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Abstract  —This paper presents a novel approach to evaluate 

the response time in networked automation systems (NAS) that 
use a client/server protocol. The developments introduced are 
derived from modeling the entire architecture in the form of 
timed event graphs (TEGs), as well as from the resulting state 
representation in Max-Plus algebra. The various architectural 
stages are actually modeled in a very abstract pattern, which 
yields just those TEG models where local delays are sufficient to 
perform the overall evaluation. In this manner, linear Max-Plus 
equations are obtained. A thorough analysis of these equations 
has led to analytical formulas for direct calculus of NAS response 
time. As a final step, experimental measurements taken on a 
laboratory facility have been used to verify the validity of the 
results. In conclusion, the benefit and effectiveness of this novel 
method have been demonstrated. 
 

Note to Practitioners—In this work, we present an overall 
study of networked automation systems working according to 
client/server paradigm. Unlike systems where a global scheduling 
of the shared resources is available and the delays well handled, 
in such systems it is not the case and the investigations to 
evaluate their real-time performances are required. Actually, 
these systems are very present in industry but the efforts to deal 
with this issue are rare and often informal, based on simulation 
of particular cases. In our work, we assess a major criterion of 
their time performances, the response time. We give a formal 
evaluation of this feature through an analytic approach. The 
results we present are generic and fit the experimental 
observations in different cases. 
 

Index Terms—Networked Automation Systems, Response 
Time Evaluation, Max-Plus Algebra, Timed Events Graph, 
Switched Ethernet Networks. 

I. INTRODUCTION 
HE new trend within industrial organization networks 

consists of using the same technology at all levels of 
communication. A network solution supporting such a 

transparent vertical integration must be flexible and capable of 
simultaneously providing a high rate of data transfer in the 
upper levels and fast response times in the lower levels. The 
industrial Ethernet has established itself as such a new 
generation of fieldbuses, and many of them are currently 
meeting the needs of most automation applications. The 
increase in information transfer speed (Giga Ethernet), along 
with both the use of fully-duplex networks that prevent frames 
from colliding and low component costs, offered the major 
incentives behind the use of Ethernet in industry. Every 
Ethernet solution in fact features its own set of advantages and 
disadvantages. Generally speaking, as the solution becomes 
more compatible with standard Ethernet, its real-time 
performance achievement actually drops and vice versa [1]. 
These solutions include "Modbus over Ethernet", an 
application protocol that makes use of the client/server 
paradigm. It is simple, accessible and open enough to facilitate 
vertical integration [2]; however, it is not suitable for strict 
real-time applications like motion control, yet entirely 
adequate for the majority of industrial automation systems. 
With such a protocol therefore, resource scheduling is 
unavailable and considerable delays due to unsynchronized or 
unavailable resources are caused, complicating the evaluation 
of message delay encountered in each system component and 
consequently impeding an evaluation of the entire system 
response time. A number of research efforts have been 
undertaken to assess these NAS delays through the use, for 
example, of widely-accepted network calculus [3], [4], [5], 
worst case methods [6], [7] and simulation [8], [9]. Like the 
majority of studies however, these efforts have focused on just 
the end-to-end delays or network effect and neglect both the 
controllers (e.g. PLCs or programmable logic controllers) and 
RIOMs (remote input output modules). As a matter of fact, the 
PLC modules are not synchronized and RIOMs may be shared 
across many applications, which leads to delays that must then 
be incorporated. To the best of our knowledge, studies that 
consider the entire architecture (both field devices and the 
network) are still quite rare and often informally based on case 
simulation or experimental measurements targeting a limited 
number of systems [10], [11]. The only formal method 
developed has been based on model-checking [12] aiming to 
check if a timing property holds or not. The disadvantage of 
this approach is its failure to provide the response times 
distribution and its classical state explosion problem, limiting 
its applicability to relatively simple cases. This method was 
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enhanced afterwards in [13] and used to calculate the 
distribution of response times. The complexity of NAS is 
reduced by focusing on the important events but the state 
explosion problem still exists. 

The objective of the present study is therefore twofold: to 
offer a formal method of evaluation, and to avoid the state 
explosion problem. Moreover, a novel method will be 
proposed in order to analytically assess both the response time 
bounds (i.e. min and max bounds) and the distribution shape. 
For this purpose, we have employed a special class of Petri 
nets (Timed Events Graphs or TEGs) to model the system. 
The behavior of TEGs can indeed be studied using linear 
equations (within Max-Plus algebra), making it suitable to 
analytically evaluate the temporal properties.  

The current study extends our preliminary work [14]. We 
relax many hypotheses (variable network delays, variable 
processing delays …) while considering more complex 
architectures (many servers). 

The remainder of our study has been organized as follows. 
In Section II, some of the fundamentals regarding TEGs and 
Max-Plus algebra will be recalled. Next, Section III and 
Section IV will explore architectural modeling through the use 
of TEGs. We will begin by studying a system whose 
controller sends requests to just one server or RIOM in 
Section III, before considering a more complex architecture 
involving any number of servers in Section IV. Following 
resolution of the Max-Plus equations and fusion of the 
resulting solutions, a calculus algorithm and analytic formulae 
will be given. Since the delays caused by the network are 
needed to complete the evaluation, a method for accurately 
assessing these delays will be developed in Section V. 
Afterwards, Section VI will be devoted to validating results 
using real measurements recorded on a patented experimental 
platform1. Lastly, the outlook for future work will be 
discussed in Section VII as a conclusion to this paper. 

II. TIMED EVENT GRAPHS AND MAX-PLUS ALGEBRA 
An event graph is an ordinary Petri net with all places 

displaying at most one upstream and one downstream 
transition. So, a TEG is a Petri net without the presence of any 
conflicts or resource sharing. TEG behavior is deterministic 
and depends solely on the source transitions and initial 
conditions (TEG marking and tokens availability times) [16]. 

An event graph is timed if the places or transitions are 
assigned with delays. In our study, we are only considering 
timed-place graphs, yet we are still able to transform a timed 
place into a timed transition and vice versa [15]. For the 
modeling carried out in the sequel, we will only assign delays 
to places, and each place  will be ascribed a delay 
denoted 

kp

kτ . 
In studying TEGs, the variable  generally denotes the 

number of regular transitions  with at least one place 
upstream, while  represents the number of source 
transitions  without upstream places. To study the dynamic 

behavior of TEG, we have associated the firing date for the 
 time of each transition. This term is denoted  for a 

source transition and 

n

 
1 French patent #01 110 933. This platform is used to perform behavioral 

identification of discrete event systems and to measure time performances of 
networked automation systems. 

it
m

ujt

thk ( )ju k

( )i kθ  for other transitions.  
 

tu2tu1 t1 

τ2 τ1

 
 

Fig. 1.  A timed event graph. 
 

With an initial marking of places as shown in Fig. 1 and 
given the dates 1( 1)u k − ,  of firing respectively, of 

transitions  and  for the  time, then the date 
2 ( 1)u k −

1ut 2ut ( 1)thk −

1( )kθ  of firing the transition  for the  time at maximum 
speed can be deduced using the following equation ("at 
maximal speed" means as soon as all upstream place tokens 
are available). 

