
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4.1. The representation mechanism 

The natural coding for ALBPs is strings with integers. Two different schemes for string 

representation applicable to ALBPs are mainly identified in the literature: station-oriented 

(sor) and task-oriented representation (tor) (Scholl and Becker 2006). Both of them assume a 

string length equal to n (number of the tasks to be processed). Using sor, the components of a 

string are integers in the range [1,m] (m=number of workstations). Thus, if the i-th position of 

the string has the value z (z =1,…,m), then, task i is assigned to station z. Using tor, a specific 

string is a permutation of the integers 1,2,…,n. Hence, the task j in location i of the string will 

be assigned to a station before the task in location (i+1) of the string. Note that, a tasks’ 

sequence is legal when it does not break the precedence relations (constraint (3.a)). For 

example, assume SALBP shown in Fig.1 with m=3, c=28. A possible feasible solution to this 

problem is to assign tasks {1,2} to station 1, tasks {3,4,6} to station 2, and tasks {5,7,8} to 

station 3. Using sor this solution may be represented by the string <1,1,2,2,3,2,3,3>; while, 

using tor by <1,2,3,4,6,5,7,8>. After experimentation with both schemes over selected test 

beds (from a set of benchmarks described in section 6), we found tor superior, in terms of 

speed of convergence and quality of solutions, and thus, it was decided to adopt tor with DE.  

DE works with floating-point vectors and thus an appropriate mapping is needed from the 

genotypic state-level (the vectors) to the phenotypic level (the actual ALB solutions). To 

achieve this mapping a simple yet effective topological ordering scheme has been developed 

based on the relative priorities impose by the components of a genotype. Assuming an n-tasks 

ALBP with precedence relations given by a DAG G=(V,E), the developed encoding scheme 

consists of generating a topological sort of G from a specific n-dimensional floating-point 

vector ψ (genotype). Each vector’s component ψi (i=1,…,n) represents the relative priority of 

task i (i∈V). The topological sort is therefore a ranking of all the tasks according to their 

priorities in an appropriate order to meet the precedence constraints. This mechanism is 

implemented using the following procedure: 
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Procedure Topological_ordering_encoding 

begin 

Set V′ = ∅   // with V′⊆V  // 

Repeat 

For all j∈V do  

if j has no predecessors then V′=V′∪{j}, i.e., insert j into the set V′. 
Determine the gene ψi of ψ with the maximum value for all i∈V′  
Insert task i into the next available position in the partial schedule (PS). 

V′ = V′ \ {i}, i.e., remove task i from V′. 
Until PS has been completed 

Return PS 

end 
 

In each step, the tasks with no predecessors are identified and put in set V′. Then, the task 

in V′ having the highest gene’s value in ψ is selected, removed from V′, and placed in the next 

available position of PS. The process is repeated until the completion of PS. 

Let us see how this topological ordering works on genotype                                               

ψ = (0.32, 0.83, 0.05, 0.24, 0.17, 0.45, 0.09, 0.61) concerning the 8-task ALBP shown in 

Fig.1. The first position of array PS is taken by task 1 (i.e., PS[1]=1) since this is the only task 

with no predecessors. Task 1 is then cut from DAG and the next task with no predecessors is 

task 2, thus PS[2]=2. Then, the two tasks 3 and 4 are candidate for the 3
rd

 location of PS. The 

priorities for these tasks are 0.05 and 0.24, respectively, and therefore, PS[3]=4 since task 4 

has the highest priority, consequently PS[4]=3. Finally, the ALB solution corresponding to ψ 

will be (1, 2, 4, 3, 6, 5, 7, 8). Fig. 2 displays the detailed step-by-step process for constructing 

the specific feasible ALB solution. One can see from this figure the partial topological sort, 

the cut (dark long dashed lines) and the eligible nodes, as well as, the contents of the partial 

schedule solution PS. 

