
HAL Id: hal-00514886
https://hal.science/hal-00514886v1

Submitted on 3 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytic Calculus of Response Time in Networked
Automation Systems

Boussad Addad, Saïd Amari, Jean-Jacques Lesage

To cite this version:
Boussad Addad, Saïd Amari, Jean-Jacques Lesage. Analytic Calculus of Response Time in Networked
Automation Systems. IEEE Transactions on Automation Science and Engineering, 2010, 7 (4), pp.858-
869. �10.1109/TASE.2010.2047499�. �hal-00514886�

https://hal.science/hal-00514886v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

1

Analytic Calculus of Response Time in
Networked Automation Systems

B. Addad, S. Amari and J-J. Lesage, Member, IEEE

Abstract —This paper presents a novel approach to evaluate

the response time in networked automation systems (NAS) that
use a client/server protocol. The developments introduced are
derived from modeling the entire architecture in the form of
timed event graphs (TEGs), as well as from the resulting state
representation in Max-Plus algebra. The various architectural
stages are actually modeled in a very abstract pattern, which
yields just those TEG models where local delays are sufficient to
perform the overall evaluation. In this manner, linear Max-Plus
equations are obtained. A thorough analysis of these equations
has led to analytical formulas for direct calculus of NAS response
time. As a final step, experimental measurements taken on a
laboratory facility have been used to verify the validity of the
results. In conclusion, the benefit and effectiveness of this novel
method have been demonstrated.

Note to Practitioners—In this work, we present an overall
study of networked automation systems working according to
client/server paradigm. Unlike systems where a global scheduling
of the shared resources is available and the delays well handled,
in such systems it is not the case and the investigations to
evaluate their real-time performances are required. Actually,
these systems are very present in industry but the efforts to deal
with this issue are rare and often informal, based on simulation
of particular cases. In our work, we assess a major criterion of
their time performances, the response time. We give a formal
evaluation of this feature through an analytic approach. The
results we present are generic and fit the experimental
observations in different cases.

Index Terms—Networked Automation Systems, Response
Time Evaluation, Max-Plus Algebra, Timed Events Graph,
Switched Ethernet Networks.

I. INTRODUCTION
HE new trend within industrial organization networks

consists of using the same technology at all levels of
communication. A network solution supporting such a

transparent vertical integration must be flexible and capable of
simultaneously providing a high rate of data transfer in the
upper levels and fast response times in the lower levels. The
industrial Ethernet has established itself as such a new
generation of fieldbuses, and many of them are currently
meeting the needs of most automation applications. The
increase in information transfer speed (Giga Ethernet), along
with both the use of fully-duplex networks that prevent frames
from colliding and low component costs, offered the major
incentives behind the use of Ethernet in industry. Every
Ethernet solution in fact features its own set of advantages and
disadvantages. Generally speaking, as the solution becomes
more compatible with standard Ethernet, its real-time
performance achievement actually drops and vice versa [1].
These solutions include "Modbus over Ethernet", an
application protocol that makes use of the client/server
paradigm. It is simple, accessible and open enough to facilitate
vertical integration [2]; however, it is not suitable for strict
real-time applications like motion control, yet entirely
adequate for the majority of industrial automation systems.
With such a protocol therefore, resource scheduling is
unavailable and considerable delays due to unsynchronized or
unavailable resources are caused, complicating the evaluation
of message delay encountered in each system component and
consequently impeding an evaluation of the entire system
response time. A number of research efforts have been
undertaken to assess these NAS delays through the use, for
example, of widely-accepted network calculus [3], [4], [5],
worst case methods [6], [7] and simulation [8], [9]. Like the
majority of studies however, these efforts have focused on just
the end-to-end delays or network effect and neglect both the
controllers (e.g. PLCs or programmable logic controllers) and
RIOMs (remote input output modules). As a matter of fact, the
PLC modules are not synchronized and RIOMs may be shared
across many applications, which leads to delays that must then
be incorporated. To the best of our knowledge, studies that
consider the entire architecture (both field devices and the
network) are still quite rare and often informally based on case
simulation or experimental measurements targeting a limited
number of systems [10], [11]. The only formal method
developed has been based on model-checking [12] aiming to
check if a timing property holds or not. The disadvantage of
this approach is its failure to provide the response times
distribution and its classical state explosion problem, limiting
its applicability to relatively simple cases. This method was

 Manuscript received February 15, 2009; revised November 24, 2009. This
paper was recommended for publication by Associate Editor A. Chacravarty
and Editor M. Zhou upon the reviewers’ comments.

B. Addad is with Automated Production Research Laboratory LURPA,
ENS-Cachan, 61 av. du Président Wilson, 94235 Cachan Cedex, France
(phone: +33-147402762; e-mail: boussad.addad@lurpa.ens-cachan.fr).

S. Amari is with Automated Production Research Laboratory and with
Univérsité-ParisXIII, 61 av. du Président Wilson, 94235 Cachan Cedex,
France (phone: +33-147402752, e-mail: said.amari@lurpa.ens-cachan.fr).

J. J. Lesage is with Automated Production Research Laboratory, 61 av. du
Président Wilson, 94235 Cachan Cedex, France (phone: +33-147402218; e-
mail: Jean.Jacques.lesage@lurpa.ens-cachan.fr).

T T

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

2

enhanced afterwards in [13] and used to calculate the
distribution of response times. The complexity of NAS is
reduced by focusing on the important events but the state
explosion problem still exists.

The objective of the present study is therefore twofold: to
offer a formal method of evaluation, and to avoid the state
explosion problem. Moreover, a novel method will be
proposed in order to analytically assess both the response time
bounds (i.e. min and max bounds) and the distribution shape.
For this purpose, we have employed a special class of Petri
nets (Timed Events Graphs or TEGs) to model the system.
The behavior of TEGs can indeed be studied using linear
equations (within Max-Plus algebra), making it suitable to
analytically evaluate the temporal properties.

The current study extends our preliminary work [14]. We
relax many hypotheses (variable network delays, variable
processing delays …) while considering more complex
architectures (many servers).

The remainder of our study has been organized as follows.
In Section II, some of the fundamentals regarding TEGs and
Max-Plus algebra will be recalled. Next, Section III and
Section IV will explore architectural modeling through the use
of TEGs. We will begin by studying a system whose
controller sends requests to just one server or RIOM in
Section III, before considering a more complex architecture
involving any number of servers in Section IV. Following
resolution of the Max-Plus equations and fusion of the
resulting solutions, a calculus algorithm and analytic formulae
will be given. Since the delays caused by the network are
needed to complete the evaluation, a method for accurately
assessing these delays will be developed in Section V.
Afterwards, Section VI will be devoted to validating results
using real measurements recorded on a patented experimental
platform1. Lastly, the outlook for future work will be
discussed in Section VII as a conclusion to this paper.

II. TIMED EVENT GRAPHS AND MAX-PLUS ALGEBRA
An event graph is an ordinary Petri net with all places

displaying at most one upstream and one downstream
transition. So, a TEG is a Petri net without the presence of any
conflicts or resource sharing. TEG behavior is deterministic
and depends solely on the source transitions and initial
conditions (TEG marking and tokens availability times) [16].

An event graph is timed if the places or transitions are
assigned with delays. In our study, we are only considering
timed-place graphs, yet we are still able to transform a timed
place into a timed transition and vice versa [15]. For the
modeling carried out in the sequel, we will only assign delays
to places, and each place will be ascribed a delay
denoted

kp

kτ .
In studying TEGs, the variable generally denotes the

number of regular transitions with at least one place
upstream, while represents the number of source
transitions without upstream places. To study the dynamic

behavior of TEG, we have associated the firing date for the
 time of each transition. This term is denoted for a

source transition and

n

1 French patent #01 110 933. This platform is used to perform behavioral

identification of discrete event systems and to measure time performances of
networked automation systems.

it
m

ujt

thk ()ju k

()i kθ for other transitions.

tu2tu1 t1

τ2 τ1

Fig. 1. A timed event graph.

