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Abstract: Timed Event Graphs (TEGs) are a specific class of Petri nets that have been thoroughly 
studied given their useful linear state representation in (Max,+) algebra. Unfortunately, TEGs are 
generally not suitable for modeling systems displaying resources sharing (or conflicts). In this paper, we 
show that if a system with conflicts is modeled using an extended class of TEGs: Conflicting Timed 
Event Graphs (CTEGs), then it is quite possible to obtain an equivalent (Max,+) representation. More 
precisely, we prove that the evolution of a CTEG satisfies linear time-varying (Max,+) equations. In case 
of cyclic CTEGs, which are a natural model of many repetitive systems, we provide a standard time-
invariant (Max,+) representation. Finally, a practical example (a Jobshop) is used for illustration to 
exhibit the interest of this investigation. 

Keywords: Timed Event Graph, (Max,+) algebra, Conflict, Linear-Time Varying Systems, Repetitive 
Systems. 

 

1. INTRODUCTION 

Petri nets are a powerful tool for discrete events systems 
modeling and analysis. They are often used to represent 
phenomena like synchronization, parallelism and 
concurrency (Murata, 1989). Their domain of application is 
very large, including manufacturing systems, communication 
systems, transportation, etc. Many classes of Petri nets with 
more or less elaborated semantics are used according to the 
context of the study. Generally speaking, the more their 
structure and semantics are elaborated the more complex is 
their study. The relatively simple class of Petri nets called 
Timed Event Graphs (TEGs) is then the most investigated 
one. Indeed, TEGs are easily represented in the form of linear 
equations in (Max,+) algebra provided that the places and the 
transitions be overtaking free (FIFO places and FIFO 
transitions as defined in Baccelli et al. (1992). This linear 
(Max,+) form being very similar to the state representation of 
the classical discrete linear systems, the main related results 
are mostly straightforwardly applied (Cohen et al. 1999). 
Unfortunately, TEGs are Petri nets with places displaying at 
most one upstream transition and one downstream transition. 
Thus, they are not suitable for modeling systems with 
resources sharing or conflicts. Note nonetheless that some 
particular systems involving shared resources (e.g. 
flowshops), can be modelled using TEGs with time-varying 
parameters (Lahaye et al., 2004). The authors had however to 
change the usual FIFO rule to prevent tokens from overtaking 
and finally to get to linear (Max,+) equations. Such a 
consideration is possible in some cases but it is unfortunately 
not always the case. In literature, a number of other efforts 
have been undertaken to tackle differently the problem of 
conflicts. The authors in Hillion et al. (1989) investigated the 

problem of repetitive systems i.e. with a cyclic allocation of 
the shared resources. They proposed to transform the original 
Petri net with conflicts into a TEG, the (Max,+) 
representation of this latter being easily obtained. In Gaubert 
et al. (1999), an algebraic modeling, based on the heaps-of-
pieces theory and (Max,+) automata, is provided for safe 
Petri nets. For the case of Free Choice Petri nets, a very 
complete analytic study is proposed in Baccelli et al. (1996). 
The case of processes that switch between different 
functioning modes is investigated in Van Den Boom et al. 
(2006) using switching (Max,+) linear systems. We can also 
quote Correïa et al. (2009) where local (Max,+) equations are 
written without taking into account the conflicts. A constraint 
(inequality) is then added to represent only the admissible 
evolutions of the global system. In Naït et al. (2006), a 
method introducing the concept of virtual firing of transitions 
is proposed for a transportation system. More recently 
(Boutin et al., 2009), an approach based on the dioid of 
intervals is used to represent extreme behaviors of a 
manufacturing system (with shared resources i.e. conflicts 
context) and provide the bounds of its production rate. 

In this paper, we propose a novel approach to model a large 
category of systems involving shared resources. The main 
idea of our work has been first introduced in Addad et al. 
(2010) but has been limited to systems with one shared 
resource. In this paper, we present a generalization of this 
approach and consider systems with multiple resources. The 
purpose of the study is to extend the use of (Max,+) algebra 
to a class of Petri nets larger than TEGs: Conflicting Timed 
Event Graphs (CTEGs). Moreover, some of the previously 
exposed hypotheses in the existing works are relaxed: 

 i) the TEGs that constitute the CTEG are not necessarily 
safe (they, by the way, display input transitions). 