< Insert Figure 2 about here > 

4.2. Decoding a phenotype into an actual solution for SALBP-2. 

Once a specific DEA’s genotype is encoded into a feasible ALB solution (a phenotype) 

then, an appropriate decoding scheme is needed to map this phenotype to an actual solution 

for SALBP-2. In other words, a method is needed to assign the tasks in the generated task-

sequence into the stations. After experimented (over representative instances from the test 

beds discussed in section 6) with some well known decoding schemes such as the lower and 
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upper bound search methods (Scholl 1999), we finally decided to adopt a scheme proposed by 

Kim et al. (1996). The use of this scheme (see below) in DE was found to be superior in terms 

of quality of solutions. The idea is to face SALBP-2 through an iterated procedure that solves 

the corresponding SALBP-1 with a cycle time value being progressively decreased until 

reaching a near-optimum value within a specific permitted range.  

Procedure decode_SALBP-2 

begin 

Step 1. Set c initially equal to the theoretical minimum cycle time, i.e., c = tsum/m. 

Step 2. Assign as many as possible tasks into the first m-1 workstations. Assign all 

the remaining tasks to the last workstation, m. 

Step 3. Calculate the work load Wz for each workstation z (z=1,2,…,m), and the 

potential workload PWz (z=1,2,…,m-1) as follows: Wz=the station time tSz 

(z=1,2,…,m). PWz= tSz + the processing time of the first task assigned to 

(z+1)st station (z=1,2,…,m-1).  

Step 4. Set cW = max { W1 , W2 , …,Wm} and c = min { PW1 , PW2 , …,PWm-1 } 

Step 5. if (cW > c) then goto step 2 else Return cW  

end 
 

4.3. The evaluation mechanism 

This mechanism corresponds to the computation of the cost (objective) function for each 

phenotype solution. As analyzed in sub-section 2.2, the objective is to minimize the functions 

given by Eqs. (3),(4). Hence, for a phenotype iΡ  (i=1,…,Np) the cost function is given by, 

ji FCost =Ρ )(       (9) 

Where, jF (j=1,2) is the j
th
 composite objective function given by Eqs. (3), (4), respectively.  

 

5. A multi objective DE (MODE) for SALBP-2. 

When solving a MOOP often the attempt is to find a Pareto set of optimal solutions. 

Pareto set contains all those non-dominated solutions to the problem under investigation such 

that no other solutions are superior to them in respect to all the discrete objectives. To that 

purpose, MODE tries to find a set of non-dominated ALB solutions rather a single ALB 

solution. MODE (see Fig. 3 for a schematic overview) has the following two main features: 

a) It maintains a separate population of diverse Pareto-optimal ALB solutions iteratively 

updated generation by generation. 

Page 11 of 36

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

b) It uses an elitist preserving strategy with which a portion of the evolving population is 

randomly replaced by a number of elite Pareto solutions. 

< Insert Figure 3 about here > 

In a general MOOP a solution with the best values for each objective can be regarded as 

an elite solution. Hence, for the bi-criteria ALBPs examined in this work, there are two elite 

(extreme) solutions in the evolving population each of which optimizes one objective. These 

solutions are always copied into Pareto population. Pareto set is further completed by 

additional elite solutions using a mechanism explained below. The Pareto population of the 

final generation contains the near-optimal solutions to the MOO ALBP. The decision maker 

can then select that solution accomplishing more her or his preferences.  

Moreover, two additional features are included within MODE resulting to modifications 

to the standard mutation rule given by Eq. (6). These features are as follows:  

(i) In each iteration k, mutant vectors kix  ,

)
(i=1,…,Νp) are created using the relation,  

)()1( ,,,,, kkskkki xxFxrxrx δγβα −⋅+⋅−+⋅=
)

    (10) 

where r is a random number uniformly taken within (0,1) and α≠β≠γ≠δ≠i ∈{1,…,Νp} are 

distinct random indices. This scheme was found more robust in preliminary experiments than 

other standard mutant schemes such as the one given by Eq. (6). Particularly, the proposed 

mutation scheme enhances the ability of the algorithm for converging faster to a near-

optimum solution. 

(ii) Traditionally, the mutation-factor sF  takes a value within the range (0,2] and this value 

remains constant through the life cycle of the DE algorithm. In this study, we propose the 

following dynamic scheme for estimating sF .  

FsΘ  else  FF  then FCost.f Cost s0sAVGMINi ×==×≥ 950   (11) 

where, MINCost and AVGCost are the population minimum and average costs values, respectively. 