With an initial marking of places as shown in Fig. 1 and
given the dates 1(1)u k − , of firing respectively, of

transitions and for the time, then the date
2 (1)u k −

1ut 2ut (1)thk −

1()kθ of firing the transition for the time at maximum
speed can be deduced using the following equation ("at
maximal speed" means as soon as all upstream place tokens
are available).

1t
thk

1 1 1 2 2() max((1), (1))k u k u kθ τ τ= + − + − (1)
The above equation is actually a linear equation in Max-

Plus algebra. A new algebraic structure has indeed emerged
around two laws: the classical maximum denoted in general
by " ⊕ " with identity element ε = −∞ ; and the classical
addition denoted by " ⊗ " with identity element 0e = .

The previous equation (1) can then be rewritten as:
1 1 1 2 2() ((1)) ((1))k u k u kθ τ τ= ⊗ − ⊕ ⊗ − (2)
In general, TEG behavior can be expressed by the

following Max-Plus linear equation:

0
() (() ())k A k B u kϕ ϕϕ

θ θ ϕ ϕ
≥

= ⊕ ⊗ − ⊕ ⊗ − (3)

where the components of vectors ()kθ and are the

firing dates for the time of the and TEG transitions.
Matrix

()u k
thk n m

Aϕ elements belong to { }max = ∪ −∞ , with

element ,ijAϕ representing the delay ijτ associated with place

 and connecting the transitions ijp jt and (with the

marking
it

ϕ) should it exist, and with the neutral element ε

otherwise. Similarly, for max
n mBϕ

×∈ , the matrix contains
delays of places downstream of the source transitions.
In an analogous manner and as is customary in classical linear
systems, this form can be brought to a state representation by
replacing all places with markings 1ijϕ > by ijϕ other places

(with one token) and by (intermediate transitions. We

thus obtain an extended system with a state vector

1ijϕ −)

() (() ())Tx k k kθ θ= , where θ is the vector of added
transitions. TEG can therefore be described by the first-order
recursive equation (or standard form [16]):

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

3

() (1) (),x k A x k B u k= ⊗ − ⊕ ⊗ (4)
This first-order form is quite similar to the state

representation of linear systems in classical algebra and
proves very useful for studying the time properties of discrete
event systems [17], [18]. Further details on this algebra are
available in [19].

The form (4) can now be rewritten in an explicit form with
both the source transitions and initial conditions clarified:

2
1

0
() (1) ()

k
k i

i
x k A x A B u k i

−
−

=

⎡
= ⊗ ⊕ ⊕ ⊗ ⊗ −⎢

⎣ ⎦

⎤
⎥ (5)

Example II.1: TEG in Fig. 2 represents a manufacturing

system with a machine capable of processing two parts at once
(two tokens in place). The parts entering the upstream
stock (place) become available to the machine

2p

up uτ time
units after firing the transition . The process lasts ut 1τ time
units before the finished part exits the machine.

ut 1t

2t uτ 1τ

up 1p

2p 2τ

ut 1t 2t

uτ 1τ

up 1p

3p
2τ2p3t

0 ()a ()b

Fig. 2. Timed event graph decomposition.

The behavior of this system depends on the initial marking
and the source transition of TEG (Fig. 2a). The dates of

firing transitions and for the time (at maximum
speed) are expressed as:

ut

1t 2t
thk

1 2 2

2 1 1

() (2) ()
() ()

uk k
k k

θ τ θ τ
θ τ θ

= ⊗ − ⊕ ⊗⎧
⎨ = ⊗⎩

u k
 (6)

The equations (6) are linear but not of the form (4). The
decomposition process explained previously is needed to get
to this first order form. After decomposition (Fig. 2b), the
transition is added to yield just those places with at most
one token. The system can then be described by:

3t

1 3

2 1 1

3 2 2

() (1) ())
() ()
() (1)

uk e k u k
k k
k k

θ θ τ
θ τ θ
θ τ θ

= ⊗ − ⊕ ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗ −⎩

 (7)

The standard first-order form (4) is ultimately written with:

1

2

,
e

A
ε ε
ε ε τ
ε τ ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 1

u

uB
τ

τ τ
ε

⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟
⎝ ⎠

 and
1

2

3

()
() ()

()

k
x k k

k

θ
θ
θ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

The behavior of this system can thus be completely
determined if we were to consider the initial conditions (i.e.
initial marking and tokens availability). A scenario of the
system (all tokens are available initially) at maximum speed
has been depicted in Fig. 3.

If the system (Fig. 2b) is not constrained (the upstream
stock is never empty and parts remain available at all times),
then the system can be expressed by:

() (1)x k A x k= ⊗ − (8)
Such is the case in our study since data stemming from the
plant are available at the sensor output as long as devices do
not fail. This observation explains the absence of source
transitions within the NAS model of the next section (Fig. 6).

1t

2t

ut

3t

3p

2p

1p

up

uτ

1τ

2τ

uτ

1τ

t

Fig. 3. Chronogram of TEG (Fig. 2b) behavior at maximal speed.

III. MODELING AND RESPONSE TIME EVALUATION: CASE OF A
SINGLE RIOM

In our study, we consider NAS based on client/server
paradigm. The PLC is the client and the RIOM (remote input
output module) is the server. While the PLC sends requests
periodically, the server does not send any message
autonomously but does only answer the received requests:
only synchronous transmissions from the RIOM are then
considered.

PLC

RIOM
Plant

CPU / NETb

Network rD

Fig. 4. Mono-RIOM networked automation system (Case 1).

The considered PLC contains a CPU (central processing

unit) module to execute the user program and a network board
(NETb) to send requests (combined requests: read and write
data) to the RIOM. At each scanning cycle, the NETb sends a
message to the RIOM either requesting information on the
plant (e.g. is the maximum level of water reached?) or
providing the control signal (e.g. close the valve). Neither the
CPU nor the NETb are in fact synchronized even though they
do belong to the same component, i.e. the PLC; they are both
time-driven and operate independently. The CPU periodically
accomplishes the tasks of: reading inputs, executing the user
program to produce a control signal, and updating outputs.
Regardless of the CPU, the NETb sends requests to the RIOM
and awaits the replies. Once a reply has been received, the
NETb waits further until the period time has elapsed in order
to begin a new cycle.

Besides supposing the CPU and the NETb to work
periodically without clocks drift, we consider neither frame
loss nor timeouts. Such assumptions are often taken for
granted in the context of NAS [11], as is the case in our study,

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

4

for two main reasons:
- The exchanged data packets are of a short length, and just

a few bytes are sufficient to transmit data. With Modbus for
instance, the request can reach up to 256 bytes only [2].

- Such automation systems are necessarily divided into
many local automation cells so as to achieve traffic isolation,
especially from non-real time traffic (long packets, videos,
etc.). Only a few packets are in fact exchanged between the
various cells and serve to limit congestion or packet drops
within real-time domains. Such is true for the case of vertical
integration of high-level functions (e.g. supervision) [11].

Regardless of the protocol used in NAS, one major criterion
of real-time performance evaluation is response time, which
reflects the delay between the occurrence of an event in the
plant (e.g. the maximum water level has been reached) and the
arrival of the consequence event generated by the controller
(e.g. close the valve) at the plant (Fig. 4). Two cases need to
be distinguished depending on whether this action/reaction
loop concerns a simple control event or an event involved in a
system safety. In the former case, the designer is merely
required to evaluate the time performance of the control
architecture (e.g. through knowledge of the response times
mean and standard deviation), whereas in the latter case, the
maximum response time bound becomes the top priority. In
our work, we consider the general case regardless of the
consequences of the events occurring in the plant. Both the
bounds and distribution of response times will be calculated.

A) Architecture Modeling
According to the client/server protocol described above, we

derived the architectural model shown in Fig. 6. This model is
highly abstract and only represents the applicative aspect of
the architecture protocol, i.e. the top layer in the OSI
representation of network systems. So, rather than
representing the network in a lower level including the
problem of resources sharing that would prevent us from

using TEGs, we only consider the delays, even variable, due
to that network.

On the model depicted on Fig. 6, we consider just the timed
places and simply assign a delay iτ to place (thus, only the
delays

ip

iτ are represented on Fig. 6). The system is assumed to
be work conserving and all transitions are fired at maximum
speed, as explained in Section II.