1t
thk

1 1 1 2 2( ) max( ( 1), ( 1))k u k u kθ τ τ= + − + −  (1) 
The above equation is actually a linear equation in Max-

Plus algebra. A new algebraic structure has indeed emerged 
around two laws: the classical maximum denoted in general 
by " ⊕ " with identity element ε = −∞ ; and the classical 
addition denoted by " ⊗ " with identity element 0e = . 

The previous equation (1) can then be rewritten as: 
1 1 1 2 2( ) ( ( 1)) ( ( 1))k u k u kθ τ τ= ⊗ − ⊕ ⊗ −  (2) 
In general, TEG behavior can be expressed by the 

following Max-Plus linear equation: 

0
( ) ( ( ) ( ))k A k B u kϕ ϕϕ

θ θ ϕ ϕ
≥

= ⊕ ⊗ − ⊕ ⊗ −  (3) 

where the components of vectors ( )kθ  and  are the 

firing dates for the  time of the  and  TEG transitions. 
Matrix 

( )u k
thk n m

Aϕ  elements belong to { }max = ∪ −∞ , with 

element ,ijAϕ  representing the delay ijτ  associated with place 

 and connecting the transitions ijp jt  and  (with the 

marking 
it

ϕ ) should it exist, and with the neutral element ε  

otherwise. Similarly, for max
n mBϕ

×∈ , the matrix contains 
delays of places downstream of the source transitions. 
In an analogous manner and as is customary in classical linear 
systems, this form can be brought to a state representation by 
replacing all places with markings 1ijϕ >  by ijϕ  other places 

(with one token) and by (  intermediate transitions. We 

thus obtain an extended system with a state vector 

1ijϕ − )

( ) ( ( ) ( ))Tx k k kθ θ= , where θ  is the vector of added 
transitions. TEG can therefore be described by the first-order 
recursive equation (or standard form [16]): 
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( ) ( 1) ( ),x k A x k B u k= ⊗ − ⊕ ⊗  (4) 
This first-order form is quite similar to the state 

representation of linear systems in classical algebra and 
proves very useful for studying the time properties of discrete 
event systems [17], [18]. Further details on this algebra are 
available in [19]. 

The form (4) can now be rewritten in an explicit form with 
both the source transitions and initial conditions clarified:

2
1

0
( ) (1) ( )

k
k i

i
x k A x A B u k i

−
−

=

⎡
= ⊗ ⊕ ⊕ ⊗ ⊗ −⎢

⎣ ⎦

⎤
⎥  (5) 

 
Example II.1: TEG in Fig. 2 represents a manufacturing 

system with a machine capable of processing two parts at once 
(two tokens in place ). The parts entering the upstream 
stock (place ) become available to the machine 

2p

up uτ  time 
units after firing the transition . The process lasts ut 1τ  time 
units before the finished part exits the machine. 

 

ut  1t  

2t  uτ  1τ  

up  1p  

2p  2τ  

ut  1t  2t

uτ  1τ

up  1p

3p  
2τ2p3t

0  ( )a  ( )b  

 
Fig. 2.  Timed event graph decomposition. 

The behavior of this system depends on the initial marking 
and the source transition  of TEG (Fig. 2a). The dates of 

firing transitions  and  for the  time (at maximum 
speed) are expressed as: 

ut

1t 2t
thk

1 2 2

2 1 1

( ) ( 2) ( )
( ) ( )

uk k
k k

θ τ θ τ
θ τ θ

= ⊗ − ⊕ ⊗⎧
⎨ = ⊗⎩

u k
  (6) 

The equations (6) are linear but not of the form (4). The 
decomposition process explained previously is needed to get 
to this first order form. After decomposition (Fig. 2b), the 
transition  is added to yield just those places with at most 
one token. The system can then be described by: 

3t

1 3

2 1 1

3 2 2

( ) ( 1) ( ))
( ) ( )
( ) ( 1)

uk e k u k
k k
k k

θ θ τ
θ τ θ
θ τ θ

= ⊗ − ⊕ ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗ −⎩

 (7) 

The standard first-order form (4) is ultimately written with: 

1

2

,
e

A
ε ε
ε ε τ
ε τ ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 1

u

uB
τ

τ τ
ε

⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 
1

2

3

( )
( ) ( )

( )

k
x k k

k

θ
θ
θ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The behavior of this system can thus be completely 
determined if we were to consider the initial conditions (i.e. 
initial marking and tokens availability). A scenario of the 
system (all tokens are available initially) at maximum speed 
has been depicted in Fig. 3. 

If the system (Fig. 2b) is not constrained (the upstream 
stock is never empty and parts remain available at all times), 
then the system can be expressed by: 

( ) ( 1)x k A x k= ⊗ −                                                                (8) 
Such is the case in our study since data stemming from the 
plant are available at the sensor output as long as devices do 
not fail. This observation explains the absence of source 
transitions within the NAS model of the next section (Fig. 6). 

 
1t

2t

ut

3t

3p

2p

1p

up

uτ

1τ

2τ  

uτ  

1τ  

t

 
Fig. 3.  Chronogram of TEG (Fig. 2b) behavior at maximal speed. 

 

III. MODELING AND RESPONSE TIME EVALUATION: CASE OF A 
SINGLE RIOM 

In our study, we consider NAS based on client/server 
paradigm. The PLC is the client and the RIOM (remote input 
output module) is the server. While the PLC sends requests 
periodically, the server does not send any message 
autonomously but does only answer the received requests: 
only synchronous transmissions from the RIOM are then 
considered. 

 

PLC  

RIOM 
Plant 

CPU / NETb  

Network  rD  
 

Fig. 4. Mono-RIOM networked automation system (Case 1). 
 
The considered PLC contains a CPU (central processing 

unit) module to execute the user program and a network board 
(NETb) to send requests (combined requests: read and write 
data) to the RIOM. At each scanning cycle, the NETb sends a 
message to the RIOM either requesting information on the 
plant (e.g. is the maximum level of water reached?) or 
providing the control signal (e.g. close the valve). Neither the 
CPU nor the NETb are in fact synchronized even though they 
do belong to the same component, i.e. the PLC; they are both 
time-driven and operate independently. The CPU periodically 
accomplishes the tasks of: reading inputs, executing the user 
program to produce a control signal, and updating outputs. 
Regardless of the CPU, the NETb sends requests to the RIOM 
and awaits the replies. Once a reply has been received, the 
NETb waits further until the period time has elapsed in order 
to begin a new cycle.  

Besides supposing the CPU and the NETb to work 
periodically without clocks drift, we consider neither frame 
loss nor timeouts.  Such assumptions are often taken for 
granted in the context of NAS [11], as is the case in our study, 
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for two main reasons: 
- The exchanged data packets are of a short length, and just 

a few bytes are sufficient to transmit data. With Modbus for 
instance, the request can reach up to 256 bytes only [2]. 

- Such automation systems are necessarily divided into 
many local automation cells so as to achieve traffic isolation, 
especially from non-real time traffic (long packets, videos, 
etc.). Only a few packets are in fact exchanged between the 
various cells and serve to limit congestion or packet drops 
within real-time domains. Such is true for the case of vertical 
integration of high-level functions (e.g. supervision) [11]. 