     



 
 

 

ii) the conflicting transitions can have more than one 
upstream place (unlike Free Choice Petri nets). 

iii) resources allocation policy is not necessarily cyclic. 
The remainder of this paper is organized as follows: Section 
2 recalls some basic notions about TEGs and their linear 
(Max,+) representation. Section 3 is dedicated to the study of 
CTEGs in (Max,+) algebra: Section 3.1 introduces some 
definitions and notations with regard to CTEGs and Section 
3.2 presents their modeling using (Max,+) equations. 
Thereafter, a linear time-varying reformulation is provided in 
Section 4. Hence, a standard time-invariant linear state form 
is provided for cyclic CTEGs in Section 5. Finally, Section 6 
concludes this paper with some outlooks for future work. 

2. LINEAR (MAX,+) EQUATIONS OF TEGs 

In this section, we recall the linear (Max,+) representation 
of TEGs that will be useful in the sequel of this paper. Note 
that a mix of timed places and timed transitions is considered 
in our study and if their delays are not précised, then they are 
null. Let’s consider the simple example below (t-timed): 
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Fig. 1. Example of TEG. 
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 (resp. u k ) be the date of firing transition  

(resp. ) for the  time. If firing is performed at maximal 
speed (as soon as possible), we can write the equations: 

ut
thk

2                          (1) 

The equations above can be rewritten using (Max,+) algebra 
operators: the maximum noted ⊕  and addition noted ⊗ . 
These operators are defined on the set  and 
have respectively 

max { }= ∪ −∞
ε = −∞

1

2 1

( ) 1 ( ) 1 ( 1)
( ) 4 ( )

x k u k x k
x k x k

= ⊗ ⊕ ⊗ −⎧
⎨ = ⊗⎩

ˆ ˆ( ) ( ) (

 and  as identity elements. 
Equations (1) become: 

0e =

2

ˆ1) ( )

                                     (2) 

Using a matrix notation, we finally get to: 
X k A X k A X k′= ⊗ ⊕ ⊗ − B U k⊕ ⊗          (3) 

with: ( )1 2
tX x x= =

4
Â,U u ,

ε ε

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1
Â

ε
,

ε ε

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

1
B̂, 

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 

Equation (3) can also be brought to an explicit form thanks to 
the following theorem: 

    Theorem 2.1 (Baccelli et al. 1992): The minimal solution 
of equation: X A X B= ⊗ ⊕ max

n nA ×∈ max
n mB with , ×∈   is: 

*X A B= ⊗ * i

i
 with A A

∈
= ⊕  being the Kleene star of A . 

By applying the previous theorem to equations (3), we get to 
the following explicit form: 

( ) ( 1) ( )X k A X k B U k= ⊗ − ⊕ ⊗                      (4)        

with: *

4
ˆ e

e
A

ε⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, , and .  * 1

5
ˆ ˆA A A

ε

ε

⎛′= ⋅ = ⎜
⎝ ⎠

⎞
⎟

* 1

5
ˆ ˆB A B

⎛ ⎞
= ⋅ = ⎜ ⎟

⎝ ⎠

    Remark 2.1: Equation (3) and its explicit form (4) feature 
every TEG. It is a standard state representation like the 
classical representation of linear systems. Thus, it is widely 
used alike to solve many problems of performance evaluation 
or control synthesis (Cohen, et al. 1999). 

