Andreas C Nearchou
email: nearchou@upatras.gr

Multi-objective balancing of assembly lines by population heuristics

Keywords: ASSEMBLY LINE BALANCING, MULTI-CRITERIA DECISION MAKING, HEURISTICS, EVOLUTIONARY ALGORITHMS differential evolution assembly line balancing, differential evolution, multi-objective optimization, Pareto optimality, evolutionary algorithms, manufacturing optimization

This paper is concerned with the solution of the multi-objective single-model deterministic assembly line balancing problem (ALBP). Two bi-criteria objectives are considered: (1) minimizing the cycle time of the assembly line and the balance delay time of the workstations, and (2) minimizing the cycle time and the smoothness index of the workload of the line. A new population heuristic is proposed to solve the problem based on the general differential evolution (DE) method. The main characteristics of the proposed multi-objective DE (MODE) heuristic are: (a) it formulates the cost function of each individual ALB solution as a weighted-sum of multiple objectives functions with self-adapted weights. (b) It maintains a separate population with diverse Pareto-optimal solutions. (c) It injects the actual evolving population with some Pareto-optimal solutions. (d) It uses a new modified scheme for the creation of the mutant vectors. Moreover, special representation and encoding schemes are developed and discussed which adapt MODE on ALBPs. The efficiency of MODE is measured over known ALB benchmarks taken from the open literature and compared to that of two other previously proposed population heuristics, namely, a weighted-sum Pareto genetic algorithm (GA), and a Pareto-niched GA. The experimental comparisons showed a promising high quality performance for MODE approach.

Introduction

Finding the global optimum to a general multi-objective optimization problem (MOOP) is NP-complete [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF]. Usually, there is no single optimal solution to a MOOP but rather a set of optimal solutions known as Pareto-optimal solutions. These are solutions that are nondominated by any other solution in the search space when all the objectives are considered, and they do not dominate each other in the set. Due to their intrinsic parallelism, multiobjective evolutionary algorithms (EAs) have recently received a growing research attention for the solution of several real-world MOOPs [START_REF] Coelo | A comprehensive survey of evolutionary-based multiobjective optimization[END_REF][START_REF] Van Veldhuizen | Multiobjective evolutionary algorithms: Analyzing the state-of-the-art[END_REF][START_REF] Jones | Multi-objective meta-heuristics: An overview of the current-state-of-the-art[END_REF][START_REF] Tiwari | Evolutionary-based techniques for real-life optimization: development and testing[END_REF].

This paper considers the simple (deterministic single-model) assembly line balancing problem (ALBP) with various objectives. ALBP is a decision problem arising when an assembly line has to be (re)-configured, and consists of determining the optimal partitioning of the assembly work among the workstations in accordance with some objectives [START_REF] Baybars | A survey of exact algorithms for the simple assembly line balancing problem[END_REF][START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]). These objectives usually take one of two forms: either minimizing the number of workstations (m) given the cycle time (c) of the line (SALBP-1), or minimizing c given m (SALBP-2). Any variant of the simple ALBP (SALBP) belongs to the NP-hard class of combinatorial optimization problems [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF].

Multi-objective (MO) ALB optimization has attracted the research attention in the last decade. In an interesting work, [START_REF] Kim | Genetic algorithms for assembly line balancing with various objectives[END_REF], developed a MO genetic algorithm (MOGA) for SALBP with objective to maximize simultaneously the workload smoothness and work relatedness. [START_REF] Ponnambalam | A multi-objective genetic algorithm for solving assembly line balancing problem[END_REF], applied a MOGA on SALBP with the objective to maximize line efficiency and to minimize workload smoothness index. MOGAs have also developed by [START_REF] Malakooti | A knowledge-based system for solving multi-objective assembly line balancing problems[END_REF][START_REF] Celano | An evolutionary approach to multi-objective scheduling of mixed model assembly lines[END_REF][START_REF] Rekiek | A multiple objective grouping genetic algorithm for assembly line design[END_REF][START_REF] Lu | A hybrid genetic algorithm on multi-objective assembly planning problem[END_REF][START_REF] Mansouri | A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines[END_REF] for solving the general ALBP (GALBP) with various cost and profit oriented objectives. [START_REF] Mcmullen | Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations[END_REF] and [START_REF] Gamberini | A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem[END_REF] addressed the stochastic MO GALBP, via simulated annealing, and a special MO heuristic, respectively.

