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A phase correlation for color images using Clifford algebra

Introduction

This article is based on a recent development of a generalization of the Fourier transform. A color Clifford-Fourier transform [START_REF] Batard | Clifford fourier transform for color image processing[END_REF] using geometric algebra is considered to process color images. This transform, defined by Batard et al., generalizes the classical Fourier transform to L 2 (R m ;R n ) functions. It avoids a marginal processing that is generally applied in color image processing. From this advance, a new color phase correlation is defined and appears highly relevant for several applications, specifically in the image classification field.

Clifford Fourier transform for color images

In [START_REF] Batard | Clifford fourier transform for color image processing[END_REF], Batard et al. have proposed a definition of the Fourier transform for the L 2 (R m ;R n ) functions. It has been demonstrated that the previous generalizations of the Fourier transform for color image, i.e. the hyper-complex Fourier transform of Sangwine and Ell [START_REF] Ell | Hypercomplex fourier transforms of color images[END_REF] and the Biquaternionic Fourier Transform of Pei et al. [START_REF] Pei | Commutative reduced biquaternions and their fourier transform for signal and image processing applications[END_REF], are particular cases of their proposal. Because of the domain of our application (color image processing), only the Clifford Fourier transform defined from morphisms from R 2 to Spinp3q is used. Its definition for color images is :

x f B pu, vq » R 2 e pux vyq 2 B f B px, yq e ¡ pux vyq 2 B dxdy » R 2 e pux vyq 2 I 4 B f uB px, yq e ¡ pux vyq 2 I 4 B dxdy (1) 
where B is a bivector of R 4,0 which parametrizes the analysis direction, f B (resp. f uB ) is the projection of f on the plane generated by B (resp. I 4 B).

It is obvious that this formula permits to process the color Fourier transform easily and efficiently thanks to two FFT 2D on f uB and f B .

Note that a unit bivector B can be obtained from the geometric product of two unit orthogonal vectors. In this article, the bivector is chosen as being C e 4 where C is a userdefined color. Obviously, an inverse transform exists and it is denoted by | f B [START_REF] Batard | Clifford fourier transform for color image processing[END_REF]. From this Clifford-Fourier transform, we have developed two image recognition methods : the Generalized Fourier Descriptors (GCF D) [START_REF] Mennesson | De nouveaux descripteurs de fourier géométriques pour l'analyse d'images couleur[END_REF] and the Phase Correlation defined in the following section.

Phase Correlation for color images

In the literature, the phase correlation [START_REF] Reddy | An fft-based technique for translation, rotation, and scale-invariant image registration[END_REF] is a well-established method that is used for a lot of applications such as image recognition, video stabilization, motion estimation, stereo disparity analysis, vector flow analysis [START_REF] Ebling | Clifford fourier transform on vector fields[END_REF] ... It is defined for two grayscale images f and g as : rpx, yq q

Rpu, vq where R is the so-called "cross-power spectrum" Rpu, vq

p f pu, vq p gpu, vq ¦ | p f pu, vq||p gpu, vq ¦ |
with operator ¦ the usual complex conjugate. The visualization of r as an image reveals a peak corresponding to the best translation estimate between the two images : this is justified by the "shift theorem" of the Fourier transform [START_REF] Ebling | Clifford fourier transform on vector fields[END_REF]. The value of this peak is used as a correlation score assessing the goodness of the matching between the two images and is denoted by

ρ max x,y rpx, yq
Hopefully, a phase correlation for color images can supply more information than the one computed on gray level images and should give a better translation estimate. Previously, Moxey et al. [START_REF] Moxey | Color-grayscale image registration using hypercomplex phase correlation[END_REF] defined an hypercomplex phase correlation for color image based on the hypercomplex Fourier transform. In that case, the image is decomposed into its projection on the luminance and the chrominance axis. In the color Clifford-Fourier transform framework we define a color phase correlation depending on a bivector B. From equation (1), it is obvious that the color Clifford-Fourier transform can be decomposed as :

x f B pu, vq y f B pu, vq y f uB pu, vq
From this, identifying y f B and y f uB to two distinct complex images, two cross-power spectra for two color images f and g are defined :

R B pu, vq y f B pu, vq y g B pu, vq ¦ | y f B pu, vq||y g B pu, vq ¦ |
, R uB pu, vq y f uB pu, vq y g uB pu, vq ¦ | y f uB pu, vq|| y g uB pu, vq ¦ | By taking the inverse Fourier transform of R B and R uB , the phase correlation of the parallel and the orthogonal part of the image (denoted r B and r uB ) are obtained. This is exemplified on Figure 1 with the two correlation scores, ρ B and ρ uB . One can see the peak representing the exact translation processed between the two images. For an image classification purpose a single correlation score is preferred and some proposals to fuse these two values are examined in the application section. A better way should be to directly define the correlation score on x f B . This can be done taking the cosine of the angle between the two multi-vectors x f B pu, vq and x g B pu, vq (see [START_REF] Hestenes | Clifford Algebra to Geometric Calculus[END_REF] page 14):