Places and with CPU delays of 1 2 3, ,p p p 4p 1 2 3, ,τ τ τ and

4τ respectively model the waiting phases to begin a new CPU
cycle; user program execution during (including updates
to both reading inputs and outputs); busy CPU; and lastly, idle
CPU. Since the CPU calculus always finishes before the CPU
period has elapsed, periodic CPU operations can easily be
indicated by a cycle period denoted (equal to

CLCT

CPUT 3τ).
Similarly, 15τ represents the NETb scanning period (denoted

), and a token in place indicates a busy status during
this period. Transmitting a request therefore starts by firing
the transition and ends by firing .

SCNT 15p

4t 5t 6τ or is the time
required to transmit the request. A token in means the
request has been sent and the NETb is waiting for the
response. Places and model the network delays
imposed upon the transmitted request and the returned
response (denoted

EMT

14p

7p 12p

7τ and 12τ respectively). The only
assumption regarding these delays is the fact that they are
bounded. Unlike the majority of studies and our preliminary
work [14], in which the network has been represented with
constant delays, we now assume that these delays are variable
in a given domain, with both a minimum and maximum
(finite) bound. At the scanning cycle, the network delays
experienced by the request and its reply in the network are:

 and , respectively. In
assessing the maximum NAS response time bound, only the

thl

min max
7 7 7() [,]lτ τ τ∈ min max

12 12 12() [,]lτ τ τ∈

 TEG1 TEG2

CPU RIOM Network Network-board

t1 t3

τ1

τ2

τ3

τ4

t2

t4t12

τ5

τ14

τ15

τ16

t5

τ6

τ7

τ12

τ8 t6

t9

t11

t8 τ11

τ10

t7

τ9

τ13 t10

Fig. 6. Mono-RIOM networked automation system modelling using TEGs (Case 1).

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

5

upper bounds of these delays are required. This observation
will be explained more thoroughly further below when the
analytical evaluation is performed.
Once the network has been crossed, the returned response
arrives in the NETb input buffer at and is copied into the
memory shared with CPU in a time

13p

13τ , denoted (much
smaller than the other PLC delays since its order of magnitude
remains in the microseconds, whereas the others reach the
milliseconds). This time period is indeed necessary to copy
just those few bytes carrying the application data (without any
of the lower layers headers). A place could be added to
represent this memory, yet its token would be available at all
times and thus exert no impact on the system behavior.

CPYT

Places , and indicate the phase upon arriving
at the RIOM. The RIOM remains in a wait mode at until a
request arrives in its input buffer . By firing , processing
begins and continues for a time

8 9 10, ,p p p 11p

9p

8p 7t

10τ . At the end of this time,
the response is placed in its output buffer before being
returned into the network. The main aforementioned delays
and their description are summed up in Table I:

11p

Plant

NETb

CPU

RIOMs

Network

()source S

/I OT

CLCT

12 ()lτ

CPUT
cycle l

()destination D

1

2

3

4
5

6

7

8

SCNT

7 (1)lτ +

1l +

rD

Fig. 5. Experienced delays at the different stages of NAS.

To sum up (Fig. 5), an event occurs at any time (1) in the

plant (source S) and waits until a request arrives to RIOM to
take it into account. Once the request is received, an answer is
processed while considering this event and then returned to
PLC (2). This answer crosses the network and gets to NETb
(3). At the beginning of a new CPU cycle, this answer is used
to execute the user program (4) to perform the reaction event
(5) that will be sent to its destination at the next scanning

cycle (6). Again, this answer crosses the network to get to
RIOM (7) and finally to the plant (8) (destination D).

Remark III. 1: The gray hatched arrows on Fig.6 (in the
RIOM model) that intended to represent both the source (data
stemming from the sensor) and output (data transmitted
towards the actuator) are not being considered since the
system has not been constrained. The RIOM is always
responding to a request using the latest information provided
by the sensor. This situation remains valid as long as the
devices are functional, which serves to justify the absence of
source transitions first on the model and consequently in the
subsequent Max-Plus equations (explanation of Section II
with unconstrained systems).

Thus, by applying the method described in Section II to the
model shown in Fig. 6 with all tokens available at the
beginning, we obtain the Max-Plus equations:

1 2 1 3

2 1 2

3 1 3

() ((1)) ((1))
() ()
() ()

k k k
k k
k k

4θ θ τ θ
θ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗⎩

τ

6

 (9)

4 11 5 12 1

5 4 6

6 5 7

7 6 8 8 9

8 7 10

9 8 11

10 9 11

11 5 14 10 13

12 4 15

() ((1)) ((1))
() ()
() ()
() (()) ((1))
() ()
() ()
() ()
() (()) (())
() ()

l l l
l l
l l
l l l
l l
l l
l l
l l l
l l

θ θ τ θ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ − ⊗⎪
⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪ = ⊗⎩

τ

 (10)

TABLE I

Equations systems (9) and (10) are linear in Max-Plus
algebra and may be written in the form (4). We have assigned
them different indices (k and l) due to their non-
synchronization, just like the CPU and the NETb. This step
constitutes an additional difficulty in our study.

B) Principle behind the proposed approach
As a first step, we must solve the systems of equations (9)

and (10) in order to determine the transition firing dates as
functions of indices k and l. This resolution step is somewhat
complex since the systems are time-variant (the involved
delays are variable). Yet, this complexity can be overcome
under the aforementioned hypotheses: i) the periodic
operations of both the CPU and NETb (without clock drift);
and ii) zero frame loss or component failure. In this case, we
are only searching for the two cycles beginnings at 1()kθ and

4 ()lθ . The other transitions will be deduced accordingly using
equations (9) and (10). The following solutions are therefore
obtained:

1

2

3

() (1)
() ((1))
()

CPU

CPU CLC

CPU

k k T
k k T T
k k T

θ
θ
θ

= − ⋅⎧
⎪ = − ⋅ ⊗⎨
⎪ = ⋅⎩

 (11)

DELAYS iτ OR xT AND THEIR DESCRITPION

Description of delay xT iτ

Time to execute the user program by CPU CLCT 2τ

CPU period CPUT 3τ

Time to send a request (emission) EMT 6τ

/ Delay to cross the network by the sent request 7τ
Time to process a request by RIOM /I OT 10τ

/ Delay to cross the network by the returned answer 12τ

Time to copy an answer into shared memory of NETb/CPU CPYT 13τ

Network board period SCNT 15τ

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

6

4

5 4 6

6 5 7

7 6 8 8

8 7 10

9 8 11

10 9 12

11 5 14 10 13

12 4 15

() (1)
() ()
() () ()
() (()) ((1))
() ()
() ()
() () ()
() (()) (())
() ()

SCNl l T
l l
l l l
l l l
l l
l l
l l l
l l l
l l

θ
θ θ τ
θ θ τ

9θ θ τ θ τ
θ θ τ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ

= − ⋅⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ − ⊗⎪
⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪ = ⊗⎩

 (12)

The next step of this method consists of fusing solutions
(11) and (12) so as to clarify the link between the CPU and the
NETb. Among these solutions, only the equations
representing the following events are then of interest (at this
stage):
- Beginning of processing in the CPU or reading inputs (1θ)
- End of processing in the CPU and output update (2θ)
- Beginning of scanning cycle and transmitting a request (4θ)
- Reception of a response in the shared memory (11θ).

These are indeed the events representative of
communication between the CPU and the NETb. When a
response arrives (11θ), it is taken into account at the next CPU
cycle beginning (1θ) and then read and used in CPU calculus.
Once processing has been completed, the result is put in the
NETb memory (2θ) before being transmitted to the RIOM at
the next scanning cycle beginning (4θ).