There is a lack in the literature for population heuristics (such as EAs) for solving the multi-criteria SALBP-2. Furthermore, the computational testing of most EAs has been given m (SALBP-2). Figure 1 illustrates an example of a precedence graph for an 8-tasks ALBP. The numbers inside the nodes of the graph correspond to the task labels, and those outside the nodes to the processing times.

< Insert Figure 1 about here >

In this work, the bi-criteria SALBP-2 is considered with main objective to minimize the cycle time c for a given fixed number of stations m, and secondary objectives to minimize: ()

∑ = - = m z z tS c BD 1 `(1) () ∑ = - = m z z tS c SX 1 2 (2)

The multi-objective SALBP-2

In MO SALBP-2 we ideally seek for a feasible solution that simultaneously optimizes c, as well as, BD and SX. Since this is almost impossible for any MOOP [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF], what we task is assigned to exactly one station, and the successors of any task i are not assigned to an earlier station than that of i. Note that, (i, j) denotes an edge between i and j, with j being the immediate successor of i. Constraint (3.b) ensure that the station times of all the stations do not exceed the line's total processing time (sum t).

The weights w 1 and w 2 in Eqs.(3),(4), specify the relative importance of the corresponding objectives. The determination of the suitable values for these weights is in general a difficult task and constitutes a critical research question in MOO. This issue will be discussed deeper in section 5 of this study. Moreover, a new methodology will be introduced for a dynamic selfadapted estimation of these weights.

Differential evolution (DE)

DE is a population heuristic introduced by [START_REF] Storn | Differential Evolution-A simple and efficient heuristic for global optimization over continuous spaces[END_REF] for global optimization over continuous search spaces. DE has been applied with success on many numerical optimization problems outperforming other popular heuristics including GAs (Ali andTörn 2004, Kaelo and[START_REF] Kaelo | A numerical study of some modified differential evolution algorithms[END_REF]. Recently, the application of DE has been extended with success to combinatorial optimization problems with discrete decision variables, such as, the machine layout problem [START_REF] Nearchou | Meta-heuristics from nature for the loop layout design problem[END_REF], and machine flow-shop scheduling problems (FSSPs) [START_REF] Onwubolu | Scheduling flow shops using differential evolution[END_REF]Davendra 2006, Nearchou and[START_REF] Nearchou | Differential evolution for sequencing and scheduling optimization[END_REF].

DE utilizes

Φ = } , , , { 0 0 , 2 0 , 1 , p N x x x K , (5)
is taken to be uniformly distributed in Ω. At each iteration, all vectors in Φ are targeted for replacement. Therefore, Νp competitions are held to determine the members of Φ for the next iterations. This is achieved by using mutation, crossover and acceptance operators. In the mutation phase, for each target vector

k i x , ,i = 1,…,Νp, a mutant vector k i x ,) is obtained by) (, , , , k k k k i x x F x x s γ β α - + = ⋅) , (6)
where α,β,γ ∈{1,…,Νp} are mutually distinct random indices and are also different from the current target index i. The vector k x , α is known as the base vector and s F >0 is a scaling parameter. The crossover operator (Eq.(7)) is then applied to obtain the trial

vector k i y , from k i x ,) and k i x , .      ≠ > = ≤ = i R L L k i i R L L k i L k i I L C R x I L C R x y and if or if , , ,) , (7)
Where, I i is a randomly chosen integer in the set) . This is, ensured by introducing the crossover rate C R and the set Ι. Notice that for C R =1 the trial vector k i y , is the replica of the mutated vector k i x ,) . The process (mutation and crossover) continues until all members of Φ are considered. After all Νp trial vectors k i y , have been generated, acceptance is applied. In the acceptance phase, the cost of the trial vector,

) (, k i y Cost , is compared to) (,k i x Cost
, the value at the target vector and the target vector is updated using

   < = + otherwise if) () ost(, , , , 1 , k i k i k i k i k i x x Cost y C y x (8)
Mutation, crossover and acceptance phases continue until some stopping conditions are met.

Applying DE on ALBPs.