3. MODELING CTEGs IN (MAX,+) ALGEBRA 

3.1 Definitions and notations 

A net of Conflicting Timed Event Graphs or CTEG is a set of 
TEGs noted =G G�G� G�1 2{ , , , }N

=

iR

 (e.g. products, jobs, 
users…) connected to each other by a set of conflict places 
(e.g. shared resources) noted . Each 
timed event graph Gi is connected to a subset of conflict 

places (or resources) noted  ( ). With place 

1 2{ , , , }MR p p p

iR R⊆

j ip R∈ , we get the generic structure of CTEG on Fig. 2(a): 
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Fig. 2. (a) Generic structure of a CTEG ( j ip R∈ ),            
(b) example of CTEG (one conflict place and two TEGs). 

 
For the sake of simplicity, we will adopt the following 
hypotheses and notations: 

- H1) the unique transition of Gi upstream place jp  is noted 
j

it  and the unique downstream transition is noted j
it  (Fig. 

2(a)). We suppose also, without loss of generality (since we 
can always get to this case by duplicating the transition j

it ) 

that j
it  has a unique upstream place of conflict jp . 

- H2) a shared resource is used by at most one user at a time. 
So, in terms of Petri nets, each circuit j j

i i j it t p t j  is safe 
and the sum of markings of all the circuits involving a place 

jp  is exactly equal to one. A resource is indeed either idle or 
being used by one among the  TEGs.  N

- H3) the holding time associated to place jp  is denoted jτ  

and the firing time of j
it  is denoted j

iτ  (see Fig. 2(a)). 

- H4) each TEG Gi is alive, represented by its state form:  
ˆ ˆ ˆ( ) ( ) ( 1) ( )i i i i i i i i i i iX k A X k A X k B U k′= ⊗ ⊕ ⊗ − ⊕ ⊗         (5) 

where: ( )1 2 i
tn

i i i iX x x x= 1in × is an  state vector and 

     



 
 

 

( 1 2 i
tm

i i i iU u u u= )  is an  input vector. In the 

remaining of this study, the  row of a matrix 

1im ×
thi A  is denoted 

( , :)A i
thj

 whereas the intersection element of the  row and 

the  column is denoted 

thi

( , )A i j . 

3.2 CTEG modeling using (Max,+) equations 

 In studying TEGs, daters are usually associated to the 
transitions. In our approach however, we also associate a 
dater to the token of every place of conflict . The date 

of availability of this token for the 
jp R∈

th
jl  time is denoted 

( )j jlψ . Intuitively, this is the date of availability of the 
shared resource jp  after being used jl

th
ik

 times. 

Let’s suppose that every transition of TEG Gi has already 

fired  times. To fire for the  time, each transition 
needs all its upstream places to have at least one available 
token. So, a conflicting transition 

( 1)ik −

j
it  needs the token of its 

upstream place of conflict jp  to be available too. Suppose 

that the token of this place is attributed effectively to Gi when 

it is available for the th
jl  time. If j

ix  is the dater of vector iX  

associated to transition j
it

ˆ ˆ( ) ( ,:) ( )
ˆ ( ,:) ( )

j
i i i i i

j
i i i i

x k A j X k

B j U k τ ψ

= ⊗

⊕ ⊗ ⊕

'

, then we can write: 

( ,:)

( )
i

j

A j

l

(i i

j

X k⊗ 1)−′⊕

⊗
                      (6) 

Equation (6) is written for every dater associated to a 
transition downstream a place of conflict belonging to . 
The other daters 

iR
j

ix  however, whose transitions are not 
downstream places of conflict, are unchanged in (5) since 
they do not depend directly on ( )j jlψ

',:) X⊗

(

)
i i

j j

X k

l

. So, we have:  

                (7) 

By combining (6) and (7), we get to the new state form: 

                           (8) 

' ( ) ( ',:) ( )
ˆ ( ',:) ( )

j
i i i i i

i i i

x k A j X k

B j U k

= ⊗

⊕ ⊗

( ) ( )
ˆ ˆ( )

j i

i i i i i

i i i
p R

X k A X k

B U k F
∈

= ⊗

⊕ ⊗ ⊕ ⊕

( )

ˆ ˆ (iA j′⊕

iA

ψ

′ ⊗

⊗

( 1)i ik

1)⊕ −

−

ˆ ˆ

(ij

with all the involved matrices and vectors are exactly the 
same as in (5). The only new elements are the availability 
dates j jlψ  defined previously and matrices îjF . We can 

note that the components of the  matrix 1in × îjF  are all null 

(equal to ε ) except for the  one (equal to thj j
iτ ). 