Regardless of the protocol used in NAS, one major criterion 
of real-time performance evaluation is response time, which 
reflects the delay between the occurrence of an event in the 
plant (e.g. the maximum water level has been reached) and the 
arrival of the consequence event generated by the controller 
(e.g. close the valve) at the plant (Fig. 4). Two cases need to 
be distinguished depending on whether this action/reaction 
loop concerns a simple control event or an event involved in a 
system safety. In the former case, the designer is merely 
required to evaluate the time performance of the control 
architecture (e.g. through knowledge of the response times 
mean and standard deviation), whereas in the latter case, the 
maximum response time bound becomes the top priority. In 
our work, we consider the general case regardless of the 
consequences of the events occurring in the plant. Both the 
bounds and distribution of response times will be calculated. 
 

A) Architecture Modeling 
According to the client/server protocol described above, we 

derived the architectural model shown in Fig. 6. This model is 
highly abstract and only represents the applicative aspect of 
the architecture protocol, i.e. the top layer in the OSI 
representation of network systems. So, rather than 
representing the network in a lower level including the 
problem of resources sharing that would prevent us from 

using TEGs, we only consider the delays, even variable, due 
to that network.  

On the model depicted on Fig. 6, we consider just the timed 
places and simply assign a delay iτ  to place  (thus, only the 
delays 

ip

iτ  are represented on Fig. 6). The system is assumed to 
be work conserving and all transitions are fired at maximum 
speed, as explained in Section II. 

Places  and  with CPU delays of 1 2 3, ,p p p 4p 1 2 3, ,τ τ τ  and 

4τ  respectively model the waiting phases to begin a new CPU 
cycle; user program execution during  (including updates 
to both reading inputs and outputs); busy CPU; and lastly, idle 
CPU. Since the CPU calculus always finishes before the CPU 
period has elapsed, periodic CPU operations can easily be 
indicated by a cycle period denoted  (equal to 

CLCT

CPUT 3τ ). 
Similarly, 15τ  represents the NETb scanning period (denoted 

), and a token in place  indicates a busy status during 
this period. Transmitting a request therefore starts by firing 
the transition  and ends by firing . 

SCNT 15p

4t 5t 6τ  or  is the time 
required to transmit the request. A token in  means the 
request has been sent and the NETb is waiting for the 
response. Places  and  model the network delays 
imposed upon the transmitted request and the returned 
response (denoted 

EMT

14p

7p 12p

7τ  and 12τ  respectively). The only 
assumption regarding these delays is the fact that they are 
bounded. Unlike the majority of studies and our preliminary 
work [14], in which the network has been represented with 
constant delays, we now assume that these delays are variable 
in a given domain, with both a minimum and maximum 
(finite) bound. At the  scanning cycle, the network delays 
experienced by the request and its reply in the network are: 

 and , respectively. In 
assessing the maximum NAS response time bound, only the 

thl

min max
7 7 7( ) [ , ]lτ τ τ∈ min max

12 12 12( ) [ , ]lτ τ τ∈

 
 TEG1 TEG2 

CPU RIOM Network Network-board 

t1 t3 

τ1 

τ2 

τ3 

τ4 

t2 

t4t12

τ5

τ14

τ15

τ16

t5

τ6

τ7

τ12

τ8 t6

t9

t11

t8 τ11 

τ10 

t7 

τ9 

τ13 t10

 
Fig. 6.  Mono-RIOM networked automation system modelling using TEGs (Case 1). 
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upper bounds of these delays are required. This observation 
will be explained more thoroughly further below when the 
analytical evaluation is performed. 
Once the network has been crossed, the returned response 
arrives in the NETb input buffer at  and is copied into the 
memory shared with CPU in a time 

13p

13τ , denoted  (much 
smaller than the other PLC delays since its order of magnitude 
remains in the microseconds, whereas the others reach the 
milliseconds). This time period is indeed necessary to copy 
just those few bytes carrying the application data (without any 
of the lower layers headers). A place could be added to 
represent this memory, yet its token would be available at all 
times and thus exert no impact on the system behavior. 

CPYT

Places , and  indicate the phase upon arriving 
at the RIOM. The RIOM remains in a wait mode at  until a 
request arrives in its input buffer . By firing , processing 
begins and continues for a time 

8 9 10, ,p p p 11p

9p

8p 7t

10τ . At the end of this time, 
the response is placed in its output buffer  before being 
returned into the network. The main aforementioned delays 
and their description are summed up in Table I: 

11p

 
Plant 

NETb 

CPU

RIOMs 

Network 

( )source S  

/I OT  

CLCT  

12 ( )lτ  

CPUT  
cycle l  

( )destination D  

1

2

3

4
5

6

7

8

SCNT  

7 ( 1)lτ +

1l +  

rD  

 
Fig. 5.  Experienced delays at the different stages of NAS. 

 
To sum up (Fig. 5), an event occurs at any time (1) in the 

plant (source S) and waits until a request arrives to RIOM to 
take it into account. Once the request is received, an answer is 
processed while considering this event and then returned to 
PLC (2). This answer crosses the network and gets to NETb 
(3). At the beginning of a new CPU cycle, this answer is used 
to execute the user program (4) to perform the reaction event 
(5) that will be sent to its destination at the next scanning 

cycle (6). Again, this answer crosses the network to get to 
RIOM (7) and finally to the plant (8) (destination D). 
 

Remark III. 1: The gray hatched arrows on Fig.6 (in the 
RIOM model) that intended to represent both the source (data 
stemming from the sensor) and output (data transmitted 
towards the actuator) are not being considered since the 
system has not been constrained. The RIOM is always 
responding to a request using the latest information provided 
by the sensor. This situation remains valid as long as the 
devices are functional, which serves to justify the absence of 
source transitions first on the model and consequently in the 
subsequent Max-Plus equations (explanation of Section II 
with unconstrained systems).  

Thus, by applying the method described in Section II to the 
model shown in Fig. 6 with all tokens available at the 
beginning, we obtain the Max-Plus equations: 

1 2 1 3

2 1 2

3 1 3

( ) ( ( 1) ) ( ( 1) )
( ) ( )
( ) ( )

k k k
k k
k k

4θ θ τ θ
θ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗⎩

τ

6

 (9) 

4 11 5 12 1

5 4 6

6 5 7

7 6 8 8 9

8 7 10

9 8 11

10 9 11

11 5 14 10 13

12 4 15

( ) ( ( 1) ) ( ( 1) )
( ) ( )
( ) ( )
( ) ( ( ) ) ( ( 1) )
( ) ( )
( ) ( )
( ) ( )
( ) ( ( ) ) ( ( ) )
( ) ( )

l l l
l l
l l
l l l
l l
l l
l l
l l l
l l

θ θ τ θ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ − ⊗⎪
⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪ = ⊗⎩

τ

 (10) 

TABLE I 

Equations systems (9) and (10) are linear in Max-Plus 
algebra and may be written in the form (4). We have assigned 
them different indices (k and l) due to their non-
synchronization, just like the CPU and the NETb. This step 
constitutes an additional difficulty in our study. 