Since DE is quite similar to an EA, without lose the generality, in the following analysis we will use terms borrowed from the field of Evolutionary Computation such as, the genotype (is the real-valued vector evolved in DE), the phenotype (is the actual ALB solution corresponding to a genotype). Every component of a vector is called a gene. Therefore, applying DE on ALBP domain needs the specification of the following five characteristics: The natural coding for ALBPs is strings with integers. Two different schemes for string representation applicable to ALBPs are mainly identified in the literature: station-oriented (sor) and task-oriented representation (tor) [START_REF] Scholl | State of the art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. Both of them assume a string length equal to n (number of the tasks to be processed). Using sor, the components of a string are integers in the range [1,m] (m=number of workstations). Thus, if the i-th position of the string has the value z (z =1,…,m), then, task i is assigned to station z. Using tor, a specific string is a permutation of the integers 1,2,…,n. Hence, the task j in location i of the string will be assigned to a station before the task in location (i+1) of the string. Note that, a tasks'

sequence is legal when it does not break the precedence relations (constraint (3.a)). For example, assume SALBP shown in Fig. 1 with m=3, c=28. A possible feasible solution to this problem is to assign tasks {1,2} to station 1, tasks {3,4,6} to station 2, and tasks {5,7,8} to station 3. Using sor this solution may be represented by the string <1,1,2,2,3,2,3,3>; while, using tor by <1,2,3,4,6,5,7,8>. After experimentation with both schemes over selected test beds (from a set of benchmarks described in section 6), we found tor superior, in terms of speed of convergence and quality of solutions, and thus, it was decided to adopt tor with DE.

DE works with floating-point vectors and thus an appropriate mapping is needed from the genotypic state-level (the vectors) to the phenotypic level (the actual ALB solutions). To achieve this mapping a simple yet effective topological ordering scheme has been developed based on the relative priorities impose by the components of a genotype. Assuming an n-tasks ALBP with precedence relations given by a DAG G=(V,E), the developed encoding scheme consists of generating a topological sort of G from a specific n-dimensional floating-point vector ψ (genotype). Each vector's component ψ i (i=1,…,n) represents the relative priority of task i (i∈V). The topological sort is therefore a ranking of all the tasks according to their priorities in an appropriate order to meet the precedence constraints. This mechanism is implemented using the following procedure: then, an appropriate decoding scheme is needed to map this phenotype to an actual solution for SALBP-2. In other words, a method is needed to assign the tasks in the generated tasksequence into the stations. After experimented (over representative instances from the test beds discussed in section 6) with some well known decoding schemes such as the lower and upper bound search methods [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF], we finally decided to adopt a scheme proposed by [START_REF] Kim | Genetic algorithms for assembly line balancing with various objectives[END_REF]. The use of this scheme (see below) in DE was found to be superior in terms of quality of solutions. The idea is to face SALBP-2 through an iterated procedure that solves the corresponding SALBP-1 with a cycle time value being progressively decreased until reaching a near-optimum value within a specific permitted range.

F o r P e e r

Procedure decode_SALBP-2 begin

Step 1. Set c initially equal to the theoretical minimum cycle time, i.e., c = t sum /m.

Step 2. Assign as many as possible tasks into the first m-1 workstations. Assign all the remaining tasks to the last workstation, m.

Step 3. Calculate the work load W z for each workstation z (z=1,2,…,m), and the potential workload PW z (z=1,2,…,m-1) as follows: W z =the station time tS z (z=1,2,…,m). PW z = tS z + the processing time of the first task assigned to (z+1)st station (z=1,2,…,m-1).

Step 4. Set c W = max { W 1 , W 2 , …,W m } and c = min { PW 1 , PW 2 , …,PW m-1 } Step 5. if (c W > c) then goto step 2 else Return c W end

The evaluation mechanism

This mechanism corresponds to the computation of the cost (objective) function for each phenotype solution. As analyzed in sub-section 2.2, the objective is to minimize the functions given by Eqs. (3),(4). Hence, for a phenotype i Ρ (i=1,…,Np) the cost function is given by,

j i F Cost = Ρ) ((9)
Where, j F (j=1,2) is the j th composite objective function given by Eqs. (3), (4), respectively.

A multi objective DE (MODE) for SALBP-2.

When solving a MOOP often the attempt is to find a Pareto set of optimal solutions.