Let's set as the wait time between transmitting a request
and receiving the corresponding response (i.e. the round-trip
time). The following equations are then derived:

rT

1

2

() (1)
() (1)

CPU

CPU CLC

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊕⎩

 (13)

4

11

() (1)
() (1)

SCN

SCN r

l l T
l l T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

 (14)

At the scanning cycle, the request reply is received at
date

thl
11()lθ and taken into account by the CPU; it must then

wait for the CPU cycle beginning. This cycle
however must be immediately subsequent with respect to

th
lm th

lm

11()lθ . The condition to verify thus becomes:

1 11

1 11
/ () ()

min (() ())l
i i l

m Arg i l
θ θ

θ θ
∈ >

= − , where " " is the

converse function yielding the index that minimizes the
positive term

minArg

1 11(() ())i lθ θ− . Hence, we are introducing a new

transition 1̂θ representing the output update using the

response, i.e.

thl

1 2 1
ˆ () () () .l l Cl m m Tθ θ θ= = + LC

During the next scanning cycle (with respect to),

which is the cycle, the updated result is encapsulated into
a request packet and sent to the RIOM. Similarly, another new

transition

1̂()lθ
th
ln

2̂θ is added with: and

. The date of event consequence

arrival at the controlled process, is therefore

2 4
ˆ () ()ll nθ θ=

4 1

4 1
ˆ/ () ()

ˆmin (() ())l
i i l

n Arg i l
θ θ

θ θ
∈ >

= −

8 ()lnθ . For the

investigated event during the scanning cycle generated at a
time denoted by

thl
()e lθ , the associated NAS response time is

therefore given by:
8() () ()r lD l n leθ θ= − (15)

The response time in (15) is minimal provided that the data
originating from the sensor are used for processing in the
RIOM immediately after being generated, i.e. at the date

7() () (0)e filtl l dθ θ += − + . The minimum delay relative to the

 scanning cycle therefore equals: thl
8 7() () ()MIN l filtD l n l dθ θ= − + (16)

where filtd is the delay due to data filtering in the sensor.

On the other hand, the response time is maximal if the data
arrive immediately after the beginning of processing in the
RIOM, with respect to the previous scanning cycle, i.e.:

8 7() () (1)MAX l filtD l n l dθ θ= − − + (17)

As can be seen, the formulas (16) and (17) provide the
response time bounds relative to the scanning cycle while
(15) gives the response time relative to an event generated at
time

thl

()e lθ . Actually, these formulas can be used in calculus
provided that the index is calculated. The previous steps to
find this index can be achieved using the algorithm depicted
on Fig. 7:

ln

Initialization : 1, 1, 1l ll m n= = =

 1 11() ()lm lθ θ>
1l lm m= +

1 2 1
ˆ () () () .l l CLCl m m Tθ θ θ= = +

 yes

8

8 7

8 7

() () (),
() () ()

() () (1)

r l e

MIN l filt

MAX l filt

D l n l
D l n l d

D l n l d

θ θ
θ θ

θ θ

= −

= − +

= − − +

1l l= +

Start

SCN CRl T T⋅ > no yes

End

 4 1̂() ()ln lθ θ>

1l ln n= +

yes no

no

Fig. 7. Response times calculus algorithm (ALGO).

In conclusion, the method development has been achieved

by means of the following steps: modeling the architecture
through the use of TEGs; writing the corresponding Max-Plus
equations; and resolving these equations. After finding the

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

7

transitions firing dates (through the previous Max-Plus
equations resolution or simply by simulating the system
behaviour using the recursive equations (9) and (10)), an
algorithm (let’s call it ALGO as in Fig. 7) was provided to
evaluate the architecture response time relative to any
occurring event at any cycle; this algorithm is fast and easily
implemented. Besides measurements, this algorithm is used to
verify the validity of the formulae (explicit formulas that can
be used directly in calculus) derived later in this study.

Lemma

This architecture contains two periodic, yet non-
synchronized, processes. In spite of this fact, the entire system
remains periodic with a period that verifies:

, where always exist.
CRT

1 2CR SCN CPUT k T k T= ⋅ = ⋅ 1 2,k k ∈
Proof: The main PLC parameters of interest are the two

module periods and , chosen by the system user
from among only the multiples of a basis unit, which is
generally on the order of a few milliseconds. These
parameters can thus be considered as integers under the
assumption of zero clock drift. Now let's set:

CPUT SCNT

SCN CPUT r T= ⋅ ,
with r ρ ω= + , ρ being the integer part of and

 its fractional part. Since

/SCN CPUT T

ω +∈ 1 2n nω = can be written, it
is sufficient to take: () and (1k n= 2 12 2k n nρ= ⋅ +) in order to
reach: 1 1 2 2(/) CPU CPUk n n T k Tρ⋅ + ⋅ = ⋅ ; hence:

2 1()CR CPUT n n Tρ= ⋅ + ⋅ (18)
This period is minimized if and are relatively prime
numbers.

1n 2n

Hence, we can conclude that the method (or ALGO) is
formal and all possible states are scanned if the simulation
length of the system covers the critical period . The
resultant response time bounds are thus formal as well.

CRT

Remark III. 2: the previous method can be used to obtain

the shape of the response times distribution as follows: at each
scanning cycle , the different delays l ()i lτ of TEG are taken
randomly from their domain of variation. For example, the
network delay 7 ()lτ is randomly chosen from .
Then using the max-plus equation and ALGO, the index is
calculated. Finally, by generating randomly an event at date

min max
7 7[,τ τ]

ln

()e lθ such that it is taken into account at cycle or l

7 (1) () ()el l 7 lθ θ θ− < < , the response time relative to this
event is calculated using (15). By repeating this operation a
large amount of times, histograms giving the response times
distribution shape is obtained (see example of Section VI).

C) Analytical calculus of response time
The previous algorithm enables the calculation of both the

response time bounds and the distribution shape. It is
preferable however to develop analytical formulae that yield
these results trivially. Moreover, such formulae will facilitate

analyzing the influence of individual architecture parameters
on overall performance and serve to answer the "what if"
questions. This attribute is very valuable when seeking, for
example, an adequate automation system configuration so as
to guarantee the stability or safety. Such an analytical
evaluation will be the focus of this section.

The results from (13) and (14) along with the algorithm
principle will be used for this exercise.

Let's take: ,r CPU rT Tα τ⋅ + CLC CPU T T= β= ⋅ ,
where 1β < , α is the integer part of and /r CPUT T rτ the
fractional part.

For the calculus complexity to be proven later, let's begin
with the case r ∈ and generalize it for r +∈ (for recall,

SCN CPUT r T= ⋅ with r ρ ω= + , ρ ∈ , 1ω < and ω +∈).
a) (0r)ω∈ =

At the scanning cycle, the request response is received
at the following date:

thl

11() (1) CPU CPU rl l r T Tθ α τ= − ⋅ ⋅ + ⋅ + (19)
In order to be taken into account, the response must wait for

the next CPU cycle beginning, which entails waiting for the
minimum number (previously denoted) that verifies k lm

1 11() ()k lθ θ> .
By taking 1 (1) 1k l r α− = − ⋅ + + , we then obtain:

1 11() () CPU rk l Tθ θ τ= + − (20)
Since 0 CPU r CPUT Tτ< − < , 1 11() ()k lθ θ> and therefore

(1) 2lm l r α= − ⋅ + + , which leads to the following result:

[]1 1
ˆ () () 1 (1)l CLC CPl m T l r Tθ θ α β= + = + + + − ⋅ ⋅ U (21)

Since the index has been determined, we must now seek
the minimum number (previously denoted) such that

.

lm
n ln

4 1̂() ()n lθ θ>
The solutions in (14) provides 4 () (1) CPUn n r Tθ = − ⋅ ⋅ ;

moreover for 1n l= + , then 4 () CPUn l r Tθ = ⋅ ⋅ , which can be
rewritten as:

[]4 1̂() () (1) CPUn k r Tθ θ α β= + − + + ⋅ (22)

In relying on condition C1: (1)r α β> + + , verifies

 and thus , which justifies writing:

n

4 1̂() ()nθ θ> l 1ln l= +

2 4 4
ˆ () () (1)ll n lθ θ θ= = + . This development implies:

8 7

8 7

8

() (1) ()

() (1) (1)

() (1) ()

MIN filt

MAX filt

r e

D l l l d

D l l l d

D l l l

θ θ

θ θ

θ θ

= + − +⎧
⎪

= + − − +⎨
⎪ = + −⎩

 (23)

As a final expression:

/

/

8

() (,1)
() 2 (1, 2)

() (1) ()

MIN SCN I O

MAX SCN I O

r e

D l T l T
D l T l T
D l l lθ θ

= + Δ +⎧
⎪ = + Δ − +⎨
⎪ = + −⎩

 (24)

where 7(,) () ()l q l q l7τ τΔ = + − is the network jitter and

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

8

/ 8 10 11I O filtT τ τ τ= + + + d the total time spent in the RIOM

(including buffering at the input port, data filtering,
processing and buffering at the output port).