B) Principle behind the proposed approach 
As a first step, we must solve the systems of equations (9) 

and (10) in order to determine the transition firing dates as 
functions of indices k and l. This resolution step is somewhat 
complex since the systems are time-variant (the involved 
delays are variable). Yet, this complexity can be overcome 
under the aforementioned hypotheses: i) the periodic 
operations of both the CPU and NETb (without clock drift); 
and ii) zero frame loss or component failure. In this case, we 
are only searching for the two cycles beginnings at 1( )kθ  and 

4 ( )lθ . The other transitions will be deduced accordingly using 
equations (9) and (10). The following solutions are therefore 
obtained: 

1

2

3

( ) ( 1)
( ) (( 1) )
( )

CPU

CPU CLC

CPU

k k T
k k T T
k k T

θ
θ
θ

= − ⋅⎧
⎪ = − ⋅ ⊗⎨
⎪ = ⋅⎩

 (11) 

DELAYS iτ  OR xT  AND THEIR DESCRITPION 

Description of delay xT  iτ

Time to execute the user program by CPU CLCT  2τ

CPU period CPUT  3τ

Time to send a request (emission) EMT  6τ

/ Delay to cross the network by the sent request 7τ  
Time to process a request by RIOM /I OT  10τ

/ Delay to cross the network by the returned answer  12τ

Time to copy an answer into shared memory of  NETb/CPU CPYT  13τ

Network board period  SCNT  15τ
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4

5 4 6

6 5 7

7 6 8 8

8 7 10

9 8 11

10 9 12

11 5 14 10 13

12 4 15

( ) ( 1)
( ) ( )
( ) ( ) ( )
( ) ( ( ) ) ( ( 1) )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ( ) ) ( ( ) )
( ) ( )

SCNl l T
l l
l l l
l l l
l l
l l
l l l
l l l
l l

θ
θ θ τ
θ θ τ

9θ θ τ θ τ
θ θ τ
θ θ τ
θ θ τ
θ θ τ θ τ
θ θ τ

= − ⋅⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ − ⊗⎪
⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪ = ⊗⎩

 (12) 

The next step of this method consists of fusing solutions 
(11) and (12) so as to clarify the link between the CPU and the 
NETb. Among these solutions, only the equations 
representing the following events are then of interest (at this 
stage): 
- Beginning of processing in the CPU or reading inputs ( 1θ ) 
- End of processing in the CPU and output update ( 2θ ) 
- Beginning of scanning cycle and transmitting a request ( 4θ ) 
- Reception of a response in the shared memory ( 11θ ). 

These are indeed the events representative of 
communication between the CPU and the NETb. When a 
response arrives ( 11θ ), it is taken into account at the next CPU 
cycle beginning ( 1θ ) and then read and used in CPU calculus. 
Once processing has been completed, the result is put in the 
NETb memory ( 2θ ) before being transmitted to the RIOM at 
the next scanning cycle beginning ( 4θ ). 

Let's set  as the wait time between transmitting a request 
and receiving the corresponding response (i.e. the round-trip 
time). The following equations are then derived: 

rT

1

2

( ) ( 1)
( ) ( 1)

CPU

CPU CLC

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊕⎩

 (13) 

4

11

( ) ( 1)
( ) ( 1)

SCN

SCN r

l l T
l l T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

                                                 (14) 

At the  scanning cycle, the request reply is received at 
date 

thl
11( )lθ  and taken into account by the CPU; it must then 

wait for the  CPU cycle beginning. This  cycle 
however must be immediately subsequent with respect to 

th
lm th

lm

11( )lθ . The condition to verify thus becomes: 

1 11

1 11
/ ( ) ( )

min ( ( ) ( ))l
i i l

m Arg i l
θ θ

θ θ
∈ >

= − , where " " is the 

converse function yielding the index that minimizes the 
positive term 

minArg

1 11( ( ) ( ))i lθ θ− . Hence, we are introducing a new 

transition 1̂θ  representing the output update using the  

response, i.e.  

thl

1 2 1
ˆ ( ) ( ) ( ) .l l Cl m m Tθ θ θ= = + LC

During the next scanning cycle (with respect to ), 

which is the  cycle, the updated result is encapsulated into 
a request packet and sent to the RIOM. Similarly, another new 

transition 

1̂( )lθ
th
ln

2̂θ  is added with:  and 

. The date of event consequence 

arrival at the controlled process, is therefore 

2 4
ˆ ( ) ( )ll nθ θ=

4 1

4 1
ˆ/ ( ) ( )

ˆmin ( ( ) ( ))l
i i l

n Arg i l
θ θ

θ θ
∈ >

= −

8 ( )lnθ . For the 

investigated event during the  scanning cycle generated at a 
time denoted by 

thl
( )e lθ , the associated NAS response time is 

therefore given by: 
8( ) ( ) ( )r lD l n leθ θ= −                                                           (15) 

The response time in (15) is minimal provided that the data 
originating from the sensor are used for processing in the 
RIOM immediately after being generated, i.e. at the date 

7( ) ( ) ( 0 )e filtl l dθ θ += − + . The minimum delay relative to the 

 scanning cycle therefore equals: thl
8 7( ) ( ) ( )MIN l filtD l n l dθ θ= − +                                             (16) 

where filtd  is the delay due to data filtering in the sensor. 

On the other hand, the response time is maximal if the data 
arrive immediately after the beginning of processing in the 
RIOM, with respect to the previous scanning cycle, i.e.: 

8 7( ) ( ) ( 1)MAX l filtD l n l dθ θ= − − +       (17) 

As can be seen, the formulas (16) and (17) provide the 
response time bounds relative to the  scanning cycle while 
(15) gives the response time relative to an event generated at 
time 

thl

( )e lθ . Actually, these formulas can be used in calculus 
provided that the index  is calculated. The previous steps to 
find this index can be achieved using the algorithm depicted 
on Fig. 7: 

ln

 

Initialization : 1, 1, 1l ll m n= = =

 1 11( ) ( )lm lθ θ>   
1l lm m= +

1 2 1
ˆ ( ) ( ) ( ) .l l CLCl m m Tθ θ θ= = +

 yes 

8

8 7

8 7

( ) ( ) ( ),
( ) ( ) ( )

( ) ( ) ( 1)

r l e

MIN l filt

MAX l filt

D l n l
D l n l d

D l n l d

θ θ
θ θ

θ θ

= −

= − +

= − − +

 

1l l= +

Start  

SCN CRl T T⋅ >   no yes 

End 

 4 1̂( ) ( )ln lθ θ>   

1l ln n= +

yes no 

no 

 
Fig. 7.  Response times calculus algorithm (ALGO). 

 
In conclusion, the method development has been achieved 

by means of the following steps: modeling the architecture 
through the use of TEGs; writing the corresponding Max-Plus 
equations; and resolving these equations. After finding the 
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transitions firing dates (through the previous Max-Plus 
equations resolution or simply by simulating the system 
behaviour using the recursive equations (9) and (10)), an 
algorithm (let’s call it ALGO as in Fig. 7) was provided to 
evaluate the architecture response time relative to any 
occurring event at any cycle; this algorithm is fast and easily 
implemented. Besides measurements, this algorithm is used to 
verify the validity of the formulae (explicit formulas that can 
be used directly in calculus) derived later in this study. 