Pareto set contains all those non-dominated solutions to the problem under investigation such that no other solutions are superior to them in respect to all the discrete objectives. To that purpose, MODE tries to find a set of non-dominated ALB solutions rather a single ALB solution. MODE (see Fig. 3 for a schematic overview) has the following two main features:

a) It maintains a separate population of diverse Pareto-optimal ALB solutions iteratively updated generation by generation. Moreover, two additional features are included within MODE resulting to modifications to the standard mutation rule given by Eq. (6). These features are as follows:

(i) In each iteration k, mutant vectors k i x ,) (i=1,
…,Νp) are created using the relation,

) () 1 (, , , , , k k s k k k i x x F x r x r x δ γ β α - ⋅ + ⋅ - + ⋅ =) (10)
where r is a random number uniformly taken within (0,1) and α≠β≠γ≠δ≠i ∈{1,…,Νp} are distinct random indices. This scheme was found more robust in preliminary experiments than other standard mutant schemes such as the one given by Eq. (6). Particularly, the proposed mutation scheme enhances the ability of the algorithm for converging faster to a nearoptimum solution.

(ii) Traditionally, the mutation-factor s F takes a value within the range (0,2] and this value remains constant through the life cycle of the DE algorithm. In this study, we propose the following dynamic scheme for estimating s F .

Fs Θ else F F then F Cost . f Cost s 0 s AVG MIN i × = = × ≥ 95 0 (11)
where, // Decode phenotypes to actual solutions for SALBP-2 using the scheme presented in sub-section 4.2. Then evaluate the cost of each solution using Eq.(9) // if MO SALBP-2 version 1 then As it was referred in sub-section 2.2, weighted-sum method is used to construct the composite objective functions F 1 and F 2 given by Eqs.(3) and (4), respectively. In the literature, there are two general methods to compute the weights i w (i=1,…,Q) for a weightedsum objective function with Q objectives: the fixed-weight method and the random-weight method. The former uses constant weights satisfying the relation,

) (,k i x Cost P = F 1 (decode_SALBP-2(k i x , P))) (,k i y Cost P = F 1 (decode_SALBP-2(k i y , P)) else if MO SALBP-2 version 2 then) (,k i x Cost P = F 2 (decode_SALBP-2(k i x , P))) (,k i y Cost P = F 2 (decode_SALBP-2(k i y , P)) endif Acceptance step: if) (,k i y Cost P <) (,k i x Cost P then 1 , + k i x = k i y , else 1 , + k i x = k i x ,
,Q , i f i w Q i i w K 1 all or 0 1 1 = > ∑ = = (12)
However, as [START_REF] Murata | Multi-objective genetic algorithms and its application to flowshop scheduling[END_REF] shown, using constant weights within an EA the search direction is fixed, and for this reason it is difficult for the search process to obtain a variety of non-dominated solutions. To overcome this drawback, [START_REF] Murata | Multi-objective genetic algorithms and its application to flowshop scheduling[END_REF], proposed the use of random weights according to the following formula, [START_REF] Cheng | Genetic algorithms and engineering optimization[END_REF] proposed an adaptive weight approach within a MOGA, which readjusts the weights by utilizing some useful information from the current population. This method computes the weights by,

,Q , i Q random random i random i w K L , 2 1 2 1 random = + + + = (
,Q , i f i z i z i w K 1 all or , min max 1 = - = (14)
where max i z and min i z are the maximal and minimal values of the i th objective in the population.

In this work, a new, self-adapted method for the estimation of the weights 1 w and 2 w (used in Eqs.(3),(4)) has been developed. The proposed method is given by the following relation:

1 1 2 1 w w d e w - = + - ⋅ = µ λ (15)
where, λ and µ are user-defined coefficients used to normalize the upper and lower bounds of 1 w , respectively. In this study, we set λ = µ = 0.5. The exponent d, is determined by,

c c d - = * (16
)
c * is the theoretical minimal cycle time of the assembly line. Note that the proposed scheme gives to the first objective higher priority assuming that this is the most significant criterion in the composite objective function. In SALBP-2 the main criterion is to minimize c, hence, 1 w is increased while d approaches zero, i.e., when a generated ALB solution approaches the optimal solution regarding the cycle time criterion. Figure 4 shows the rate of change of the 1 w in respect to the changes of parameter d. It is worth pointing that, the application of the proposed scheme on any bi-criteria optimization problem is straightforward provided by the decision maker the main and the secondary optimization criteria. [START_REF] Kim | Genetic algorithms for assembly line balancing with various objectives[END_REF] for solving MO SALBP, while the second is a Pareto weight-sum GA developed by [START_REF] Murata | Multi-objective genetic algorithms and its application to flowshop scheduling[END_REF] to address MO FSSP.