This scheme gives to sF a high value at the beginning of the run and decreases this rate slowly 

by the diversity of the population. sF is initially defined to be equal to 0F =0.8, and decreased 

in each new iteration by a factor Θ = 0.95 using the linear relation sF =Θ× sF . If the minimum 
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population cost becomes almost the same to the average population cost, then a very small 

diversity is encountered in the population and thus sF  is reset to the initial value 0F . MODE is 

given below in pseudo-code format: 

Algorithm MODE for SALBP-2 

Pre-processing step: 

Read input data concerning the DAG G=(V,E) of a specific n-tasks ALBP:  i.e., the set of 

tasks V, the set of edges E, the processing times jt (j=1,…,n), the number of stations m. 

Initialization step: 

Set values for the control parameters (Νp, CR);  

Set mutation scale factor 0FFs = ; 

Set the size of the Pareto population, Γ_size; 

Initialize generation counter k = 0; 

Generate a population Φ = },,,{
,,2,1 kNpkk xxx K of n-dimensional floating-point vectors; 

The components of kix , (i =1,…,Νp) are randomly chosen within the range [0,1]; 

 Γ = {∅};  // Create an initial empty Pareto population // 

Repeat 

for i = 1 to Νp do // create population Φ of the new generation // 

 Mutation step: 

Generate a mutant vector kix  ,

)
using Eq. (10)  

Crossover step:  

Generate a trial vector kiy  , by crossing kix , and kix  ,

)
using Eq. (7). 

 Solution Interpretation Step: 

// Build the phenotypes corresponding to the genotypes kix , and kiy  , // 

kix ,P = Topological_ordering_encoding ( kix , );  

kiy ,P = Topological_ordering _encoding ( kiy  , ); 

// Decode phenotypes to actual solutions for SALBP-2 using the scheme presented  

   in sub-section 4.2. Then evaluate the cost of each solution using Eq.(9) // 

if MO SALBP-2 version 1 then 

   )( ,kix
Cost P = F1 (decode_SALBP-2( kix ,P ))    

   )( ,kiy
Cost P = F1 (decode_SALBP-2( kiy ,P ))  

else if MO SALBP-2 version 2 then 

   )( ,kix
Cost P = F2 (decode_SALBP-2( kix ,P )) 

 )( ,kiy
Cost P = F2 (decode_SALBP-2( kiy ,P )) 

 endif 

Acceptance step:  

if )( ,kiy
Cost P < )( ,kix

Cost P  then 1, +kix = kiy , else 1, +kix = kix ,  

 endfor 

Update Pareto Population Step:   

  // Check each one of the individual solutions in Φ whether constitutes a Pareto solution // 

cΦ = cΓ = 0 ;  // initialize counters for the members in Φ and Γ, respectively // 

While (cΓ ≤ Γ_size) and (cΦ ≤ Νp) do 

cΦ = cΦ + 1; 

Compare Φ(cΦ) (i.e., the cΦ member of Φ) with all Pareto solutions in Γ; 
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If Φ(cΦ) is not contained in Γ then 

If it dominates some Pareto solutions then  

Add Φ(cΦ) into Γ and delete the solutions dominated by it; 

 Increment accordingly counter cΓ; 

else if there is empty space in Γ then  

 Add Φ(cΦ) into Γ. 

 cΓ = cΓ + 1; 

endif 

endif 

endwhile 

Elitist Preserving Strategy Step: 

Determine the two elite Pareto solutions in Γ; 

Randomly select two members in Φ and replace them with the two elite Pareto  

solutions from Γ; 

Adaptation of parameter sF Step: 

Determine worst and average cost functions in Φ; then, adapt sF using Eq. (11); 

k = k + 1   // increment iteration counter // 

Until k > MAXI;  // MAXI stands for Maximum Iterations // 

Return  Γ ; 

 

As it was referred in sub-section 2.2, weighted-sum method is used to construct the 

composite objective functions F1 and F2 given by Eqs.(3) and (4), respectively. In the 

literature, there are two general methods to compute the weights iw (i=1,…,Q) for a weighted-

sum objective function with Q objectives: the fixed-weight method and the random-weight 

method. The former uses constant weights satisfying the relation,  

,Q,i fiw

Q

i iw

K1  allor   0

1
1

=>

∑
=

=
     (12) 