 
Lemma 

This architecture contains two periodic, yet non-
synchronized, processes. In spite of this fact, the entire system 
remains periodic with a period  that verifies: 

, where  always exist. 
CRT

1 2CR SCN CPUT k T k T= ⋅ = ⋅ 1 2,k k ∈
Proof: The main PLC parameters of interest are the two 

module periods  and , chosen by the system user 
from among only the multiples of a basis unit, which is 
generally on the order of a few milliseconds. These 
parameters can thus be considered as integers under the 
assumption of zero clock drift. Now let's set: 

CPUT SCNT

SCN CPUT r T= ⋅ , 
with r ρ ω= + , ρ  being the integer part of  and 

 its fractional part. Since 

/SCN CPUT T

ω +∈ 1 2n nω =  can be written, it 
is sufficient to take: ( ) and (1k n= 2 12 2k n nρ= ⋅ + ) in order to 
reach: 1 1 2 2( / ) CPU CPUk n n T k Tρ⋅ + ⋅ = ⋅ ; hence: 

2 1( )CR CPUT n n Tρ= ⋅ + ⋅                                                      (18) 
This period is minimized if  and  are relatively prime 
numbers. 

1n 2n

Hence, we can conclude that the method (or ALGO) is 
formal and all possible states are scanned if the simulation 
length of the system covers the critical period . The 
resultant response time bounds are thus formal as well. 

CRT

 
Remark III. 2: the previous method can be used to obtain 

the shape of the response times distribution as follows: at each 
scanning cycle , the different delays l ( )i lτ  of TEG are taken 
randomly from their domain of variation. For example, the 
network delay 7 ( )lτ  is randomly chosen from . 
Then using the max-plus equation and ALGO, the index  is 
calculated. Finally, by generating randomly an event at date 

min max
7 7[ ,τ τ ]

ln

( )e lθ  such that it is taken into account at cycle  or l

7 ( 1) ( ) ( )el l 7 lθ θ θ− < < , the response time relative to this 
event is calculated using (15). By repeating this operation a 
large amount of times, histograms giving the response times 
distribution shape is obtained (see example of Section VI).  
 

C) Analytical calculus of response time 
The previous algorithm enables the calculation of both the 

response time bounds and the distribution shape. It is 
preferable however to develop analytical formulae that yield 
these results trivially. Moreover, such formulae will facilitate 

analyzing the influence of individual architecture parameters 
on overall performance and serve to answer the "what if" 
questions. This attribute is very valuable when seeking, for 
example, an adequate automation system configuration so as 
to guarantee the stability or safety. Such an analytical 
evaluation will be the focus of this section. 

The results from (13) and (14) along with the algorithm 
principle will be used for this exercise.  

Let's take: ,r CPU rT Tα τ⋅ + CLC CPU T T= β= ⋅ , 
where 1β < , α  is the integer part of  and /r CPUT T rτ  the 
fractional part. 

For the calculus complexity to be proven later, let's begin 
with the case r ∈  and generalize it for r +∈  (for recall, 

SCN CPUT r T= ⋅  with r ρ ω= + , ρ ∈ , 1ω <  and ω +∈ ). 
a) ( 0r )ω∈ =  

At the  scanning cycle, the request response is received 
at the following date: 

thl

11( ) ( 1) CPU CPU rl l r T Tθ α τ= − ⋅ ⋅ + ⋅ +  (19) 
In order to be taken into account, the response must wait for 

the next CPU cycle beginning, which entails waiting for the 
minimum number  (previously denoted ) that verifies k lm

1 11( ) ( )k lθ θ> . 
By taking 1 ( 1) 1k l r α− = − ⋅ + + , we then obtain: 

1 11( ) ( ) CPU rk l Tθ θ τ= + −                                                    (20) 
Since 0 CPU r CPUT Tτ< − < , 1 11( ) ( )k lθ θ>  and therefore 

( 1) 2lm l r α= − ⋅ + + , which leads to the following result: 

[ ]1 1
ˆ ( ) ( ) 1 ( 1)l CLC CPl m T l r Tθ θ α β= + = + + + − ⋅ ⋅ U  (21) 

Since the index  has been determined, we must now seek 
the minimum number  (previously denoted ) such that 

. 

lm
n ln

4 1̂( ) ( )n lθ θ>
The solutions in (14) provides 4 ( ) ( 1) CPUn n r Tθ = − ⋅ ⋅ ; 

moreover for 1n l= + , then 4 ( ) CPUn l r Tθ = ⋅ ⋅ , which can be 
rewritten as: 

[ ]4 1̂( ) ( ) (1 ) CPUn k r Tθ θ α β= + − + + ⋅  (22) 

In relying on condition C1: (1 )r α β> + + ,  verifies 

 and thus , which justifies writing: 

n

4 1̂( ) ( )nθ θ> l 1ln l= +

2 4 4
ˆ ( ) ( ) ( 1)ll n lθ θ θ= = + . This development implies: 

8 7

8 7

8

( ) ( 1) ( )

( ) ( 1) ( 1)

( ) ( 1) ( )

MIN filt

MAX filt

r e

D l l l d

D l l l d

D l l l

θ θ

θ θ

θ θ

= + − +⎧
⎪

= + − − +⎨
⎪ = + −⎩

 (23) 

As a final expression: 

/

/

8

( ) ( ,1)
( ) 2 ( 1, 2)

( ) ( 1) ( )

MIN SCN I O

MAX SCN I O

r e

D l T l T
D l T l T
D l l lθ θ

= + Δ +⎧
⎪ = + Δ − +⎨
⎪ = + −⎩

 (24) 

where 7( , ) ( ) ( )l q l q l7τ τΔ = + −  is the network jitter and 
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/ 8 10 11I O filtT τ τ τ= + + + d  the total time spent in the RIOM 

(including buffering at the input port, data filtering, 
processing and buffering at the output port). 

In practice, condition C1 is often verified and results (24) 
are valid given that the scanning period is much longer than 
the CPU period ( ). If such were not the case, 
then it would be necessary to identify the integer  that 
verifies condition C

SCN CPUT T
1q ≥

q: (1 ) ( 1)r q r qα β⋅ > + + > ⋅ − . We thus 
obtain  and ultimately the general formulae: ln l q= +

/

/

8

( ) ( , )
( ) ( 1) ( 1, 1)

( ) ( ) ( )

MIN SCN I O

MAX SCN I O

r e

D l q T l q T
D l q T l q T
D l l q lθ θ

= ⋅ + Δ +⎧
⎪ = + ⋅ + Δ − + +⎨
⎪ = + −⎩

 (25) 

It can be noted that if condition C1 is verified, i.e. 
(1 )r α β> + + , then , which in turn yields exactly the 

same results as in (24). 
1q =

Discussion: From the above analysis and formulae, some of 
the points not trivially expected deserve to be mentioned: 

- The network delays are assumed not to be constant (i.e. 
variable α ) as is the user program execution time (variable 
β ). Moreover, according to Cq, the response time reaches its 
worst case (maximum value) when α  and β  are maximized. 
We actually needed to search for the minimum number  
such that condition C

q

q was verified, or (1 )r q α β⋅ > + + . The 
number  therefore assumes its worst value when parameters q
α  and β  are maximized. In order to calculate the upper 
response time bound using these formulae, only the local 
worst case CPU calculus and network delays are required. 