< Insert

We will refer to these algorithms with the abbreviations MOGA1 and MOGA2, respectively.

Although MOGA2 was introduced for FSSP, as will be explained below, very easily it can be extended and applied on SALBP, as well. Three versions of MODE were implemented each one differ on the way the weights in the objective function are estimated. The first version uses fixed and equal value weights (1 w = 2 w = 0.5), the second version uses random weights estimated by Eq. (13), and the third version uses the proposed adaptive scheme given by Eq.

(15). In the following analysis we will refer to the three MODEs as, MODE1 (with fixed weights), MODE2 (random weights), and MODE3 (adaptive weights), respectively.

All the heuristics were implemented in Delphi Pascal and run on a Pentium 4 (1.7 GHz)

PC. The experiments were carried out on known ALBP benchmarks taken from the open literature [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]. Note that the upper bounds on the optimal objective function values for these benchmarks concern the minimal cycle time. In the experiments we include the available test instances concerning the following five ALBPs: Buxey (n=29, in#=8), Sawyer (n=30, in#=8), Gunther (n=35, in#=10), Kilbridge (n=45, in#=9), and Tonge (70, in#=23). n denotes the number of the tasks in the corresponding precedence graphs and in# the number of the test instances included in the specific ALBP. To be fair with the stochastic behavior of the five heuristics, we run each one of them ten times over every test instance and the solutions quality were averaged. This means that, each heuristic was run over (8+8+10+9+23)×10=580

test experiments in total. All the examined heuristics were defined to evolve a fixed size population of 2n individual solutions, and run for a maximum of 100n iterations. Remark 1: MOGA1 combines a Pareto GA and a niched GA. Ranking is performed using the Goldberg's ranking method [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF]. This method assigns to Pareto solutions the same rank and to all the others solutions a some less desirable rank. The niche radius in the shared fitness function was defined to be equal to popsize 1 , with popsize denoting the population size. Chromosomes are integer strings and are mapped into ALB solutions through sequence-oriented representation. If a task sequence breaks the precedence constraints then a suitable repairing method is applied to correct it. Crossover and mutation are performed through the partially mapped (PMX) crossover and reciprocal exchange, respectively. The rates of crossover and mutation operators were set (same as in [START_REF] Kim | Genetic algorithms for assembly line balancing with various objectives[END_REF]) equal to 0.3 and 0.5, respectively. The repairing procedure is also applied after the application of these operators on the chromosomes. Selection is done by a tournament strategy [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF].

Remark 2: In MOGA2, a chromosome is a permutation of the integer numbers 1,2,…,n, with each gene in the chromosome denoting a different task label. A scalar fitness function is used formulated as a weighted sum function with the weights estimated using Eq. (13). For each chromosome i

x , i=1,2,…,popsize the probability of being selected for reproduction is given by the ratio ()

        - - ∑ =)) (() (1 min min popsize i i i f x f f x f . Where, () i x f
is the fitness function of i x and min f the minimum population fitness function. Once these selection probabilities are estimated for all the vectors in the entire population, selection is performed using the roulette wheel strategy [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF]. Crossover is performed by a two-point crossover procedure with a rate equal to 1.0, while mutation is performed via the shift mutation operator with a rate 1/n. To map a chromosome to a feasible ALB solution we used the same representation mechanism, as well as, the same repairing method as in MOGA1. The tasks in an ALB solution are assigned to the stations according to the scheme described in sub-section 4.2. MOGA2 maintains a separate set with Pareto solutions, and applies an elitist strategy with these solutions on the entire population. In particular, two levels of Νp∈(n, 2n) were examined. C R was defined to take values within the discrete range {0.1, 0.3, 0.5, 0.7, 0.9}, while for s F two different control schemes were used: (a) a static scheme based on which s F takes values in the range [0.5, 0.7, 0.9, 1.2],