However, as Murata et al. (1996) shown, using constant weights within an EA the search 

direction is fixed, and for this reason it is difficult for the search process to obtain a variety of 

non-dominated solutions. To overcome this drawback, Murata et al. (1996), proposed the use 

of random weights according to the following formula, 

,Q,i 

Qrandomrandom

irandom

iw

K

L

,21 

21random

=

+++
=

   (13) 

where irandom (i=1,…,Q) are non-negative random numbers.  
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Furthermore, Gen and Cheng (2000) proposed an adaptive weight approach within a 

MOGA, which readjusts the weights by utilizing some useful information from the current 

population. This method computes the weights by, 

,Q,i f

iziz
iw K1  allor   ,

minmax

1
=

−
=     (14) 

where 
max

iz and 
min

iz  are the maximal and minimal values of the i
th
 objective in the population.  

In this work, a new, self-adapted method for the estimation of the weights 1w and 2w (used 

in Eqs.(3),(4)) has been developed. The proposed method is given by the following relation: 

1
1

2

1

ww

d
ew

−=

+
−

⋅= µλ
     (15) 

where, λ and µ are user-defined coefficients used to normalize the upper and lower bounds of 

1w , respectively. In this study, we set λ = µ = 0.5. The exponent d, is determined by, 

ccd −= *
      (16) 

c
*
 is the theoretical minimal cycle time of the assembly line. Note that the proposed scheme 

gives to the first objective higher priority assuming that this is the most significant criterion in 

the composite objective function. In SALBP-2 the main criterion is to minimize c, hence, 1w is 

increased while d approaches zero, i.e., when a generated ALB solution approaches the 

optimal solution regarding the cycle time criterion. Figure 4 shows the rate of change of the 

1w in respect to the changes of parameter d. It is worth pointing that, the application of the 

proposed scheme on any bi-criteria optimization problem is straightforward provided by the 

decision maker the main and the secondary optimization criteria. 

 

< Insert Figure 4 about here > 
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6. Numerical Results and discussion 

6.1 Experimental Setup 

MODE was compared against two representative MOGAs identified in the literature: the 

first is a Pareto-niched GA proposed by Kim et al. (1996) for solving MO SALBP, while the 

second is a Pareto weight-sum GA developed by Murata et al. (1996) to address MO FSSP. 

We will refer to these algorithms with the abbreviations MOGA1 and MOGA2, respectively. 

Although MOGA2 was introduced for FSSP, as will be explained below, very easily it can be 

extended and applied on SALBP, as well. Three versions of MODE were implemented each 

one differ on the way the weights in the objective function are estimated. The first version 

uses fixed and equal value weights ( 1w = 2w = 0.5), the second version uses random weights 

estimated by Eq. (13), and the third version uses the proposed adaptive scheme given by Eq. 

(15). In the following analysis we will refer to the three MODEs as, MODE1 (with fixed 

weights), MODE2 (random weights), and MODE3 (adaptive weights), respectively.  

All the heuristics were implemented in Delphi Pascal and run on a Pentium 4 (1.7 GHz) 

PC. The experiments were carried out on known ALBP benchmarks taken from the open 

literature (Scholl 1999). Note that the upper bounds on the optimal objective function values 

for these benchmarks concern the minimal cycle time. In the experiments we include the 

available test instances concerning the following five ALBPs: Buxey (n=29, in#=8), Sawyer 

(n=30, in#=8), Gunther (n=35, in#=10), Kilbridge (n=45, in#=9), and Tonge (70, in#=23). n 

denotes the number of the tasks in the corresponding precedence graphs and in# the number of 

the test instances included in the specific ALBP. To be fair with the stochastic behavior of the 

five heuristics, we run each one of them ten times over every test instance and the solutions 

quality were averaged. This means that, each heuristic was run over (8+8+10+9+23)×10=580 

test experiments in total. All the examined heuristics were defined to evolve a fixed size 

population of 2n individual solutions, and run for a maximum of 100n iterations.  
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Remark 1: MOGA1 combines a Pareto GA and a niched GA. Ranking is performed using the 

Goldberg’s ranking method (Goldberg 1989). This method assigns to Pareto solutions the 

same rank and to all the others solutions a some less desirable rank. The niche radius in the 

shared fitness function was defined to be equal to popsize1 , with popsize denoting the 

population size. Chromosomes are integer strings and are mapped into ALB solutions through 

sequence-oriented representation. If a task sequence breaks the precedence constraints then a 

suitable repairing method is applied to correct it. Crossover and mutation are performed 

through the partially mapped (PMX) crossover and reciprocal exchange, respectively. The 

rates of crossover and mutation operators were set (same as in Kim et al. (1996)) equal to 0.3 

and 0.5, respectively. The repairing procedure is also applied after the application of these 

operators on the chromosomes. Selection is done by a tournament strategy (Goldberg 1989).  