By applying Theorem 2.1 to (8), we finally obtain:  
( ) ( 1)i i i i i ( )i i ( )

j i

j j
p R

i ijX k A X k= ⊗ −

*ˆ ˆ
i i i

B U k F ψ⊗ l
∈

⊕ ⊗ ⊕ ⊕   (9)  

where: A A A′= ⊗ ,  and *ˆ
i iB A= ˆ

iB⊗ *ˆ
ij i îjF A F⊗= . 

    On the other hand, since the token of jp  is consumed by 

Gi (or j
it ) when it is available for the th

jl  time, then it is 

available for the (  time by the firing of transition 1)thjl + j
it  for 

the  time (recall from hypothesis H2 that circuit th
ik

j j j
i it t j ip t  is safe). Let ''j

ix  be the component of iX  

associated to transition j
it . Thus, we can write: 

'' (j( 1) )j j j i ik

)

l x⊗ψ τ+ =                (10) 
This equation can be rewritten as: 

( 1) (j j ij il G X ikψ + = ⊗            (11)  
with  is a 1ijG in×  matrix whose all components are null 

except for one (equal to jτ  ) corresponding to transition j
it . 

To sum up, if the th
jl  token of jp

th

 contributes to firing the 

transitions of TEG Gi for the  time (note that because of 
resources invariance we have: ), then the 

following recurrent (max,+) equations are verified: 

ik
( 1

j i
j i

p R
l k

∈
= ∑ )−

( ) ( 1) ( ) ( )

( 1) ( )
j i

i i i i i i i i ij j j
p R

j j ij i i j i

X k A X k B U k F l

l G X k for all p R

ψ

ψ

∈

⎧ = ⊗ − ⊕ ⊗ ⊕ ⊗
⎪
⎨
⎪ + = ⊗ ∈⎩

⊕
(12) 

As can be seen, equations (12) include a parameter, jl  in 

( )j jlψ , that defines entirely the policy of resources allocation. 
Hence, these equations represent all the admissible evolutions 
of CTEGs. All the involved elements are systematically 
calculated according to the method explained before. These 
equations are important and will be the cornerstone of all the 
results provided later in this paper.  

Example 3.1: to illustrate the previous method, let us consider 
the following example (note that if the holding time or firing 
time is not mentioned, then it is equal to 0): 
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Fig. 3.  A CTEG with two conflict places shared by two 
TEGs (note that in this example j j

i it t≡  ,i j∀ ). 

By assigning daters 1
1x , 2

1x , 1
2x  and 2

2x  to transitions , , 

 and , G1 (without conflicts) is represented by equations: 

1
1t

2
1t

1
2t

2
2t

( )x k
G1 : 

1 2x1 1 1 1 1 1
2 1
1 1 1 1

3 (

( ) 5 ( )

u k

x k x k

⎧ (k ) 3 1)= ⊗ ⊕ ⊗ −⎪
⎨

= ⊗⎪⎩
                        (13)                  

Now, let’s take into account the places of conflict. If the 
token of  (available for the  time) and the token of  1p 1

thl 2p

     



 
 

 

(available for the  time) are attributed to G1 to enable its 

transitions to fire for the time, then we have: 
2

thl
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1 1

)

( )

(

1
thk

1 2
1
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1 1 1 1 1 1
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x k x l

l x l x
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⎪
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k

⊕

⊕

1B =

l

kk

ψ

ψ ψ

⊗

⊗

3

8

⎛ ⎞
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                (14) 

These equations are easily brought to form (12). We let the 
reader write the equations relative to G2 and get to (12) with: 

1

3

8
A

ε

ε

⎛ ⎞
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⎝ ⎠
, , 2
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2
A

ε

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 2B

ε

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

 , , (11 3 8
tF = ) ( )5

t
ε12F = ( )11 4G ε= , ( )12 1ε=G , 

( )21 1
tF ε=  , , G( )3 2

t
22 =F ( )21 4 ε= , G . ( )1ε22 =

Note that all these matrices are constant and independent of 
resources allocation policy.  