- The same remarks apply to the effect of delay . /I OT
- To obtain fast NAS response times, the ratio r ∈  

should be increased by either reducing  or raising . 
The optimal configuration is attained by minimizing the 
period  while maintaining 

CPUT SCNT

CPUT 1β <  (i.e. the user program 
must be completely executed before the CPU cycle has 
elapsed). The reasoning regarding the period  is not so 
obvious given its direct correlation with the formulae in (25). 
Nevertheless, certain details about this point are provided in 
the section discussion below (Case b). 

SCNT

b)  ( 0r ω+∈ ≠ )

ULet's set r CPTτ γ= ⋅  (where obviously 1γ < ). 

At the  scanning cycle, we find: thl
11( ) ( 1) ( )CPU CPUl l r T Tθ α γ= − ⋅ ⋅ + + ⋅  (26) 
Let's now set , where: i ∈ ( 1) ( 1)i l iγ ω≤ + ⋅ − < +  (*) 
For 1 ( 1) 1k l iρ α− = − ⋅ + + + , it follows that: 

[ ]1 11( ) ( ) 1 ( ( 1)) CPUk l i l Tθ θ γ ω= + + − + ⋅ − ⋅  (27) 

Since in (*), ( 1) ( 1)i l iγ ω≤ + ⋅ − < + , then 
( 1) 2lm l iρ α= − ⋅ + + +  and therefore: 

[ ]1 11
ˆ ( ) ( ) 1 ( ( 1)) CPUl l i l Tθ θ β γ ω= + + + − + ⋅ − ⋅  (28) 

We also find that: 4 ( ) ( 1) CPUn n r Tθ = − ⋅ ⋅  and for 1n l= + , 
then: 4 ( ) CPUn l r Tθ = ⋅ ⋅ , i.e.: 

[ ]4 1̂( ) ( ) 1 ( 1) CPUn k r i l Tθ θ α β ω⎡ ⎤= + − + + + − ⋅ − ⋅⎣ ⎦  (29) 

From (*), it can be deduced that: 1 ( 1) 1i lγ ω γ< + − ⋅ − ≤ + . 
Let's set: , 1 ( 1l i i l )ωΓ = + − ⋅ − , with , 1l iγ γ< Γ ≤ + , 

,,
min ( )MIN l ii l∈ ∈

Γ = Γ  and ,,
max ( )MAX l ii l∈ ∈

Γ = Γ . 

Equation (29) can then be rewritten as: 

4 1 ,
ˆ( ) ( ) ( )l i CPUn k r Tθ θ α β⎡= + − + + Γ ⋅⎣ ⎤⎦  (30) 

On condition : ( )MAXC r α β> + + Γ , we have therefore 

obtained: 2 4 4
ˆ ( ) ( ) ( 1)ll n lθ θ θ= = + , i.e. 1ln l= + . As 

previously noted, this finding has led to the same results as in 
(24). But should this condition not be respected, the time 
bounds would depend on ,l iΓ  as well as α  and β . Instead of 
reasoning based on delays relative to a particular scanning 
cycle, as was previously the case, the discussion here 
addresses both the global (absolute) bounds and the local 
delay relative to the  scanning cycle. thl

The following global and local conditions are used: 

{

1 1

2 2

3 , 3

( 1)
:

( 1

: ( ) (

MIN

MAX

l i

r q r q
Global

r q r q

Local r q r q

α β
α β

α β

⋅ > Γ + + > ⋅ −⎧
⎨ )

1)

⋅ > Γ + + > ⋅ −⎩

⋅ > Γ + + > ⋅ −

 

The response times are then written as: 
1 1 /

2 2

8 3

( , )
( 1) ( 1, 1)

( ) ( ) ( )

MIN SCN I O

/MAX SCN I O

r e

D q T l q T
D q T l q T
D l l q lθ θ

= ⋅ + Δ +⎧
⎪ = + ⋅ + Δ − + +⎨
⎪ = + −⎩

 (31) 

Discussion: In this general case, it is noted that the 
optimality condition ( 2 1q = ) or : ( )MAXC r α β> + + Γ may 
be more restrictive than in the  case. For r ∈ 1 2n nω = , it 
is indeed sufficient to use  and 2( 1)l − = n 1i n=  to obtain 

, 1l iΓ = , which implies that  and condition 1MAXΓ ≥ C  is 
more restrictive than C1. This result is an important about the 
response time calculus. It suggests, in the event the network 
effect is smaller than  (often the case in such NAS and 
which then implies 

CPUT
0α = ), setting the scanning period at 

twice the CPU period (while naturally first minimizing , 
as previously explained). If , we then return to 
case (a), where 

CPUT
2SCN CPUT T= ⋅

( 0r )ω∈ =  and hence 1MAXΓ = . Since 
1β <  and 0α = , ( MAX ) 2α β+ + Γ < . Setting 

2SCNT CPUT= ⋅  will thus serve to satisfy condition C1 and will 
surely lead to 2 1q = , which means that the relatively simple 
results (24) can be used directly for calculus. 

 
    Example III.1:   
Suppose that the CPU period equals 5 ms, the user program 
lasts at most 3.5 ms ( 0.7β = ) and the network induces a 
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maximum delay  ms (1.24rT = 0α =  and 0.248γ = ). If the 
scanning period  were set at 8 ms, then SCNT 1.6r =  
( 0.6ω = ) and according to (*), , i.e. 1.2MAXΓ =

0 0.7 1.2 1.9MAXα β+ + Γ = + + = . The minimum integer  
satisfying  is therefore . The corresponding 
maximum response time will thus equal: 

q
1.9r q⋅ > 2q =

/3 8MAX I OD = × + Δ + T . Should however  equal 10 ms, 
then  and 

SCNT
2r = 0 0.7 1 1.7MAXα β+ + Γ = + + = . The minimal 

number  satisfying  is this time q 1.7r q⋅ > 1q = . The 
maximum bound is then /2 10MAX I OD T= × + Δ + , which is 
less than the previous one. This phenomenon is paradoxical 
since a faster element may lead to a more significant delay. 
This consideration can be explained intuitively as follows: 
when a response is returned during the  scanning cycle, 
with a sufficiently long scanning period the consequence 
derived from the CPU will be transmitted to the actuator 
during the  scanning cycle. However on the other hand 
if scanning were faster, then the consequence would not be 
sent during that particular cycle but instead wait until the next 
one, i.e.  or even later, thus explaining the 
incremental delay with a scanning period . This 
phenomenon has also been pointed out in [20]. 

thl

( 1)thl +

( 2)thl +

SCNT

IV. MODELING AND RESPONSE TIME EVALUATION: CASE OF 
MULTIPLE RIOMS 

The system modeling is different in this case since N 
RIOMs are to be scanned. Information is obtained from many 
sensors and multiple control signal destinations are observed 
as well. The PLC is thus transmitting a burst of requests to the 
RIOMs and waiting for responses (Fig. 8). 