 

Remark 2: In MOGA2, a chromosome is a permutation of the integer numbers 1,2,…,n, with 

each gene in the chromosome denoting a different task label. A scalar fitness function is used 

formulated as a weighted sum function with the weights estimated using Eq. (13). For each 

chromosome ix , i=1,2,…,popsize the probability of being selected for reproduction is given by 

the ratio ( ) 







−− ∑

=

))(()(
1

minmin

popsize

i

ii fxffxf . Where, ( )
ixf  is the fitness function of ix  

and minf  the minimum population fitness function. Once these selection probabilities are 

estimated for all the vectors in the entire population, selection is performed using the roulette 

wheel strategy (Goldberg 1989). Crossover is performed by a two-point crossover procedure 

with a rate equal to 1.0, while mutation is performed via the shift mutation operator with a rate 

1/n. To map a chromosome to a feasible ALB solution we used the same representation 

mechanism, as well as, the same repairing method as in MOGA1. The tasks in an ALB 

solution are assigned to the stations according to the scheme described in sub-section 4.2. 

MOGA2 maintains a separate set with Pareto solutions, and applies an elitist strategy with 

these solutions on the entire population.  
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6.2 Choice of the control parameters’ settings for MODE 

Much investigation on the selection of the appropriate settings of the control parameters 

(population size Νp≥4, crossover rate CR∈[0,1], and mutation-scale factor sF ∈(0,2]) was 

undertaken in preliminary tests. Here, we describe the experimental design methodology used 

to determine these settings.  

In particular, two levels of Νp∈(n, 2n) were examined. CR was defined to take values 

within the discrete range {0.1, 0.3, 0.5, 0.7, 0.9}, while for sF  two different control schemes 

were used: (a) a static scheme based on which sF takes values in the range [0.5, 0.7, 0.9, 1.2], 

and (b) the proposed dynamic scheme given by Eq. (11).  

< Insert Table 1 about here > 

< Insert Table 2 about here > 

 After 50 runs of MODE algorithm over representative ALBP instances with the above 

control schemes we determined that the best results obtained were due to the combination 

Νp=2n, CR=0.7 and sF being estimated by Eq.(11). Table 1 presents the effect of CR, and 

sF (when Νp=2n) on MODE’s performance, over Buxey’s instances. For each different pair 

( sF ,CR) two numbers are reported in this table. The first number corresponds to the mean 

percentage deviation of the generated cycle time from the existing optimum solution, and the 

second number enclosed in brackets corresponds to the mean % effort (see Eq (17)) spent by 

the algorithm until attained this solution.  

100 % ×=
MaxK

K
effort

opt
            (17) 

where Kopt is the number of iterations attained the best solution and MaxK=100n is the 

maximum permitted number of iterations. As one can see from Table 1, the best results are 

due to ( sF ,CR)=(adaptive, 0.7). With these settings MODE achieved ALB solutions with a 

mean deviation from the global optimum equal to 0.27% after spending approx. the 34% of 

the total permitted iterations. Hence, in the following discussion, all the experimental results 

obtained by MODE heuristics are due to the above ‘optimal’ combination of settings. 
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6.3 Comparison of MODE and MOGA heuristics 

Tables 2 and 3 display the comparative results obtained by the five heuristics over the 

benchmarks instances described in sub-section 6.1. The results in Table 2 concern the 

experiments with the objective given by Eq.(3), while the results presented in Table 3 concern 

the experiments with the objective given by Eq.(4). The first and second columns of Tables 2 

and 3 indicate the problems tested and their size, respectively, while the third column of the 

tables indicates the method used. The rest columns of the tables provide the following 

information:  

� c%dev = the average relative deviation from optimum in percentage; estimated by 

((c−c*)/c*)×100, with c* the existing optimal cycle time, and c the cycle time of the best 

solution generated by a specific heuristic. 