and (b) the proposed dynamic scheme given by Eq. (11). (17) where K opt is the number of iterations attained the best solution and MaxK=100n is the maximum permitted number of iterations. As one can see from Table 1, the best results are due to (s F ,C R)=(adaptive, 0.7). With these settings MODE achieved ALB solutions with a mean deviation from the global optimum equal to 0.27% after spending approx. the 34% of the total permitted iterations. Hence, in the following discussion, all the experimental results obtained by MODE heuristics are due to the above 'optimal' combination of settings. 2 and3 display the comparative results obtained by the five heuristics over the benchmarks instances described in sub-section 6.1. The results in Table 2 concern the experiments with the objective given by Eq.(3), while the results presented in Table 3 concern the experiments with the objective given by Eq.(4). The first and second columns of Tables 2 and3 indicate the problems tested and their size, respectively, while the third column of the tables indicates the method used. The rest columns of the tables provide the following information: c%dev = the average relative deviation from optimum in percentage; estimated by ((c-c*)/c*)×100, with c* the existing optimal cycle time, and c the cycle time of the best solution generated by a specific heuristic. BD = the average balance delay time corresponding to the optimal solution attained by a heuristic (this information is included in Table 2). SX = the average smoothness index of the optimal solution attained by a heuristic (included in Table 3).

< Insert

Compound cost = includes the best, worst, and mean population costs (Eq. (9)) generated by each heuristic. %effort = denotes the convergence ratio of a heuristic in % given by Eq. (17). cpu-time = the average actual processing time in seconds spent by each heuristic until the convergence to the best possible solution.

< Insert Table 3 about here > As one can observe from Table 2 the best results concerning c%dev have been obtained by MODE3 with a mean offset from optimum approx. equal to 0.27% (BD≈15) for Buxey's problems, 1.56% (BD≈18) for Sawyer's problems, 0.25% (BD≈44) for Gunther's problems, etc. The second best performance is reported by MODE1 with (c%dev, BD) approx. equal to (0.71%, 18) for Buxey's problems, (1.92%, 16) for Sawyer's problems, and so on. Similar high performance for MODE1 and MODE3 heuristics is reported in Table 3. Again, the proposed MODE3 outperformed all the other heuristics generating solutions of higher quality in respect to both objectives, either c%dev, or SX. Near to this performance stays that attained by MODE1. Furthermore, a significant observation from these tables is that the use of SX as the second optimization criterion in the objective function results in much higher quality solutions (independently of the heuristic used) than those obtained when using BD as second optimization criterion. Another observation from Tables 2 and3 is that using random weights in the compound objective function of the MODE heuristic (case of MODE2) results to a lower quality performance in comparison to the other heuristics. In regard to the cpu-time spent by the heuristics, the two MOGAs are in general faster than MODEs heuristics (see last column in Tables 2 and3, respectively) with MOGA2 being the fastest.

< Insert Figure 5 about here > For better illustration of the generated results we built Figures 5 and6. In particular, Fig. MODE is simple, and very easily implemented. Extensive experimental comparisons over public available ALB benchmarks between MODE and two existing MO evolutionary algorithms showed a superior performance for the former in terms of quality of solutions.

In practice, many MO optimization problems (MOOPs) have multiple conflicting objective functions expressed in differing units, and with an inverse, nonlinear relationship among themselves. These objectives may be even imprecise (or fuzzy) in nature to be defined.

In its present form MODE cannot address such problems. Hybridizing MODE with mechanisms borrowed from the field of nonlinear goal programming (GP) [START_REF] Lee | Goal programming for decision analysis[END_REF]) may result to a promising optimization tool for these problems. GP needs DM to provide a numeric goal (together with a priority level) for each objective, and then seeks for a solution that minimizes the weighted-sum of the deviations of the objective functions from their respective goals. This idea will constitute a central research direction in the near future. Moreover, there are MOOPs with a huge set of Pareto-optimal solutions for which evaluating this set to select the best one becomes unpractical for DM. Perhaps, a solution for these problems can be obtained by trying to get compromises, based on the DM's information. Compromise solutionbased fitness assignments (Gen and Chen 2000), is an interesting approach to be investigated within MODE.

Moreover, this work is limited in the deterministic single-model ALBP, however, it represents a good start point for further studies focused on more difficult ALBPs such as the stochastic or dynamic ALBP. In reality, tasks' processing times are rarely deterministic and may vary more or less. When these variations are considerable then we have the stochastic ALBP. Dynamic ALBP considers operation times being varying over time, e.g. due to learning effects, or successive improvements of the production process [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]. Our intuition is that, MODE can be rather easily extended to address the stochastic SALBP provided that a suitable statistical model will be developed that transforms the stochastic task times to deterministic ones, and realized different cycle times so that to avoid blocking and starving of the workstations.