4.  LINEAR TIME-VARYING (MAX,+) EQUATIONS OF 
CTEGs 

 Let’s recall that a linear time-varying system is of the form: 
( ) ( 1) ( ) ( )( 1)X k A k B k U k= − ⊕ ⊗X⊗ k −                         (15) 

This equation would be more suitable than form (12) for most 
problems resolution. So, one can ask question: is it possible 
to bring form (12) to form (15)? Answering this question is 
indeed crucial since modeling many existing systems using 
CTEGs is quite easy (e.g. the TEGs are products and the 
conflict places are machines) but obtaining directly (15) is 
not so obvious for some reasons exposed later (Remark 4.1). 

4.1 Definitions 

- D1) In practice, resources are usually allocated according to 
a sequence (periodic or not). So, we say that a CTEG evolves 
according to sequence σ −G�G� G� G�1 2 ( 1)j j j k jk=  (this does 
not sweep all admissible evolutions of CTEGs), if for each 
resource represented by jp  and shared between two TEGs 

 and G� , the token of G�jk +(j k )q jp

) k
 is first attributed to G� and 

subsequently to  for all , . We therefore say 

that the  realization of sequence 

jk

+G�(j k q 1≥ 1q ≥
thk σ  is TEG Gi if: =G� Gi.  jk

 Example 4.1: , , , 

, 
1 2 ,p 3}p 1 1 3{ , }R p p= 2 2 3{ , }R p p=

{ , }R p p=

{ ,R p=

3 1 2 σ = G�

, }

G�G�G�1 2 2

N

G�G�G�G�G�1 3 3 3 2

1 1(p R R∈ ∩

{1,2,S =

1

3 )

. According to this 

sequence, the token of  is to be attributed 
twice to G1 then 3 times to G3 and finally one time to G1. 
- D2) Let us define the set of indices of 
TEGs:  and the function: Fre : R S S× ×  
where j iFre ( p ,i,k )  provides the index of the TEG that 

frees resource jp th
i to be used by Gi for the k  time. 

  Example 4.1 (continued): Let’s return to example 4.1 and 
build the following table to explain this function (a cross in a 
box of the row of 

σ =  G1 G2 G2 G1 G3 G3 G3 G2 G1 

1p  x   x x x x  x 

2p   x x  x x x x  

3p  x x x x    x x 
 
The arrows in the table simplify the following samples: 
 1 1 2 1Fre ( p , , ) = , , 2 2 3 3Fre ( p , , ) = 3 2 2 2Fre ( p , , ) = ,  and 

3 2 3 1Fre ( p , , ) = . For instance 3 2 3 1Fre ( p , , ) =  means that 
G1 frees  to be used by G2 for the 3rd time.  3p
 
     Theorem 4.1: A CTEG verifying the hypotheses of Section 
3.1 and evolving according to an arbitrary sequence 
σ −= G�G� G� G�1 2 ( 1)j j j k jk , has an equivalent Linear Time-
Varying (Max,+) representation. 
 
    Proof: Let’s suppose that a CTEG verifies the hypotheses 
of Section 3.1 and evolves according to a sequence σ . So, 
we can write, from 1st equation in (12), the following form: 

( ) ( 1) ( ) ( )
j i

i i i i i i i i ij j j
p R

X k A X k B U k F lψ
∈

= ⊗ − ⊕ ⊗ ⊕ ⊗⊕  (16) 

Also, using the 2nd equation in (12) and function Fre  we get: 
( , , ) ( , , ) ( , , )( ) ( 1)

j i j i j ij j Fre p i k j Fre p i k Fre p i kl G X kψ = ⊗ −               (17) 

So, by replacing (17) in (16), we obtain: 

( , , ) ( , , ) ( , , )