� BD = the average balance delay time corresponding to the optimal solution attained by a 

heuristic (this information is included in Table 2). 

� SX = the average smoothness index of the optimal solution attained by a heuristic 

(included in Table 3). 

� Compound cost = includes the best, worst, and mean population costs (Eq. (9)) generated 

by each heuristic.   

� %effort = denotes the convergence ratio of a heuristic in % given by Eq. (17). 

� cpu-time = the average actual processing time in seconds spent by each heuristic until the 

convergence to the best possible solution. 

< Insert Table 3 about here > 

As one can observe from Table 2 the best results concerning c%dev have been obtained 

by MODE3 with a mean offset from optimum approx. equal to 0.27% (BD≈15) for Buxey’s 

problems, 1.56% (BD≈18) for Sawyer’s problems, 0.25% (BD≈44) for Gunther’s problems, 

etc. The second best performance is reported by MODE1 with (c%dev, BD) approx. equal to 

(0.71%, 18) for Buxey’s problems, (1.92%, 16) for Sawyer’s problems, and so on. Similar 

high performance for MODE1 and MODE3 heuristics is reported in Table 3. Again, the 
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proposed MODE3 outperformed all the other heuristics generating solutions of higher quality 

in respect to both objectives, either c%dev, or SX. Near to this performance stays that attained 

by MODE1. Furthermore, a significant observation from these tables is that the use of SX as 

the second optimization criterion in the objective function results in much higher quality 

solutions (independently of the heuristic used) than those obtained when using BD as second 

optimization criterion. Another observation from Tables 2 and 3 is that using random weights 

in the compound objective function of the MODE heuristic (case of MODE2) results to a 

lower quality performance in comparison to the other heuristics. In regard to the cpu-time 

spent by the heuristics, the two MOGAs are in general faster than MODEs heuristics (see last 

column in Tables 2 and 3, respectively) with MOGA2 being the fastest.  

< Insert Figure 5 about here > 

 For better illustration of the generated results we built Figures 5 and 6. In particular, Fig. 

5(a) shows graphically the fluctuation of c%dev over the five ALBPs when BD is used as 

second optimization criterion. The associated fluctuation of the average BD values is shown in 

Fig. 5(b). It is clear from Fig. 5 that MODE3 is superior from the other heuristics. Fig. 6 

shows the fluctuation of the mean c%dev (Fig. 6(a)) and the associated average SX values 

(Fig. 6(b)) in regard to the compound objective given by Eq. (4).  

< Insert Figure 6 about here > 

 Finally, Fig. 7 shows the %effort spent by the five heuristics over the various benchmarks 

in regard to the objectives of Eq. (3) (Fig. 7(a)) and Eq. (4) (Fig. 7(b)). As one can see from 

these figures, MODE3 (the lowest curve) spends in average less iterations until the 

convergence to the near-optimum solution than the other heuristics.  

< Insert Figure 7 about here > 

 

 
7. Conclusions 

Any variant of the simple assembly line balancing problem (SALBP) is NP-hard and thus, 

it is justified to address large-size instances of the problem through the use of heuristics. This 

paper introduced a multi-objective (MO) differential evolution (DE) based approach for 
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solving the bi-criteria SALBP. The main objective was to minimize the cycle time of the line 

and secondary objectives to minimize balance delay time and workload smoothness index.  

MODE differs from existing MO population heuristics in at least four features: the encoding 

scheme used to represent the feasible ALB solutions, the evaluation mechanism to compute 

the multiple objectives, the procedure for generating the new individual solutions, and in the 

way it seeks and maintains the set of the non-dominated solutions. Particularly, MODE has the 

following main characteristic: (a) utilizing a robust encoding scheme maps real-valued vectors 

(genotypes) to integer strings corresponding to feasible ALB solutions (phenotypes). (b) Every 

objective function assigning a cost value to a genotype is formulated as a weighted-sum of the 

individual objectives with the weight coefficients being dynamically adjusted by a new 

efficient method. The application of this method on any bi-criteria optimization problem is 

straightforward provided by the decision maker (DM) the main and the secondary 

optimization criteria. (c) Mutant vectors are generated using a modified efficient strategy.    