Another avenue for further research is to consider the mixed-model ALBP (MALBP). This problem is much more complex than SALBP since, the attempt is to manufacture different versions (models) of the same basic product in the same line (e.g., PCs with or without DVD drive, with various CPU types, etc.) in arbitrarily intermixed sequence. A first idea is to address the feasibility MALBP; i.e., given the cycle time c and the number m of the stations determine whether or not, a feasible mixed-model assignment with m stations exist. Figure 2. The application of topological ordering encoding method on genotype ψ = (0.32, 0.83, 0.05, 0.24, 0.17, 0.45, 0.09, 0.61). Table 1. Choosing the correct settings for the parameters C R and s F . Average costs over characteristics runs concerning Buxey's ALB benchmarks.

List of Tables

 a deterministic processing time j t . Let z S (z=1,…,m) be the station load of station z (i.e., the set of tasks assigned to z), with a cumulated task time …,m). The tasks are partially ordered by precedence relations defining a directed acyclic graph (DAG) G=(V,E); with V the set of nodes denoting the tasks in G, and E the set of edges representing the precedence constraints among the tasks. The assembly line is associated with a cycle time c denoting the maximum processing time available for each station. The objective typically takes one of two forms: either minimizing m given c (SALBP-1), or minimizing c

 (a) The balance delay time (BD) of the line (see Eq. (1)). BD reflects the unused capacity of the line, i.e., the summation of the idle times of all the stations. (b) The smoothness index (SX) (Eq. (2)) measuring the equality of the distributed work among the stations. The lower the value of SX the smoother the line, resulting in reduced in-process inventory. An SX equal to zero indicates a perfect balance of the workload among the stations.

 do is to optimize each individual objective to the greatest possible extend. MOOPs considered in this study can be formulated as in the following: the set V={1,…,n} into m disjoint subsets z S (z = 1,…,m) : ∀ edge (i,j)∈E, i, j ∈V and j∈FL i the following holds, i∈ A S and j∈ B S with A ≤ B of all the tasks' processing times and , FL i = the set of immediate successors (followers) of task i. a) and (3.b) ensure the feasibility of an ALB solution. In particular, constraint (3.a) guarantees the feasible assignment of the tasks to the m stations. That is, each

 Νp, D-dimensional parameter vectors k i x , , i=1,2,…,Νp, as a population to search the feasible region Ω of a given problem. The index k denotes the iteration (or generation) number of the algorithm. The initial population (where, k = 0),

 (a) a representation mechanism, i.e., a way of encoding the phenotypes to genotypes. (b) An evaluation mechanism, i.e. a way of computing the cost-function for each genotype. (c) A way of initializing a population of genotypes. (d) The application of mutation, crossover and acceptance operators on the population. (e) Values to the parameters: Νp, C R and s F . Characteristics (c)-(e) are in general same as in the standard DE, the differences rely on the way one implement the first two.

Fig. 1 .

 1 Fig.1. The first position of array PS is taken by task 1 (i.e., PS[1]=1) since this is the only task

 uses an elitist preserving strategy with which a portion of the evolving population is randomly replaced by a number of elite Pareto solutions.< Insert Figure 3 about here >In a general MOOP a solution with the best values for each objective can be regarded as an elite solution. Hence, for the bi-criteria ALBPs examined in this work, there are two elite (extreme) solutions in the evolving population each of which optimizes one objective. These solutions are always copied into Pareto population. Pareto set is further completed by additional elite solutions using a mechanism explained below. The Pareto population of the final generation contains the near-optimal solutions to the MOO ALBP. The decision maker can then select that solution accomplishing more her or his preferences.

 minimum and average costs values, respectively. This scheme gives to s F a high value at the beginning of the run and decreases this rate slowly by the diversity of the population. s F is initially defined to be equal to 0 F =0.8, and decreased in each new iteration by a factor Θ = 0.95 using the linear relation s F =Θ× s F . If the minimum almost the same to the average population cost, then a very small diversity is encountered in the population and thus s F is reset to the initial value 0 F . MODE is given below in pseudo-code format:Algorithm MODE for SALBP-2Pre-processing step: Read input data concerning the DAG G=(V,E) of a specific n-tasks ALBP: i.e., the set of tasks V, the set of edges E, the processing times j t (j=1,…,n), the number of stations m.Initialization step:Set values for the control parameters (Νp, C R)n-dimensional floating-point vectors;The components of k ix , (i =1,…,Νp) are randomly chosen within the range [0,1]; Γ = {∅}; // Create an initial empty Pareto population // Repeat for i = 1 to Νp do // create population Φ of the new generation //