( ) ( 1) ( )
(

j i j i j i
j i

i i i i i i i i

ij Fre p i k j Fre p i k Fre p i k
p R

X k A X k B U k
F G X k

∈

= ⊗ − ⊕ ⊗ ⊕

1)⊗ ⊗ −⊕                  (18) 

Let us define the 1in∑ ×  (resp. ) vector 1im∑ × ( )X k  (resp. 
( )U k ) that contains all the state vectors (resp. input vectors) 

of all TEGs at the (  realization of sequence 1)th−k σ : 

( )1 1 2 2(k( 1) ( ( 1) t
N NX k X k X k− = −1) X− 1)−  and 

( )1 1 2 2(k( 1) ( ( 1) t
N NU k U k U k− = −1) U−

1)

1)−  where: 

1
1 (

N
p

p
k k

=
− = −∑ . If the  realization of thk σ  is TEG Gi, 

then we also (according to the previous definition) have:   

( )1) t−1 1( ) ( 1 ) (N NX k X k X k= − 2) (X k2 1)− (i iX k
Using (18), we can therefore deduce that: 

( ) ( 1) ( 1) ( ) ( )X k A k X k B k U k= − ⊗ − ⊕ ⊗                         (19) 
where the components of ( 1)A k −  and ( )B k  are defined as: 

( , , )

( , , )

( )

( )

( )
( 1)( , ) j i

j i

d

i ij ij
Fre p i k i

ij qj
Fre p i k q

if p q and p i

if p q i

if p i and q i

otherwise

I
A F G

A k p q
F G

Iε

=

=

= ≠

= =

= ≠

⎧
⎪ ⊕ ⊗⎪
⎪− = ⎨

⊗⎪
⎪
⎪⎩

⊕

⊕
   (20) 

( )
( )( , ) iB if p q i

B k p q
I otherwiseε

= =⎧
= ⎨

⎩
         (21)                

Obviously, (19) is a linear time-varying (Max,+) system.  □ 
Note that ( 1)( , )A k p q−  and ( )( , )B k p q  are not scalars but 
matrices. They are multiplied by the elements of X  and U  jp  and column of Gi means j ip R∈ ): 

     



 
 

 

which are vectors. The p qn n×  matrix dI  (resp. Iε ) in (20) 
and (21) is the identity (resp. null) matrix. 
        
    Remark 4.1: It could be thought that since we can represent 
a system using a CTEG and subsequently equations (19), 
then why not do it from the beginning without passing 
through the CTEG modeling? Indeed, equations (19) might 
represent a TEG (with time-varying parameters nevertheless), 
equivalent to the CTEG. However, if we look closely at 
matrix ( )A k , we will notice that some of its components are, 
over time, sometimes null (equals ε ) and sometimes not. 
This means literally that some places of the TEG sometimes 
exist and sometimes disappear. This is obviously not a usual 
feature with regard to Petri nets and therefore not a natural 
modeling of systems (see Example 5.1). 

5. (MAX,+) EQUATIONS OF CYCLIC CTEGs 

Equation (19) can be obtained whatever is the CTEG 
evolution sequence. In practice nonetheless, many systems 
are repetitive and evolve according to a periodic sequence of 
the form 0 0 0σ σ σ σ=  where 0σ  is the basic sequence to 
be repeated. Let’s suppose: σ −= G�j jG� G�0 1 2 j T TG�( 1) j  which 
means that σ  is . It can be easily checked that 
given this periodic pattern, we have: 

T p− eriodic

j i j iFre( p ,i,k T ) Fre+ = ( p ,i,k )  for every triplet j i,i,k )( p . 

It follows that matrix A  and B  are T p  i.e. eriodic−

( ) ( )A k T k+ = A  and ( )T+ = (B k)B k . 
Hence, we can apply a well known result in conventional 
theory related to periodic linear systems (Bolzern et al. 1986), 
(Misra, 1996) and similarly used in (Max,+) algebra (Lahaye 
et al. 2004). This result is a transformation of a periodic time-
varying linear system into an invariant-time one using the 
notion of monodromy. 
Let’s define the transition matrix relative to matrix A  as: 

1≥

) = Φ

0d if q =

eriodic−

( 1) ( 2) )
( , )

if qA i A i A i
i i q

I
⎧ − ⊗ − ⊗⎪Φ − = ⎨

( q−

i T+
⎪⎩

.  