(d) It maintains and updates iteratively a set of non-dominated solutions separately of the 

actual evolving population, as an attempt to obtain quality and diverse Pareto-optimal 

solutions. (e) It uses an elitist strategy to preserve non-dominated solutions found over 

generations from getting lost.  

MODE is simple, and very easily implemented. Extensive experimental comparisons over 

public available ALB benchmarks between MODE and two existing MO evolutionary 

algorithms showed a superior performance for the former in terms of quality of solutions.  

In practice, many MO optimization problems (MOOPs) have multiple conflicting 

objective functions expressed in differing units, and with an inverse, nonlinear relationship 

among themselves. These objectives may be even imprecise (or fuzzy) in nature to be defined. 

In its present form MODE cannot address such problems. Hybridizing MODE with 

mechanisms borrowed from the field of nonlinear goal programming (GP) (Lee 1972) may 

result to a promising optimization tool for these problems. GP needs DM to provide a numeric 

goal (together with a priority level) for each objective, and then seeks for a solution that 

minimizes the weighted-sum of the deviations of the objective functions from their respective 
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goals. This idea will constitute a central research direction in the near future. Moreover, there 

are MOOPs with a huge set of Pareto-optimal solutions for which evaluating this set to select 

the best one becomes unpractical for DM. Perhaps, a solution for these problems can be 

obtained by trying to get compromises, based on the DM’s information. Compromise solution-

based fitness assignments (Gen and Chen 2000), is an interesting approach to be investigated 

within MODE.  

Moreover, this work is limited in the deterministic single-model ALBP, however, it 

represents a good start point for further studies focused on more difficult ALBPs such as the 

stochastic or dynamic ALBP. In reality, tasks’ processing times are rarely deterministic and 

may vary more or less. When these variations are considerable then we have the stochastic 

ALBP. Dynamic ALBP considers operation times being varying over time, e.g. due to 

learning effects, or successive improvements of the production process (Scholl 1999). Our 

intuition is that, MODE can be rather easily extended to address the stochastic SALBP 

provided that a suitable statistical model will be developed that transforms the stochastic task 

times to deterministic ones, and realized different cycle times so that to avoid blocking and 

starving of the workstations.  

Another avenue for further research is to consider the mixed-model ALBP (MALBP). 

This problem is much more complex than SALBP since, the attempt is to manufacture 

different versions (models) of the same basic product in the same line (e.g., PCs with or 

without DVD drive, with various CPU types, etc.) in arbitrarily intermixed sequence. A first 

idea is to address the feasibility MALBP; i.e., given the cycle time c and the number m of the 

stations determine whether or not, a feasible mixed-model assignment with m stations exist.  
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Table 1 

 

 

 

 CR 

sF ↓↓↓↓     0.1     0.3     0.5     0.7     0.9       CR=Θ×CR 

0.5 3.44 (55.59) 2.67 (29.38) 1.88 (47.27) 1.16 (21.15) 0.29 (25.28) 2.83 (33.36)

0.7 3.78 (48.24) 2.67 (61.60) 2.35 (27.39) 0.27 (36.46) 1.16 (7.53) 2.12 (37.34)

0.9 4.68 (53.02) 2.83 (30.31) 2.33 (49.09) 1.78 (26.99) 2.33 (33.99) 1.16 (37.90)

1.2 2.43 (56.53) 2.33 (44.79) 1.44 (55.82) 1.16 (34.56) 0.29 (30.95) 1.16 (38.73)

sF =Θ × sF  4.70 (49.15) 2.33 (40.69) 2.33 (38.19) 0.27 (34.09) 1.16 (22.53) 2.13 (40.69)
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Table 2:  

 

Compound cost function 
ALBP n Method c%dev       BD best worst mean 

%effort 
cpu-time 

(sec) 