R B pu, vq cosp x f B pu, vq, x g B pu, vqq x f B pu, vq ¦ x g B X pu, vq | x f B pu, vq||x g B pu, vq|
where X is the reverse and ¦ is the Hestenes scalar product. The inverse Fourier transform of this complex image produces two symmetric peaks, due to the cosine, which have the same magnitude. Then the same previous calculi also apply :

r B px, yq | R B pu, vq, and ρ B 2 ¢ max x,y r B px, yq (2) 
It can be checked on Figure 1, that the color correlation score ρ Br , where B r

1 is red e 4 ,
is the highest. This argues that considering color increases the correlation score between two objects of the same color. 1 In the following, this notation is used for Bg green ^e4, and so on for blue, µ rgbp127, 127, 127q or any given color C Results in Table 1 confirm our previous observations. On the one hand, ρ uB and 

Bµ Br B C 1 C 2 ρ Bµ ρ KBµ ρ Bµ ρ Br ρ KBr ρ Br ρ B C 1 ρ KB C 1 ρ B C 1 rgbp66, 154, 77q C 1 1 1 1 1 1 1 1 NaN 1 rgbp66, 0, 0q 1 

Application to image classification

To obtain a single similarity value from ρ B and ρ uB , the most immediate aggregation function is the usual mean, the resulting score is denoted ρ mean B,uB . However, this score depends on the choice of the bivector B. Then, two distinct classification processes can be done : the first one relies on the arbitrary choice of a unique bivector for the whole dataset while the second determines some ad-hoc bivector for each request image depending on its hue histogram. In both cases, phase correlation is used as a criterion for the "most similar" rule. This method improves the discrimination between two objects which have the same shape but not the same color.

In order to assess the classification performance of these two methods, a comparison with a method based on Generalized Color Fourier descriptors (GCF D) [START_REF] Mennesson | De nouveaux descripteurs de fourier géométriques pour l'analyse d'images couleur[END_REF] is provided. These descriptors are defined from (grayscale) Generalized Fourier Descriptors (GF D) introduced by Smach et al. [START_REF] Smach | Generalized fourier descriptors with applications to objects recognition in svm context[END_REF] and the Clifford-Fourier transform [START_REF] Batard | Clifford fourier transform for color image processing[END_REF]. It must be emphasized that, by construction, GF D and GCF D are invariant with respect to the action of group M 2 , i.e. translations and rotations. Previous experiments on well-known databases [START_REF] Mennesson | De nouveaux descripteurs de fourier géométriques pour l'analyse d'images couleur[END_REF] have shown that the GCF D give better recognition rates than the (grayscale) GF D computed marginally on the R,G, and B planes. Using a 1-NN classifier, we obtain an error of 0.74% for the 128 GCF D

Figure 1 :

 1 Figure 1: Correlation scores ρ (resp. ρ Br , ρ uBr , ρ Br ) on grayscale (resp. color) Lena

  ρ B are equal to 1 or NaN 2 independently to the bivector B and C 2 choice. On the other hand, ρ B is lower than 1 depending on C 2 and B: similarly shaped objects of different colors are less similar and lowest scores are obtained by taking B equals to C 1 .

Table 1 :

 1 Correlation scores between image 1 and 2 for various choices of C 2 and B. From image 1 to 2, the rectangle has color changed from C 1 rgbp66, 154, 77q to C 2 and a translation is applied.

			1	0.36	1	NaN	0.36	1	NaN	0.36
	rgbp0, 154, 0q	1	1	0.84	NaN	1	0.84	1	NaN	0.84
	rgbp0, 0, 77q	1	1	0.42	NaN	1	0.42	1	NaN	0.42
	rgbp119, 119, 119q µ	1	NaN	0.93	1	1	0.93	1	NaN	0.93

NaN denotes that the correlation score cannot be calculated because Fourier transform is null (e.g. parallel part of a red image for a blue bivector is null)

descriptors on the COIL-100 database [START_REF] Nene | Columbia object image library (coil-100)[END_REF]. On the same database ρ mean Br,uBr yields an error of 9%. When c i corresponds to the principal mode of the hue histogram ρ mean B i ,uB i gives an error of 7.22 %.

The superiority of descriptors GCF D was predictable from a theoretical point of view, because of the quality of the used classifier and of the size of descriptors. However, the results of the proposed methods are quite encouraging knowing that they are based on a single number. Let us also remark that these methods can be fairly improved by transforming the images in log-polar domain to achieve a rotation and scale invariance. In the same way, various criteria for fusing the ρ B and ρ uB should to be examined (e.g. the maximum, the minimum) and compared to the classification rate using the correlation as calculated by ρ B , i.e. by using the equation [START_REF] Chen | Similarity-based classification: Concepts and algorithms[END_REF]. Tests on r B px, yq are ongoing as well as experiments on other bases. An improvement will also be done by using a similarity-based SVM [START_REF] Chen | Similarity-based classification: Concepts and algorithms[END_REF] allowing the use of our criteria with this classifier and compete with Fourier Descriptors.