In practice, condition C1 is often verified and results (24)
are valid given that the scanning period is much longer than
the CPU period (). If such were not the case,
then it would be necessary to identify the integer that
verifies condition C

SCN CPUT T
1q ≥

q: (1) (1)r q r qα β⋅ > + + > ⋅ − . We thus
obtain and ultimately the general formulae: ln l q= +

/

/

8

() (,)
() (1) (1, 1)

() () ()

MIN SCN I O

MAX SCN I O

r e

D l q T l q T
D l q T l q T
D l l q lθ θ

= ⋅ + Δ +⎧
⎪ = + ⋅ + Δ − + +⎨
⎪ = + −⎩

 (25)

It can be noted that if condition C1 is verified, i.e.
(1)r α β> + + , then , which in turn yields exactly the

same results as in (24).
1q =

Discussion: From the above analysis and formulae, some of
the points not trivially expected deserve to be mentioned:

- The network delays are assumed not to be constant (i.e.
variable α) as is the user program execution time (variable
β). Moreover, according to Cq, the response time reaches its
worst case (maximum value) when α and β are maximized.
We actually needed to search for the minimum number
such that condition C

q

q was verified, or (1)r q α β⋅ > + + . The
number therefore assumes its worst value when parameters q
α and β are maximized. In order to calculate the upper
response time bound using these formulae, only the local
worst case CPU calculus and network delays are required.

- The same remarks apply to the effect of delay . /I OT
- To obtain fast NAS response times, the ratio r ∈

should be increased by either reducing or raising .
The optimal configuration is attained by minimizing the
period while maintaining

CPUT SCNT

CPUT 1β < (i.e. the user program
must be completely executed before the CPU cycle has
elapsed). The reasoning regarding the period is not so
obvious given its direct correlation with the formulae in (25).
Nevertheless, certain details about this point are provided in
the section discussion below (Case b).

SCNT

b) (0r ω+∈ ≠)

ULet's set r CPTτ γ= ⋅ (where obviously 1γ <).

At the scanning cycle, we find: thl
11() (1) ()CPU CPUl l r T Tθ α γ= − ⋅ ⋅ + + ⋅ (26)
Let's now set , where: i ∈ (1) (1)i l iγ ω≤ + ⋅ − < + (*)
For 1 (1) 1k l iρ α− = − ⋅ + + + , it follows that:

[]1 11() () 1 ((1)) CPUk l i l Tθ θ γ ω= + + − + ⋅ − ⋅ (27)

Since in (*), (1) (1)i l iγ ω≤ + ⋅ − < + , then
(1) 2lm l iρ α= − ⋅ + + + and therefore:

[]1 11
ˆ () () 1 ((1)) CPUl l i l Tθ θ β γ ω= + + + − + ⋅ − ⋅ (28)

We also find that: 4 () (1) CPUn n r Tθ = − ⋅ ⋅ and for 1n l= + ,
then: 4 () CPUn l r Tθ = ⋅ ⋅ , i.e.:

[]4 1̂() () 1 (1) CPUn k r i l Tθ θ α β ω⎡ ⎤= + − + + + − ⋅ − ⋅⎣ ⎦ (29)

From (*), it can be deduced that: 1 (1) 1i lγ ω γ< + − ⋅ − ≤ + .
Let's set: , 1 (1l i i l)ωΓ = + − ⋅ − , with , 1l iγ γ< Γ ≤ + ,

,,
min ()MIN l ii l∈ ∈

Γ = Γ and ,,
max ()MAX l ii l∈ ∈

Γ = Γ .

Equation (29) can then be rewritten as:

4 1 ,
ˆ() () ()l i CPUn k r Tθ θ α β⎡= + − + + Γ ⋅⎣ ⎤⎦ (30)

On condition : ()MAXC r α β> + + Γ , we have therefore

obtained: 2 4 4
ˆ () () (1)ll n lθ θ θ= = + , i.e. 1ln l= + . As

previously noted, this finding has led to the same results as in
(24). But should this condition not be respected, the time
bounds would depend on ,l iΓ as well as α and β . Instead of
reasoning based on delays relative to a particular scanning
cycle, as was previously the case, the discussion here
addresses both the global (absolute) bounds and the local
delay relative to the scanning cycle. thl

The following global and local conditions are used:

{

1 1

2 2

3 , 3

(1)
:

(1

: () (

MIN

MAX

l i

r q r q
Global

r q r q

Local r q r q

α β
α β

α β

⋅ > Γ + + > ⋅ −⎧
⎨)

1)

⋅ > Γ + + > ⋅ −⎩

⋅ > Γ + + > ⋅ −

The response times are then written as:
1 1 /

2 2

8 3

(,)
(1) (1, 1)

() () ()

MIN SCN I O

/MAX SCN I O

r e

D q T l q T
D q T l q T
D l l q lθ θ

= ⋅ + Δ +⎧
⎪ = + ⋅ + Δ − + +⎨
⎪ = + −⎩

 (31)

Discussion: In this general case, it is noted that the
optimality condition (2 1q =) or : ()MAXC r α β> + + Γ may
be more restrictive than in the case. For r ∈ 1 2n nω = , it
is indeed sufficient to use and 2(1)l − = n 1i n= to obtain

, 1l iΓ = , which implies that and condition 1MAXΓ ≥ C is
more restrictive than C1. This result is an important about the
response time calculus. It suggests, in the event the network
effect is smaller than (often the case in such NAS and
which then implies

CPUT
0α =), setting the scanning period at

twice the CPU period (while naturally first minimizing ,
as previously explained). If , we then return to
case (a), where

CPUT
2SCN CPUT T= ⋅

(0r)ω∈ = and hence 1MAXΓ = . Since
1β < and 0α = , (MAX) 2α β+ + Γ < . Setting

2SCNT CPUT= ⋅ will thus serve to satisfy condition C1 and will
surely lead to 2 1q = , which means that the relatively simple
results (24) can be used directly for calculus.

 Example III.1:
Suppose that the CPU period equals 5 ms, the user program
lasts at most 3.5 ms (0.7β =) and the network induces a

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

9

maximum delay ms (1.24rT = 0α = and 0.248γ =). If the
scanning period were set at 8 ms, then SCNT 1.6r =
(0.6ω =) and according to (*), , i.e. 1.2MAXΓ =

0 0.7 1.2 1.9MAXα β+ + Γ = + + = . The minimum integer
satisfying is therefore . The corresponding
maximum response time will thus equal:

q
1.9r q⋅ > 2q =

/3 8MAX I OD = × + Δ + T . Should however equal 10 ms,
then and

SCNT
2r = 0 0.7 1 1.7MAXα β+ + Γ = + + = . The minimal

number satisfying is this time q 1.7r q⋅ > 1q = . The
maximum bound is then /2 10MAX I OD T= × + Δ + , which is
less than the previous one. This phenomenon is paradoxical
since a faster element may lead to a more significant delay.
This consideration can be explained intuitively as follows:
when a response is returned during the scanning cycle,
with a sufficiently long scanning period the consequence
derived from the CPU will be transmitted to the actuator
during the scanning cycle. However on the other hand
if scanning were faster, then the consequence would not be
sent during that particular cycle but instead wait until the next
one, i.e. or even later, thus explaining the
incremental delay with a scanning period . This
phenomenon has also been pointed out in [20].

thl

(1)thl +

(2)thl +

SCNT

IV. MODELING AND RESPONSE TIME EVALUATION: CASE OF
MULTIPLE RIOMS

The system modeling is different in this case since N
RIOMs are to be scanned. Information is obtained from many
sensors and multiple control signal destinations are observed
as well. The PLC is thus transmitting a burst of requests to the
RIOMs and waiting for responses (Fig. 8).