Note that Φ  is T p : . ( , ( , )i T q i i qΦ + − −
Using (19), it follows that: 

(2) (1) (1) (2) (2)X A X B U= ⊗ ⊕ ⊗                                    (22) 

(3) (2) (2) (3) (3)
(3,1) (1) (3,2) (2) (2) 3,3) (3) (3)

X A X B U
X B B

= ⊗ ⊕ ⊗

= Φ ⊗ ⊕Φ ⊗ ⊗ ⊗ ⊗(U ⊕Φ U
By recurrence, we get to: 

1q=

(1 ) (1 ,1) (1)

(1 ,1 ) (1 ) (1 )
T

X T T X

T q B q U q

+ = Φ + ⊗ ⊕

Φ + + ⊗ + ⊗ +⊕
                         (23) 

Then by replacing 1  with (1 ( ) in (23) and using 
the periodicity of , we get to: 

1)l+ − T⋅
Φ

1

(1 ) (1 ) (1 ( 1)

(1 ,1 ) ) (1 ( )
T

q

X l T X l

T q q U l T q
=

+ ⋅ = Φ + ⊗ + − ⋅

Φ + + ⊗ + ⊗ + +⊕

,1

(1

T

B

)

1)

T ⊕

− ⋅
           (24) 

Let us set ( ) (1 )l X l T⋅= +  and  

( ) ( (1 ( 1) 1) (1 ( 1) ))tU l U l T U l T T= + − ⋅ + + − ⋅ + .   
Equation (24) is therefore a standard time-invariant system: 

( ) ( 1) ( )X l A X l B U l= ⊗ − ⊕ ⊗                                          (25) 

where (1 ,1)A T= Φ +  and 

( )(1 ,1 ) (1 )
( , )

if p q

otherwise

T q B q
B p q

Iε

=⎧Φ + + ⊗ +
= ⎨

⎩
                   □ 

The state matrix A  is called monodromy matrix. 
 
Example 5.1: To illustrate how to use systematically the 
results above, we consider an example studied in Hillion et 
al. (1989) and Gaubert et al. (1999). It is a manufacturing 
system constituted of three machines represented by ,  
and  that produce three types of parts represented by TEGs 

G1 , G2 and G3  (Fig. 6). Note that: , 

,  and 

1p

p

2p

2 3, }p
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2 2R p=

1 1{ ,R p=
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Fig. 6.  A CTEG model of a manufacturing system (jobshop) 
involving three machines producing three types of parts. 

Let us associate daters 1
1x , 2

1x , 3
1x  to transitions , ,  

and availability dates 

1
1t

2
1t

3
1t

1ψ , 2ψ , 3ψ  to the tokens of places , 
 and . So, we can write: 

1p

2p 3p
1 3
1 1 1 1 1 1
2 1
1 1 2 2 1 1
3 2
1 1 3 3 1 1

( ) 1 [ ( 1) ( )]

( ) 3 [ ( ) ( )]

( ) 3 [ ( ) ( )]

x k x k

x k l x k

x k l x k

ψ

ψ

ψ

⎧ = ⊗ − ⊕
⎪⎪ = ⊗ ⊕⎨
⎪ = ⊗ ⊕⎪⎩

l

, 

The equations above can be brought to form (12) with: 

1

1

4

7

A
ε ε

ε ε

ε ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, , 11

1

4

7

F
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

12 3

6

F
ε⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and  13

3

F
ε

ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

On the other hand, we have: , 

, and . So, we get: 

1
1 1 1( 1) (l e xψ + = ⊗

3
3 3 1( 1) ( )l e x kψ + = ⊗

)k

)k2
2 2 1( 1) (l e xψ + = ⊗

( )11 eG ε ε= , ( )e12G ε ε= , and ( )eε ε13G = . 