PLC 
R12

R13
R14 

R15 

R16 
R17 

RIOMs 

rD  Plant 

SCNT  
requests 

 (l+1) 

(S)

(D)

 (cycle l) 

Network 

 
Fig. 8.  Multi-RIOMs NAS (Case2). 

 When a response has been received, it is copied into the 
memory shared with the CPU. Once all responses have been 
received, NETb remains in a waiting mode until the scanning 
period has fully elapsed and then begins another cycle. All 
received responses are copied as a block (all at once) from the 
shared memory and then used to update control signals within 
the same CPU cycle. Only one token is necessary therefore to 
model CPU operations. CPU model of Case 1 thus remains 
valid for our second case but the remainder of this system 
however is much more complex than before. 

In this general NAS configuration, requests are sent from 
NETb in an invariant order (throughout NAS operations), as 
revealed on the new model in Fig. 9. The RIOMs are assigned 
indices according to their scanning order. We associate index 

 to the RIOM receiving the  request from the NETb. As 
an example, Fig. 7 shows RIOMs being scanned in the order 
i thi

{ }12 13 14 15 16 17, , , , ,R R R R R R ; therefore, for instance, the index 

assigned to  is 13R 2i = . More specifically,  and SN DN  are 
the indices assigned respectively to the event source (S) and 

 
 

t1 t3 

τ3 

τ4 

t2 

CPU 

t4 t12 

τ5 

τ14 

τ15 

τ16 

t51 

τ61 

τ71

τ12 

τ81 t61 

t91 

t11 

t81 τ11 

τ101 

t71 

τ91 

t5N 

τ6N 

τ7N
t6N 

…

…
…

τ12N t9N 

 RIOMs Network NETb 

…

τ131 t101 

τ13N t10N 

to 
RIOMS 

from 
RIOMS 

τ2 

τ1 

 
Fig. 9.  TEGs based model of the multi-RIOMs NAS (Case2).
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consequence destination (D) involved in the targeted NAS 
loop. In Fig. 7,  and  (since the source (S) is 

 and the destination (D) is ). 
4SN = 5DN =

15R 16R
We have introduced the delay experienced by each frame  
during the various NAS stages: a delay  to be sent to the 

network, a delay  occurring in the RIOM and naturally 
the delays caused by the network represented by places  

and . 

i
i
EMT

/
i
I OT

7ip

12ip 7iτ  represents the network delay that affects the  
transmitted request and 

thi

12iτ  the returned response. 
Furthermore, places  represent the FIFO queue delay 
affecting responses in the NETb input buffer. Once again, 
these network delays are not presumed to be constant, but 
rather variable within a bounded domain; they may be due to 
any kind of network, and their only condition is to be bounded 
so as to ensure suitability for real-time systems. 

13ip

All that is necessary to write the equations of the model has 
been presented, and we now derive the Max-Plus system of 
equations (N is the number of scanned RIOMs): 

1 2 1 3

2 1 2

3 1 3

( ) ( ( 1) ) ( ( 1) )
( ) ( )
( ) ( )

k k k
k k
k k

4θ θ τ θ
θ θ τ
θ θ τ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎨
⎪ = ⊗⎩

τ

j l ⎤
⎥⎦

        (32) 

4 11 5 12 16

5 5( 1) 6

6 5 7

7 6 8 8 9

8 7 10

9 8 11

10 9 12

11

50 4

( ) ( ( 1) ) ( ( 1) )
1
( ) ( )

( ) ( ) ( )
( ) ( ( ) ) ( ( 1) )
( ) ( ) ( )
( ) ( )

// (

( ) ( ) ( )

)

( )

i i i

i i i

i i i i i

i i i

i i i

i i i

f
l l l
i to N

l l

l l l
l l

or

en

l
l l l
l l

dl l l

l

l

θ θ τ θ τ

θ θ τ

θ θ τ
θ θ τ θ τ
θ θ τ
θ θ τ
θ θ

θ θ

τ

θ

−

= − ⊗ ⊕ − ⊗
=

= ⊗

= ⊗
= ⊗ ⊕ − ⊗

= ⊗
=

=

⊗

= ⊗

= 5 14 10 131

12 4 15

( ( ) ) ( ( ) ( ))

( ) ( )

N jj N
l l

l l

θ τ θ τ

θ θ τ
≤ ≤

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

⎡⎪ ⊗ ⊕ ⊕ ⊗⎢⎪ ⎣⎪
= ⊗⎪⎩

 (33) 

According to this new model (Fig. 9), the transition  
models only the fact that a new cycle cannot begin while all 
responses have not been received. The key event to consider is 
the completion of copying the response emanating from (S) to 
the memory shared with the CPU. For this purpose, we have 
introduced a virtual transition  fired at date 

11t

St Sθ  to represent 
this important event: 

10 13 5 14( ) ( ( ) ( )) ( ( ) )
S SS N N Nl l l lθ θ τ θ= ⊗ ⊕ ⊗τ

M

 (34) 

In a similar manner and using the same notations as in Case 
1, the solutions to be used for the analysis are as follows: 

1

2

( ) ( 1)
( ) ( 1)

CPU

CPU CLC

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

 (35) 

4

10 13

( ) ( 1)
( ) ( ( ) ( )) ( )

S S

SCN

S N N E

l l T
l l l N T

θ
θ θ τ

= − ⋅⎧⎪
⎨ = ⊗ ⊕ ⋅⎪⎩

 (36) 

Let's set 4( ) ( ) ( )r S CPUT l l Tθ θ α γ= − = + ⋅ . 

During the  scanning cycle, which starts at date thl 4 ( )lθ , 
the response from (S) is received at time ( )S lθ . This reply is 
used in the calculus of the subsequent CPU cycle, and the 
control signal is updated and then sent to destination (D) upon 
the next RIOMs scanning cycle. 

By respecting the same analytical principle as in the first 
case with one RIOM, for an event generated at time ( )e lθ  and 

taken into account during the  scanning cycle, we obtain: thl

/
1 1

/
1 1

8

( ) ( , ) ( )

( ) ( 1) ( 1, 1) ( )

( ) ( ) ( )

SD
D

SD
D

D

NN
Ni i

MIN SCN EM EM I O
i i

NN
Ni i

MAX SCN EM EM I O
i i

r N e

D l q T T T l q T l q

D l q T T T l q T l q

D l l q lθ θ

= =

= =

⎧
⎪ = ⋅ + − +Δ + +
⎪
⎪
⎪

= + ⋅ + − +Δ − + + +⎨
⎪
⎪ = + −⎪
⎪
⎩

∑ ∑

∑ ∑ (37) 

where: , ( 1)l ir q r qα β⋅ > Γ + + > ⋅ − , 

7 7( , ) ( ) ( )
DNl q l q l

SNτ τΔ = + −  is a network jitter, and 

 is the time 

spent in the RIOM (D) during the  scanning cycle. 
8 10 11/ ( ) ( )D

D D D

N
N N N filtI OT l q l q dτ τ τ+ = + + + +

( )thl q+
The results (37) fit the first case with one RIOM, where 
D SN N= , since the event source is also the destination. 

