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MIA - Laboratoire Mathématiques, Image et Applications
University of La Rochelle, La Rochelle, France

jose.mennesson@univ-lr.fr [presenter, corresponding]
christophe.saint-jean@univ-lr.fr, laurent.mascarilla@univ-lr.fr

1 Introduction

This article is based on a recent development of a generalization of the Fourier transform. A
color Clifford-Fourier transform[1] using geometric algebra is considered to process color im-
ages. This transform, defined by Batard et al., generalizes the classical Fourier transform to
L2(Rm;Rn) functions. It avoids a marginal processing that is generally applied in color image
processing. From this advance, a new color phase correlation is defined and appears highly
relevant for several applications, specifically in the image classification field.

2 Clifford Fourier transform for color images

In [1], Batard et al. have proposed a definition of the Fourier transform for the L2(Rm;Rn)
functions. It has been demonstrated that the previous generalizations of the Fourier transform
for color image, i.e. the hyper-complex Fourier transform of Sangwine and Ell [4] and the
Biquaternionic Fourier Transform of Pei et al.[9], are particular cases of their proposal. Because
of the domain of our application (color image processing), only the Clifford Fourier transform
defined from morphisms from R2 to Spinp3q is used. Its definition for color images is :
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where B is a bivector of R4,0 which parametrizes the analysis direction, f‖B (resp. fKB) is the
projection of f on the plane generated by B (resp. I4B).

It is obvious that this formula permits to process the color Fourier transform easily and
efficiently thanks to two FFT 2D on fKB and f‖B.

Note that a unit bivector B can be obtained from the geometric product of two unit
orthogonal vectors. In this article, the bivector is chosen as being C ^ e4 where C is a user-
defined color. Obviously, an inverse transform exists and it is denoted by |fB [1].
From this Clifford-Fourier transform, we have developed two image recognition methods : the
Generalized Fourier Descriptors (GCFD) [6] and the Phase Correlation defined in the following
section.

3 Phase Correlation for color images

In the literature, the phase correlation [10] is a well-established method that is used for a lot of
applications such as image recognition, video stabilization, motion estimation, stereo disparity



analysis, vector flow analysis [3] ... It is defined for two grayscale images f and g as :

rpx, yq � qRpu, vq where R is the so-called ”cross-power spectrum” Rpu, vq �
pfpu, vq pgpu, vq�
| pfpu, vq||pgpu, vq�|

with operator � the usual complex conjugate. The visualization of r as an image reveals a peak
corresponding to the best translation estimate between the two images : this is justified by
the ”shift theorem” of the Fourier transform [3]. The value of this peak is used as a correlation
score assessing the goodness of the matching between the two images and is denoted by

ρ � max
x,y

rpx, yq

Hopefully, a phase correlation for color images can supply more information than the one
computed on gray level images and should give a better translation estimate. Previously,
Moxey et al. [7] defined an hypercomplex phase correlation for color image based on the
hypercomplex Fourier transform. In that case, the image is decomposed into its projection on
the luminance and the chrominance axis. In the color Clifford-Fourier transform framework
we define a color phase correlation depending on a bivector B. From equation (1), it is obvious
that the color Clifford-Fourier transform can be decomposed as :

xfBpu, vq �yf‖Bpu, vq � yfKBpu, vq

From this, identifying yf‖B and yfKB to two distinct complex images, two cross-power spectra
for two color images f and g are defined :

R‖Bpu, vq �
yf‖Bpu, vq yg‖Bpu, vq�
|yf‖Bpu, vq||yg‖Bpu, vq�| , RKBpu, vq �

yfKBpu, vq ygKBpu, vq
�

|yfKBpu, vq||ygKBpu, vq�|

By taking the inverse Fourier transform of R‖B and RKB, the phase correlation of the parallel
and the orthogonal part of the image (denoted r‖B and rKB) are obtained. This is exemplified
on Figure 1 with the two correlation scores, ρ‖B and ρKB. One can see the peak representing
the exact translation processed between the two images. For an image classification purpose a
single correlation score is preferred and some proposals to fuse these two values are examined
in the application section. A better way should be to directly define the correlation score onxfB. This can be done taking the cosine of the angle between the two multi-vectors xfBpu, vq
and xgBpu, vq (see [5] page 14):

RBpu, vq � cospxfBpu, vq,xgBpu, vqq �
xfBpu, vq �xgB

:pu, vq

|xfBpu, vq||xgBpu, vq|

where : is the reverse and � is the Hestenes scalar product. The inverse Fourier transform of
this complex image produces two symmetric peaks, due to the cosine, which have the same
magnitude. Then the same previous calculi also apply :

rBpx, yq � |RBpu, vq, and ρB � 2 � max
x,y

rBpx, yq (2)

It can be checked on Figure 1, that the color correlation score ρBr , where Br
1is red ^ e4,

is the highest. This argues that considering color increases the correlation score between two
objects of the same color.