PLC
R12

R13
R14

R15

R16
R17

RIOMs

rD Plant

SCNT
requests

 (l+1)

(S)

(D)

 (cycle l)

Network

Fig. 8. Multi-RIOMs NAS (Case2).

 When a response has been received, it is copied into the
memory shared with the CPU. Once all responses have been
received, NETb remains in a waiting mode until the scanning
period has fully elapsed and then begins another cycle. All
received responses are copied as a block (all at once) from the
shared memory and then used to update control signals within
the same CPU cycle. Only one token is necessary therefore to
model CPU operations. CPU model of Case 1 thus remains
valid for our second case but the remainder of this system
however is much more complex than before.

In this general NAS configuration, requests are sent from
NETb in an invariant order (throughout NAS operations), as
revealed on the new model in Fig. 9. The RIOMs are assigned
indices according to their scanning order. We associate index

 to the RIOM receiving the request from the NETb. As
an example, Fig. 7 shows RIOMs being scanned in the order
i thi

{ }12 13 14 15 16 17, , , , ,R R R R R R ; therefore, for instance, the index

assigned to is 13R 2i = . More specifically, and SN DN are
the indices assigned respectively to the event source (S) and

t1 t3

τ3

τ4

t2

CPU

t4 t12

τ5

τ14

τ15

τ16

t51

τ61

τ71

τ12

τ81 t61

t91

t11

t81 τ11

τ101

t71

τ91

t5N

τ6N

τ7N
t6N

…

…
…

τ12N t9N

 RIOMs Network NETb

…

τ131 t101

τ13N t10N

to
RIOMS

from
RIOMS

τ2

τ1

Fig. 9. TEGs based model of the multi-RIOMs NAS (Case2).

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

10

consequence destination (D) involved in the targeted NAS
loop. In Fig. 7, and (since the source (S) is

 and the destination (D) is).
4SN = 5DN =

15R 16R
We have introduced the delay experienced by each frame
during the various NAS stages: a delay to be sent to the

network, a delay occurring in the RIOM and naturally
the delays caused by the network represented by places

and .

i
i
EMT

/
i
I OT

7ip

12ip 7iτ represents the network delay that affects the
transmitted request and

thi

12iτ the returned response.
Furthermore, places represent the FIFO queue delay
affecting responses in the NETb input buffer. Once again,
these network delays are not presumed to be constant, but
rather variable within a bounded domain; they may be due to
any kind of network, and their only condition is to be bounded
so as to ensure suitability for real-time systems.

13ip

All that is necessary to write the equations of the model has
been presented, and we now derive the Max-Plus system of
equations (N is the number of scanned RIOMs):

1 2 1 3

2 1 2

3 1 3

() ((1)) ((1))
() ()
() ()

k k k
k k
k k

4θ θ τ θ
θ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗⎩

τ

j l ⎤
⎥⎦

 (32)

4 11 5 12 16

5 5(1) 6

6 5 7

7 6 8 8 9

8 7 10

9 8 11

10 9 12

11

50 4

() ((1)) ((1))
1
() ()

() () ()
() (()) ((1))
() () ()
() ()

// (

() () ()

)

()

i i i

i i i

i i i i i

i i i

i i i

i i i

f
l l l
i to N

l l

l l l
l l

or

en

l
l l l
l l

dl l l

l

l

θ θ τ θ τ

θ θ τ

θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ
θ θ

θ θ

τ

θ

−

= − ⊗ ⊕ − ⊗
=

= ⊗

= ⊗
= ⊗ ⊕ − ⊗

= ⊗
=

=

⊗

= ⊗

= 5 14 10 131

12 4 15

(()) (() ())

() ()

N jj N
l l

l l

θ τ θ τ

θ θ τ
≤ ≤

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

⎡⎪ ⊗ ⊕ ⊕ ⊗⎢⎪ ⎣⎪
= ⊗⎪⎩

 (33)

According to this new model (Fig. 9), the transition
models only the fact that a new cycle cannot begin while all
responses have not been received. The key event to consider is
the completion of copying the response emanating from (S) to
the memory shared with the CPU. For this purpose, we have
introduced a virtual transition fired at date

11t

St Sθ to represent
this important event:

10 13 5 14() (() ()) (())
S SS N N Nl l l lθ θ τ θ= ⊗ ⊕ ⊗τ

M

 (34)

In a similar manner and using the same notations as in Case
1, the solutions to be used for the analysis are as follows:

1

2

() (1)
() (1)

CPU

CPU CLC

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

 (35)

4

10 13

() (1)
() (() ()) ()

S S

SCN

S N N E

l l T
l l l N T

θ
θ θ τ

= − ⋅⎧⎪
⎨ = ⊗ ⊕ ⋅⎪⎩

 (36)

Let's set 4() () ()r S CPUT l l Tθ θ α γ= − = + ⋅ .

During the scanning cycle, which starts at date thl 4 ()lθ ,
the response from (S) is received at time ()S lθ . This reply is
used in the calculus of the subsequent CPU cycle, and the
control signal is updated and then sent to destination (D) upon
the next RIOMs scanning cycle.

By respecting the same analytical principle as in the first
case with one RIOM, for an event generated at time ()e lθ and

taken into account during the scanning cycle, we obtain: thl

/
1 1

/
1 1

8

() (,) ()

() (1) (1, 1) ()

() () ()

SD
D

SD
D

D

NN
Ni i

MIN SCN EM EM I O
i i

NN
Ni i

MAX SCN EM EM I O
i i

r N e

D l q T T T l q T l q

D l q T T T l q T l q

D l l q lθ θ

= =

= =

⎧
⎪ = ⋅ + − +Δ + +
⎪
⎪
⎪

= + ⋅ + − +Δ − + + +⎨
⎪
⎪ = + −⎪
⎪
⎩

∑ ∑

∑ ∑ (37)

where: , (1)l ir q r qα β⋅ > Γ + + > ⋅ − ,

7 7(,) () ()
DNl q l q l

SNτ τΔ = + − is a network jitter, and

 is the time

spent in the RIOM (D) during the scanning cycle.
8 10 11/ () ()D

D D D

N
N N N filtI OT l q l q dτ τ τ+ = + + + +

()thl q+
The results (37) fit the first case with one RIOM, where
D SN N= , since the event source is also the destination.

Discussion: From the results in (37), it can be observed that to
minimize response time, a higher index value should be
assigned to the event source and a lower value to the
destination so as to make the term ()D SN N− as highly
negative as possible: the RIOMs scanning order is indeed
important. This result matches some of the conclusions drawn
experimentally in [10], where it is stated that if the PLC were
loaded with requests (yet remaining below a threshold),
response time bounds would decrease. Loading the PLC and
therefore delaying request transmission (to S) or simply
increasing the request transmission order to RIOM (S) yields
exactly the same phenomenon. Regarding the load threshold,
the formulae also match experimental results. We must keep
in mind that the delay calculus condition depends on α or

()S lθ , and should be decreased (see (34)). The optimal
case is derived by increasing while maintaining equal
to 1, i.e. remaining under the threshold.

SN

SN q

Once again, this phenomenon is paradoxical since delaying
the time of request transmission to the event source would
lead to faster response times. This scenario can be explained
more intuitively by the fact that it would be preferable to delay
request transmission by a small amount of time and therefore
wait for an event to occur rather than acting too hastily,
sending the request too early and potentially missing the
event. The event must therefore wait until the next request to
be considered, which might necessitate a substantial wait since
the scanning period is often relatively long.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

11

V. NETWORK DELAYS EVALUATION IN A SWITCHED ETHERNET
CLIENT/SERVER NAS

The analytical method developed above is applicable easily
but the delays caused by the network (7iτ and 12iτ) are
required in our formulae. This section will focus on their
evaluation. In the case of a standard full duplex switched
Ethernet network, existing methods can be used for this
purpose. Unfortunately, in the context of our study, accurate
assessments are required. A pessimistic method may cause
significant overestimations of the maximum response time as
illustrated in the following example.