Buxey 29 MODE1 0.712 18.250 26.027 31.258 28.412 15.483 2.831 

  MODE2 3.936 25.625 22.256 37.462 28.412 71.690 9.355 

  MODE3 0.266 15.252 33.483 33.483 33.483 7.828 1.954 

  MOGA1 2.226 22.500 27.571 57.824 33.483 91.172 3.133 

  MOGA2 3.579 26.750 33.483 36.037 34.714 9.517 0.401 

Sawyer 30 MODE1 1.922 15.750 24.641 31.258 29.303 19.767 2.804 

  MODE2 4.372 27.625 21.727 36.037 29.303 73.767 9.526 

  MODE3 1.562 18.125 32.333 33.483 33.483 13.067 2.996 

  MOGA1 4.272 20.125 26.778 61.500 36.037 73.200 5.981 

  MOGA2 3.313 24.000 33.483 34.714 33.483 15.267 1.440 

Gunther 35 MODE1 0.750 40.600 44.455 46.619 46.619 10.314 6.230 

  MODE2 1.778 52.700 28.412 65.667 42.478 63.371 8.253 

  MODE3 0.250 44.400 51.632 70.429 51.632 12.229 5.103 

  MOGA1 7.659 83.500 44.455 82.333 54.556 89.400 4.522 

  MOGA2 2.082 49.400 51.632 65.667 51.632 17.114 1.453 

Kilbridge 45 MODE1 0.340 9.778 46.619 51.632 49.000 15.756 8.852 

  MODE2 0.981 13.333 5.329 70.429 33.483 28.067 11.031 

  MODE3 0.161 8.778 82.333 82.333 82.333 9.644 9.956 

  MOGA1 6.851 47.000 49.000 99.000 57.824 68.067 6.848 

  MOGA2 0.860 12.667 82.333 82.333 82.333 12.689 1.241 

Tonge 70 MODE1 1.213 87.609 199.000 249.000 199.000 51.900 119.889 

  MODE2 3.919 183.930 82.333 332.333 199.000 42.000 142.365 

  MODE3 1.109 87.700 249.000 249.000 249.000 36.100 98.719 

  MOGA1 2.050 117.261 199.000 499.000 249.000 71.429 59.781 

  MOGA2 3.217 137.435 54.556 110.111 89.909 52.600 31.642 
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Table 3 

 

 

 

Compound cost function 
ALBP n Method c%dev       SX best worst mean 

%effort 
cpu-time 

(sec) 

Buxey 29 MODE1 0.266 6.211 19.833 23.390 20.739 19.10 3.773 

  MODE2 3.969 9.580 9.638 31.258 18.231 60.69 8.473 

  MODE3 0.266 7.252 32.333 33.483 33.483 21.90 5.094 

  MOGA1 0.266 6.276 19.833 46.619 25.316 27.72 3.488 

  MOGA2 2.831 8.513 6.937 34.714 18.231 50.62 4.421 

Sawyer 30 MODE1 1.712 5.997 19.833 24.000 21.222 34.40 8.414 

  MODE2 4.372 9.704 9.870 29.303 18.608 35.27 9.118 

  MODE3 0.669 6.911 32.333 33.483 33.483 9.27 2.678 

  MOGA1 2.562 7.002 20.277 40.667 24.641 26.61 3.373 

  MOGA2 2.910 8.161 6.194 33.483 17.868 81.67 2.724 

Gunther 35 MODE1 1.139 14.717 34.714 40.667 36.037 23.69 6.606 

  MODE2 2.610 19.301 19.408 49.000 31.258 64.49 10.755 

  MODE3 0.750 18.454 51.632 70.429 57.824 13.46 2.767 

  MOGA1 1.139 14.902 33.483 75.923 37.462 20.74 9.778 

  MOGA2 1.139 15.424 9.204 57.824 30.250 62.57 5.031 

Kilbridge 45 MODE1 0.000 2.796 42.478 46.619 44.455 35.18 17.392 

  MODE2 0.881 5.027 4.556 65.667 26.778 39.91 37.960 

  MODE3 0.000 3.786 82.333 82.333 82.333 15.33 10.504 

  MOGA1 0.302 3.572 42.478 89.909 49.000 17.36 13.257 

  MOGA2 0.820 4.756 2.289 75.923 29.303 52.64 8.587 

Tonge 70 MODE1 1.093 22.800 141.857 199.000 165.667 65.46 235.756 

  MODE2 3.726 52.931 46.619 249.000 141.857 63.44 241.623 

  MODE3 0.977 23.274 249.000 249.000 249.000 61.49 225.375 

  MOGA1 1.755 27.858 165.667 332.333 199.000 48.33 202.106 

  MOGA2 1.989 30.690 14.873 249.000 124.000 87.96 99.337 
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