1In the following, this notation is used for Bg � green^ e4, and so on for blue, µ � rgbp127, 127, 127q or any
given color C



 
 

 Phase Correlation on channel R,G,B separately

Color phase Correlation 
r

Br
  Gray phase 

Correlation 

ρ=0,3961 ρ=0,3978 ρ=0,3974 ρ=0,4079 ρ
Br

=0,4318ρ
||Br

=0,3952 ρ  
Br

 =0,4015

Color phase Correlation : 
r

||Br
  and r 

Br
 

Figure 1: Correlation scores ρ (resp. ρ‖Br , ρKBr , ρBr) on grayscale (resp. color) Lena

Results in Table 1 confirm our previous observations. On the one hand, ρKB and ρ‖B are
equal to 1 or NaN2 independently to the bivector B and C2 choice. On the other hand, ρB

is lower than 1 depending on C2 and B: similarly shaped objects of different colors are less
similar and lowest scores are obtained by taking B equals to C1.

C
1
=rgb(66,154,77) C

2

Image 1 Image 2
Translation of image 1 Bµ Br BC1

C2 ρ‖Bµ ρKBµ ρBµ ρ‖Br ρKBr ρBr ρ‖BC1
ρKBC1

ρBC1

rgbp66, 154, 77q � C1 1 1 1 1 1 1 1 NaN 1
rgbp66, 0, 0q 1 1 0.36 1 NaN 0.36 1 NaN 0.36
rgbp0, 154, 0q 1 1 0.84 NaN 1 0.84 1 NaN 0.84
rgbp0, 0, 77q 1 1 0.42 NaN 1 0.42 1 NaN 0.42
rgbp119, 119, 119q � µ 1 NaN 0.93 1 1 0.93 1 NaN 0.93

Table 1: Correlation scores between image 1 and 2 for various choices of C2 and B. From image
1 to 2, the rectangle has color changed from C1 � rgbp66, 154, 77q to C2 and a translation is
applied.

4 Application to image classification

To obtain a single similarity value from ρ‖B and ρKB, the most immediate aggregation function
is the usual mean, the resulting score is denoted ρmean

‖B,KB. However, this score depends on the
choice of the bivector B. Then, two distinct classification processes can be done : the first
one relies on the arbitrary choice of a unique bivector for the whole dataset while the second
determines some ad-hoc bivector for each request image depending on its hue histogram. In
both cases, phase correlation is used as a criterion for the ”most similar” rule. This method
improves the discrimination between two objects which have the same shape but not the same
color.

In order to assess the classification performance of these two methods, a comparison with
a method based on Generalized Color Fourier descriptors (GCFD) [6] is provided. These
descriptors are defined from (grayscale) Generalized Fourier Descriptors (GFD) introduced
by Smach et al. [11] and the Clifford-Fourier transform [1]. It must be emphasized that, by
construction, GFD and GCFD are invariant with respect to the action of group M2, i.e.
translations and rotations. Previous experiments on well-known databases [6] have shown that
the GCFD give better recognition rates than the (grayscale) GFD computed marginally on
the R,G, and B planes. Using a 1-NN classifier, we obtain an error of 0.74% for the 128 GCFD

2NaN denotes that the correlation score cannot be calculated because Fourier transform is null (e.g. parallel
part of a red image for a blue bivector is null)



descriptors on the COIL-100 database [8]. On the same database ρmean
‖Br,KBr

yields an error of
9%. When ci corresponds to the principal mode of the hue histogram ρmean

‖Bi,KBi
gives an error

of 7.22 %.
The superiority of descriptors GCFD was predictable from a theoretical point of view,

because of the quality of the used classifier and of the size of descriptors. However, the results
of the proposed methods are quite encouraging knowing that they are based on a single number.
Let us also remark that these methods can be fairly improved by transforming the images in
log-polar domain to achieve a rotation and scale invariance. In the same way, various criteria
for fusing the ρ‖B and ρKB should to be examined (e.g. the maximum, the minimum) and
compared to the classification rate using the correlation as calculated by ρB, i.e. by using
the equation (2). Tests on rBpx, yq are ongoing as well as experiments on other bases. An
improvement will also be done by using a similarity-based SVM [2] allowing the use of our
criteria with this classifier and compete with Fourier Descriptors.
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