 Example V.1: With , 2r = 0.6β = and a maximum delay
caused by the network leading to , 1.3l i αΓ + = , the minimum
number verifying the condition Cq 1 is equal to 1. Using a
pessimistic method (with an overestimation of roughly 10%)
may lead to , 1.43l i αΓ + = and the new integer that

verifies the condition C

q

1 equals 2. If 10SCNT ms= , the
maximum response time bound is slightly greater than 20ms,
compared to a value of 30ms including the network delay
overestimation. This is very pessimistic (approx. 50%
overestimation) and unacceptable in the majority of
automation systems.

For this reason, new methods had to be investigated in an
effort to evaluate network delays with as limited an
overestimation as possible, and the present section is devoted
to this objective.

In this study, we have considered a client/server automation
system (as in Case 2) over a standard full duplex Ethernet
switch (Fig. 10). The switch is modeled as in [9] with a central
dispatcher forwarding the frames according to FCFS policy
(first come first served), at a speed (bits/s) noted C . In
considering a "store & forward" switch, a frame is completely
received before being forwarded by the dispatcher to the
appropriate output port. The data are exchanged with the end
stations (PLC or RIOMs) at a bit rate (bits/s) corresponding to
physical link capacity, noted (link of port). kC kPort

PLC

R1

Port0

PortN

Port1

Dispatcher

0C C
1C

NC

C

C

Switch RN
Fig. 10. Client/server automation system over an Ethernet switch.

As aforementioned, the frames entering the switch are
forwarded in a FCFS manner without any flow classification
or prioritization. At any time, the only criterion therefore for
frames differentiation is their order of arrival at the switch.
The principle behind the method is to consider a function of
order for arbitration when many frames at different input
ports are waiting to be forwarded. Suppose that the frame

to enter the switch is completely forwarded to its output port
at date

thi

()iψ . So, the frame , supposed of length (1)thi + (1)iL +
(overheads included), to be entirely received into the switch at
date (1)arrival iθ + , is completely forwarded to its output
 port at date:

(1)(1) ((1), ()) /arrival ii max i i L Cψ θ ψ ++ = + + (38)

If the output port is , then the frame exits completely
the switch at date:

kPort

(1)(1) (1) /exit i ki i L Cθ ψ ++ = + + (39)

Finally, the network delay that frame suffers from is: (1)thi +

(1) (1) (1)network exit arrivali i iτ θ θ+ = + − + (40)
 Note that equation (39) would not be true if there were
more than one PLC since this would cause extra delays due to
queues of requests at the output ports.
As we can notice, (38) and (39) are recurrent Max-Plus
equations that represent the evolution of the system.
Moreover, we can see that the dates (1)arrival iθ + and

(1)exit iθ + correspond to notations used in the modeling

sections i.e. 5 jθ and 6 jθ (resp. 9 jθ and 10 jθ) if the (1

frame is the request (resp. reply). To express the
equations (38) and (39) in a more explicit way, we introduce a
function denoted , whereby is the order of

arrival of the request at the switch whereas is

the order of arrival at the switch of the corresponding reply.
At the beginning, this function is initialized:

)thi +
thj thj

order ()reqorder i
thi (resporder i)

(1) 1, , () ,req reqorder order k k= = with 1 k N≤ ≤ . Indeed,

the requests transmission order is known from the beginning
and invariant, as previously mentioned in Section IV. Since
the responses do not yet exist (at time 0t =), then:

() , 1resporder k k N= +∞ ≤ ≤ .

Since (1) 1reqorder = (the first frame to enter the switch is the

request, of length , sent to R1), using (38)-(39) we have: 1L

51 1(1) /L Cψ θ= + and 61 1 1(1) /L Cθ ψ= + . The delay sought
is thus given as: 71 61 51 1 1(1/ 1/)L C Cτ θ θ= − = ⋅ + . This
request is received by R1 at date 61θ and the corresponding

response is therefore returned at date , which
means that another frame is waiting at an input port, requiring
the order function to be updated. The order is no

longer equal to infinity. The other orders (with

1
91 61 /I OTθ θ= +

(1)resporder

()reqorder i

1i ≠) may also be modified if, for example, this response
enters before the last request is sent (see example below). In
this case, (1)resporder N= and ()reqorder N N 1= + . The
order function being updated, the frame whose order equals 2
can be found and the equations (38)-(39) used accordingly.
These equations are used for the third frame and so forth until
all requests have been sent and their responses received (in all,
2 N⋅ frames have to be switched). Meanwhile, delays 7iτ or

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

12

12iτ (depending if a request or response is selected in the
arbitration) are calculated.

 Example IV.2 (numerical application): a PLC scans three
RIOMs (R1, R2 and R3), with requests of lengths and

, respectively (overheads included). All of the numerical
values used have been chosen arbitrarily and only serve an
explanatory purpose:

1 2,L L

3L

0 1 2 3 10C C C C Mbps= = = = , , 0.16C Gbps= 1 80L Bytes= ,

, , 2 120L Bytes= 3 200L Bytes= 1
/ 800I OT sμ= , 2

/ 600I OT sμ= ,
3
/ 480I OT sμ= .
The evaluation results using the previous FCFS strategy

and equations (38)-(39) have been reported in Table II.

Discussion: As can be seen on Table II (the shaded column),
the order function at the last iteration is no longer in its
initialized form. We can in fact note that the response to the
first request enters completely into the switch (91 1082 sθ μ=)
shortly before the arrival of the third request (53 1084θ =).
Therefore, and , while at the

beginning and ord .

(1) 3resporder = (3) 4reqorder =

(1)resporder = +∞ (3) 3reqer =

VI. APPLICATION AND VALIDATION
To verify the validity of both the models and results

generated previously, we will focus on the two automation
architectures described previously (see Fig. 4 and Fig. 8). By
using the experimental facilities of our laboratory, we have
studied these two architectures. Let's now compare the results
obtained with ALGO, the formulae and an experimental
measurement of the response time.

The second configuration focuses on the delay between an
event generated on the input of remote module R15 and its
consequence on R16 output. The histograms in Fig. 11 show a
series of 10,000 experimental measurements and response
times obtained using ALGO for this configuration.

The CPU period of the PLC has been set at 5 ms and the
scanning period at 10ms. In practice, this architecture presents
a jitter of approx. 15% with an average value of 10 ms. This
feature has been taken into account in the different
calculations. Also, to calculate the response times histograms,
about 10,000 events were generated. To avoid any
underestimation of the response times due to generating

events at discrete dates, a random event generator is used. The
 event is generated at date thk ()e SCNk k Tθ τ= ⋅ + with τ

randomly chosen from []0, SCNT . The simulation was run
many times, yielding the results presented in Fig. 11 and
Table III.

TABLE III
RESULTS OF THE FORMULAS, ALGO AND MEASURES

Response times in ms
Minimum Maximum Mean

Measures 10.40 21.90 16.10
ALGO 10.06 22.24 15.82

Case 1

Formulae 10.06 22.24 /
Measures 10.65 22.25 16.40
ALGO 10.31 22.49 16.07

Case 2

Formulae 10.31 22.49 /

Discussion of results: In both cases, a conclusion can be
drawn regarding the validity of both the formulae and ALGO
since the maximum calculated delays exceed those obtained
experimentally (overestimation), and the minimum delays are
less than the measured values. As expected, results of ALGO
and the formulae are identical in all cases, given that they
have been based on the same principle. The discrepancies in
delays, with respect to measurements, are less than 3.27% in
all cases for either the analytical formulae or ALGO. Both the
overestimation and accuracy of the response time assessment
have thus been achieved simultaneously. The discrepancies in
mean response time calculus are less than 2.01% and the
shapes of both the experimental measurement and ALGO
histograms are in fact very similar.