X

     



 
 

     

 

We let the reader write the other equations relative to the 
other TEGs (add a 3rd variable in case of G3) to get finally to: 

2
1

3
A

ε

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 22 2

F
ε⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, ,  and 23
1

3
F ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

(22 eG ε= )

( )23 eG ε= , 3A
2

3

e

ε ε

ε ε

ε ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

31F= , 
2

3

ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

33F, 1

ε

ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= , 

( )31 eG ε ε=  and G ( )e33 ε ε= . 
All these matrices are calculated once and for all, whatever is 
the considered sequence. As an application, we will consider 
a periodic case and calculate the asymptotic production rate. 
Let us consider the basic sequence: σ = G�G�G�G�0 1 2 3 3 . We first 
calculate j iFre ( p ,i,k )

3= 1 3 1, )Fre ( p ,

 relative to the three resources: 

, , , 1 11, )Fre( p , 1= 1 3 2 3, )p , = Fre( pFre ( 2 11 2, ), =

3 2 1 1, )p , = Fre(
, 

, , , 2 2 1Fre( p , 1, ) = 3 11, )Fre( p , 3= Fre( 3 3 1 2, )p , = , 
and . Then, matrices 3 3 2 3, )p , =Pre( (1)A , (2)A , (3)A  and 

(4)A  can be calculated according to (20). They are 
respectively given as (without ε  entries): 

. . . .

. .
. . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
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4 3 4
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

.
. . . . . . .

. . . . . . .

. . . . . . .

. . . . . .

. . . . .

. . . . . . .

. . . . . . .

. . . . . . .

1 1
2 3 3

e
e

e

e
e

e

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
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. . . . . . .
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2 2
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e
e

e
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e
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2 2
3 1 3

e
e

e
e

e

e

⎛
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⎜
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⎜
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. 

We finally calculate the monodromy matrix. It is simply 

given as: (4) (3) (2) (1)A A A A A= ⊗ ⊗ ⊗ =

. . . .

. .
. . . .
. . .
. . . .
. . . .
. . .
. . .

1 1
4 3 4
7 6 7 3
8 . 7 8 4

10 9 10 6
5 5 2

10 9 10 6 5
9 8 9 5 3

⋅ ⋅⎛
⎜
⋅ ⋅⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎝

.

4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎠

. 

The unique finite eigenvalue of A  is equal to 9. The 
asymptotic production rate of G1 and G2 is therefore 

1 2 1/ 9λ λ= =  whereas the production rate of G3 is 3 2 / 9λ = . 
As expected, this gives the same result as in the 
aforementioned works. Note however that the CTEG of Fig. 
6 is not a safe Petri net and therefore the authors in Gaubert et 
al. (1999) used an equivalent safe one to make possible the 
application of the method based on heaps-of-pieces. Finding 
such an equivalent safe net is not always possible especially 
in case of presence of input transitions. The advantage of our 
method is also to avoid building a heap-of-pieces automaton. 
We can also note that the proposed approach can be applied 
even with infinite sequences without any effect on the CTEG 
structure. This is actually not the case with the method in 
Hillion et al. (1989) since the initial Petri net must be 
transformed into an equivalent TEG. Unfortunately, the 
resulting TEG depends dramatically on the length of the 
sequence and becomes very voluminous even with not long 
sequences (see an example in Gaubert et al. (1999)). 

6. CONCLUSION 

In this study, we extended the use of (Max,+) algebra to 
Conflicting Timed Event Graphs or CTEGs which are a 

natural model of a large category of practical systems 
involving shared resources. We proved that CTEGs can be 
represented using a system of (Max,+) Linear Time-Varying 
equations while the policy of resources allocation is arbitrary. 
In case of a cyclic CTEG, we used the notion of monodromy 
to get to a standard (Max,+) state space representation. For 
future work, it would be interesting to look for the relevant 
modifications to bring to the proposed approach so as to relax 
the hypotheses of Section 3.1. 
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