 13) where i random (i=1,…,Q) are non-negative random numbers.

 of the control parameters' settings for MODE Much investigation on the selection of the appropriate settings of the control parameters (population size Νp≥4, crossover rate C R ∈[0,1], and mutation-scale factor s F ∈(0,2]) was undertaken in preliminary tests. Here, we describe the experimental design methodology used to determine these settings.

 of MODE and MOGA heuristics Tables

 Fig. 5(b). It is clear from Fig. 5 that MODE3 is superior from the other heuristics. Fig. 6

Figure 1 .

 1 Figure 1. A precedence graph for an 8-tasks ALBP.

Figure 3 .

 3 Figure 3. The general structure of the proposed MODE.

Figure 4 .

 4 Figure 4. Rate of change of the weighting coefficient 1 w in respect to the parameter d.

Figure 5 .

 5 Figure 5. Comparisons of the three MODEs and the two MOGAs in regard to: (a) c%dev and (b) the minimum balance delay time on the selected ALB benchmarks.

Figure 6 .

 6 Figure 6. Experimental comparisons of the heuristics in regard to: (a) c%dev and (b) the minimum smoothness index on the selected ALB benchmarks.

Figure 7 .

 7 Figure 7. Comparisons of the five heuristics in regard to the % effort and the number of the tasks to be assembled. (a) Minimizing c and BD. (b) Minimizing c and SX.

 Figure 1

 Determine the gene ψ i of ψ with the maximum value for all i∈V′ Insert task i into the next available position in the partial schedule (PS). V′ = V′ \ {i}, i.e., remove task i from V′. Until PS has been completedReturn PS endIn each step, the tasks with no predecessors are identified and put in set V′. Then, the task in V′ having the highest gene's value in ψ is selected, removed from V′, and placed in the next available position of PS. The process is repeated until the completion of PS.

	Let	us	see	how	this	topological	ordering	works	on	genotype
						R				
						e				
						v i e			
							w			
							O n l	
								y	

Procedure Topological_ordering_encoding begin

Set V′ = ∅ // with V′⊆V // Repeat For all j∈V do if j has no predecessors then V′=V′∪{j}, i.e., insert j into the set V′.

ψ = (0.32, 0.83, 0.05, 0.24, 0.17, 0.45, 0.09, 0.61) concerning the 8-task ALBP shown in

endfor Update Pareto Population Step:

 If Φ(cΦ) is not contained in Γ thenIf it dominates some Pareto solutions then Add Φ(cΦ) into Γ and delete the solutions dominated by it; Increment accordingly counter cΓ; else if there is empty space in Γ then Add Φ(cΦ) into Γ.

		cΓ = cΓ + 1;
		endif
	endif	
	endwhile	
	Elitist Preserving Strategy Step:
	Determine the two elite Pareto solutions in Γ; Randomly select two members in Φ and replace them with the two elite Pareto F solutions from Γ; Adaptation of parameter s F Step: o Determine worst and average cost functions in Φ; then, adapt s F using Eq. (11); r k = k + 1 // increment iteration counter //
	Until k > MAXI; Return Γ ;	// MAXI stands for Maximum Iterations // P
		e
		e r
		R
		e
		v i e
		w
		O n l
		y

// Check each one of the individual solutions in Φ whether constitutes a Pareto solution // cΦ = cΓ = 0 ; // initialize counters for the members in Φ and Γ, respectively // While (cΓ ≤ Γ_size) and (cΦ ≤ Νp) do cΦ = cΦ + 1; Compare Φ(cΦ) (i.e., the cΦ member of Φ) with all Pareto solutions in Γ;

Table 2 .

 2 Minimizing cycle time and balance delay time.

Table 3 .

 3 Minimizing cycle time and smoothness index.

Table 1

 1

	C R

Table 2 :

 2

	Compound cost function

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.ukInternational Journal of Production Research

Acknowledgments

The author thanks the anonymous referees for their valuable comments and suggestions on this paper. This work is integrated in the Innovative Production Machines and Systems (I*PROMS) Network of Excellence.