 TABLE II
NETWORK DELAYS CALCULUS FOR AN EXAMPLE OF NAS WITH N= 3

in
sμ 5iθ 6iθ 9iθ 10iθ ψ Order of

arrival 7iτ 12iτ

154 1 Req1 i=1 150 218 1082 1150
1086 3 Resp1

68

68

506 2 Req2 i=2 500 602 1298 1400
1304 5 Resp2

102

102

1096 4 Req3 i=3 1084 1256 1926 2180
2020 6 Resp3

172

170

On the other hand, if we compare the results of both
configurations (Fig. 4 and Fig. 8), a difference of 0.25 ms is
detected between the maximum (as well as minimum) bounds.
This corresponds exactly to the value of the frame emission
time ; moreover, since the switches are very fast, the
considered configurations turn out to be very similar. The
main difference lies in the use of one RIOM as an event
source and another as the destination, with a difference of one
in the scanning order (R

EMT

15 and R16). This result corroborates
the general formulae obtained in Section IV.

10 12 14 16 18 20 22 24
0

200

400

600

800

Measures

10 12 14 16 18 20 22 24
0

200

400

600

800

time (ms)

Simulation

MAXDMIND

ALGO

Fig. 11. Histograms of the assessed response times.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ANGINEERING

13

VII. CONCLUSION
In this work, we have presented a new approach to

evaluating the response time in networked automation
architectures using client/server protocol. All delays
experienced during the various system stages have been taken
into account. A simple algorithm and analytical formulae for a
trivial evaluation of response time have been developed; both
the response time bounds and the distribution shape could thus
be assessed. Afterwards, a comparison of results with
experimental measurements enabled us to verify the validity
of this method. Moreover, the analytical results obtained can
be easily used a priori, during the design phase of an
architecture, with application to choosing an adequate
configuration for components in order to satisfy the desired
time requirements of the plant. These results can also be used
a posteriori to evaluate the response time of an existing
architecture, as displayed in the previous examples.
Throughout the study, many of the important results presented
have been shown to match experimental observations.

For future studies, it would be worthwhile to consider more
general automation architectures along with other protocols, a
wide array of control loops with many clients and naturally
relax some of our hypotheses like clocks drift of frame loss.
The challenge then is to develop an efficient method so as to
accurately evaluate the network delays in the presence not
only of many loops, but also with acyclic and non-real time
traffic, as encountered in modern NAS.

REFERENCES
[1] P. Neumann, ”Communication in industrial automation - what is going

on?”, Control Engineering Practice, Vol. 15, issue. 11, pp. 1332-1347,
Nov 2007.

[2] MODBUS Messaging on TCP/IP Implementation Guide V1.0b, (2006,
October), [Online]. Available:www.modbusida.org/specs

[3] R. L. Cruz, “A calculus for network delay, Part I: network in isolation”,
IEEE Trans. Information Theory. Vol. 37, Issue. 1, pp. 114-131, 1991.

[4] J. Y. Le Boudec and P. Thiran, “Network calculus: a theory of
deterministic queuing systems for internet”, Ed 2004: Springer Verlag.

[5] J. P. Georges, E. Rondeau, and T. Divoux, “Confronting the
performances of switched Ethernet network with industrial constraints
by using Network Calculus”, Communication Systems, Vol. 18, Issue 9,
pp. 877-903, 2005.

[6] X. Fan, M. Jonsson and J. Jonsson, “Guaranteed real-time
communication in packet switched networks with FCFS queuing”,
Computer and networks, Vol. 53, Issue. , pp. 400-417, November 2008.

[7] K. C. Lee and S. Lee, “Performance evaluation of switched Ethernet for
real-time industrial communications”, Computer standards & interfaces,
Vol. 24, Issue. ,pp. 411–423, 2002.

[8] D.A. Zaitsev, “Switched LAN simulation by colored Petri nets”,
Mathematics and Computers in Simulation, Vol.65, pp. 245–249, 2004.

[9] Jasperneite and Neumann: Switched Ethernet for Factory
Communication. Proc. of 8th IEEE Int. Conf. Emerging Technologies
and Factory Automation, ETFA , Antibes, France, pp. 205 – 212, 2001.

[10] J. Greifeneder, G. Frey, “Optimizing Quality of Control in Networked
Automation Systems using Probabilistic Models”, In Proc. of 11th IEEE
Int. Conf. on ETFA, Prague, 2006.

[11] B. Denis, S. Ruel, J.-M. Faure, and G. Marsal, “Measuring the impact of
vertical integration on response times in Ethernet fieldbuses”, In Proc. of
12th IEEE Int. Conf. on Emerging Technologies and Factory
Automation, Patras, Greece, 2007.

[12] D. Witsch, B. Vogel-Heuser, J.-M Faure, and G. Poulard-Marsal,
“Performance analysis of industrial Ethernet networks by means of

timed model-checking,” In Proc. of 12th IFAC Symposium on
Information Control Problems in Manufacturing, pp. 101–106, 2006.

[13] Greifeneder and Frey: Probabilistic Timed Automata for Modeling
Networked Automation Systems. Preprints of the 1st IFAC Workshop on
Dependable Control of Discrete Systems DCDS, pp. 143-148, Cachan,
France, June 2007.

[14] B. Addad, S. Amari, “Modeling and response time evaluation of
Ethernet-based automation systems using Max-plus algebra”, In Proc. of
4th IEEE CASE, Washington DC, USA, pp. 418–423, 2008.

[15] T. Murata, “Petri nets Properties analysis and applications” Proceedings
of the IEEE Vol. 77 Issue. 4, pp. 541 – 580, 1989.

[16] F. Baccelli, G. Cohen and B. Gaujal, “Recursive equations and basic
properties of timed Petri nets”, Discrete Event Dynamic Systems: Theory
and Applications, l (4), 1992.

[17] J. Mairesse, “Graphical Approach of the Spectral Theory in the (max,+)
Algebra”, IEEE TAC Transactions on Automatic Control, Vol. 40,
Issue. 10, pp. 1783-1789, 1995.

[18] J. Stanczyk and A. Obuchowicz, “The max-plus algebra approach to the
prototyping of concurrent processes”, In Proc. 9th IEEE Int. Conf.
Methods and Models in Automation and Robotics, Vol. 2, pp. 857-862,
Miedzyzdroje, Poland, Aug. 2003.

[19] F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat, Synchronization
and Linearity: An algebra for Discrete Event Systems, Wiley, 1992.

[20] J. Greifeneder and G. Frey, “Reactivity Analysis of different Networked
Automation System Architectures”, Proc. 13th IEEE Int. Conf.
Emerging Technologies and Factory Automation (ETFA), Hamburg,
Germany, pp. 1031-1038, 2008.

Boussad Addad received the Engineer degree in
control systems from National Polytechnic School of
Algiers, Algiers, Algeria, in 2007, and the M.S degree
in automated systems engineering from Ecole
Normale Supérieure de Cachan, Cachan, France, in
2008, and is currently pursuing the Ph.D. degree at
Ecole Normale Supérieure de Cachan, Cachan. His
research interests include modeling and analysis of
discrete event systems along with time performance
evaluation of networked automation systems.

Saïd Amari received the Ph.D. degree from the
Institute of Research in Communications and
Cybernetic of Nantes, Nantes, France, in 2005. He is
currently an Associate Professor at the University of
Paris XIII. He carries out research at the Automated
Production Research Laboratory from the École
Normale Supérieure de Cachan. His main research
interests are performance evaluation and control of
Discrete Event Systems with Petri nets and Dioid
algebra.

Jean-Jacques Lesage (M’07) received the Ph.D.
degree in 1989, and the “Habilitation à Diriger des
Recherches” in 1994. He is currently a Professor of
Automatic Control at the École Normale Supérieure
de Cachan, Cachan, France. His research topics are
formal methods and models of Discrete Event
Systems (DES), both for modeling synthesis and
analysis. The common objective of his works is to
increase the dependability of the DES control.

	I. INTRODUCTION
	II. Timed event graphs and Max-plus algebra
	III. Modeling and response time evaluation: case of a single RIOM
	A) Architecture Modeling
	B) Principle behind the proposed approach
	Lemma
	C) Analytical calculus of response time

	IV. Modeling and response time evaluation: case of multiple RIOMs
	V. Network delays evaluation in a switched Ethernet Client/server NAS
	VI. application and validation
	VII. Conclusion