Discussion: From the results in (37), it can be observed that to 
minimize response time, a higher index value should be 
assigned to the event source and a lower value to the 
destination so as to make the term ( )D SN N−  as highly 
negative as possible: the RIOMs scanning order is indeed 
important. This result matches some of the conclusions drawn 
experimentally in [10], where it is stated that if the PLC were 
loaded with requests (yet remaining below a threshold), 
response time bounds would decrease. Loading the PLC and 
therefore delaying request transmission (to S) or simply 
increasing the request transmission order to RIOM (S) yields 
exactly the same phenomenon. Regarding the load threshold, 
the formulae also match experimental results. We must keep 
in mind that the delay calculus condition depends on α  or 

( )S lθ , and  should be decreased (see (34)). The optimal 
case is derived by increasing  while maintaining  equal 
to 1, i.e. remaining under the threshold. 

SN

SN q

Once again, this phenomenon is paradoxical since delaying 
the time of request transmission to the event source would 
lead to faster response times. This scenario can be explained 
more intuitively by the fact that it would be preferable to delay 
request transmission by a small amount of time and therefore 
wait for an event to occur rather than acting too hastily, 
sending the request too early and potentially missing the 
event. The event must therefore wait until the next request to 
be considered, which might necessitate a substantial wait since 
the scanning period is often relatively long. 
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V. NETWORK DELAYS EVALUATION IN A SWITCHED ETHERNET 
CLIENT/SERVER NAS 

The analytical method developed above is applicable easily 
but the delays caused by the network ( 7iτ  and 12iτ ) are 
required in our formulae. This section will focus on their 
evaluation. In the case of a standard full duplex switched 
Ethernet network, existing methods can be used for this 
purpose. Unfortunately, in the context of our study, accurate 
assessments are required. A pessimistic method may cause 
significant overestimations of the maximum response time as 
illustrated in the following example. 
 
     Example V.1: With , 2r = 0.6β =  and a maximum delay 
caused by the network leading to , 1.3l i αΓ + = , the minimum 
number  verifying the condition Cq 1 is equal to 1. Using a 
pessimistic method (with an overestimation of roughly 10%) 
may lead to , 1.43l i αΓ + =  and the new integer  that 

verifies the condition C

q

1 equals 2. If 10SCNT ms= , the 
maximum response time bound is slightly greater than 20ms, 
compared to a value of 30ms including the network delay 
overestimation. This is very pessimistic (approx. 50% 
overestimation) and unacceptable in the majority of 
automation systems. 

For this reason, new methods had to be investigated in an 
effort to evaluate network delays with as limited an 
overestimation as possible, and the present section is devoted 
to this objective. 

In this study, we have considered a client/server automation 
system (as in Case 2) over a standard full duplex Ethernet 
switch (Fig. 10). The switch is modeled as in [9] with a central 
dispatcher forwarding the frames according to FCFS policy 
(first come first served), at a speed (bits/s) noted C . In 
considering a "store & forward" switch, a frame is completely 
received before being forwarded by the dispatcher to the 
appropriate output port. The data are exchanged with the end 
stations (PLC or RIOMs) at a bit rate (bits/s) corresponding to 
physical link capacity, noted  (link of port ). kC kPort

 

PLC 

R1

Port0 

PortN 

Port1 

Dispatcher 

0C  C  
1C

NC

C  

C  

Switch RN  
Fig. 10.  Client/server automation system over an Ethernet switch. 

As aforementioned, the frames entering the switch are 
forwarded in a FCFS manner without any flow classification 
or prioritization. At any time, the only criterion therefore for 
frames differentiation is their order of arrival at the switch. 
The principle behind the method is to consider a function of 
order for arbitration when many frames at different input 
ports are waiting to be forwarded. Suppose that the  frame 

to enter the switch is completely forwarded to its output port 
at date 

thi

( )iψ . So, the  frame , supposed of length ( 1)thi + ( 1)iL +  
(overheads included), to be entirely received into the switch at 
date ( 1)arrival iθ + , is completely  forwarded  to  its  output 
 port  at date:  

( 1)( 1) ( ( 1), ( )) /arrival ii max i i L Cψ θ ψ ++ = + +                        (38) 

If the output port is , then the frame exits completely 
the switch at date:  

kPort

( 1)( 1) ( 1) /exit i ki i L Cθ ψ ++ = + +                                             (39) 

Finally, the network delay that  frame suffers from is:  ( 1)thi +

( 1) ( 1) ( 1)network exit arrivali i iτ θ θ+ = + − +                                 (40) 
    Note that equation (39) would not be true if there were 
more than one PLC since this would cause extra delays due to 
queues of requests at the output ports. 
As we can notice, (38) and (39) are recurrent Max-Plus 
equations that represent the evolution of the system. 
Moreover, we can see that the dates ( 1)arrival iθ +  and 

( 1)exit iθ +  correspond to notations used in the modeling 

sections i.e. 5 jθ  and 6 jθ  (resp. 9 jθ  and 10 jθ ) if the ( 1  

frame is the  request (resp.  reply). To express the 
equations (38) and (39) in a more explicit way, we introduce a 
function denoted , whereby  is the order of 

arrival of the  request at the switch whereas  is 

the order of arrival at the switch of the corresponding reply. 
At the beginning, this function is initialized: 

)thi +
thj thj

order ( )reqorder i
thi ( resporder i )

(1 ) 1, , ( ) ,req reqorder order k k= =  with 1 k N≤ ≤ . Indeed, 

the requests transmission order is known from the beginning 
and invariant, as previously mentioned in Section IV. Since 
the responses do not yet exist (at time 0t = ), then: 

( ) , 1resporder k k N= +∞ ≤ ≤ . 

Since (1 ) 1reqorder =  (the first frame to enter the switch is the 

request, of length , sent to R1), using (38)-(39) we have: 1L

51 1(1) /L Cψ θ= +  and 61 1 1(1) /L Cθ ψ= + . The delay sought 
is thus given as: 71 61 51 1 1(1/ 1/ )L C Cτ θ θ= − = ⋅ + . This 
request is received by R1 at date 61θ  and the corresponding 

response is therefore returned at date , which 
means that another frame is waiting at an input port, requiring 
the order function to be updated. The order  is no 

longer equal to infinity. The other orders (  with 

1
91 61 /I OTθ θ= +

(1 )resporder

( )reqorder i

1i ≠ ) may also be modified if, for example, this response 
enters before the last request is sent (see example below). In 
this case, (1 )resporder N=  and ( )reqorder N N 1= + . The 
order function being updated, the frame whose order equals 2 
can be found and the equations (38)-(39) used accordingly. 
These equations are used for the third frame and so forth until 
all requests have been sent and their responses received (in all, 
2 N⋅  frames have to be switched).  Meanwhile, delays 7iτ  or 
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12iτ  (depending if a request or response is selected in the 
arbitration) are calculated. 
 
     Example IV.2 (numerical application): a PLC scans three 
RIOMs (R1, R2 and R3), with requests of lengths  and 

, respectively (overheads included). All of the numerical 
values used have been chosen arbitrarily and only serve an 
explanatory purpose:  

1 2,L L

3L

0 1 2 3 10C C C C Mbps= = = = , , 0.16C Gbps= 1 80L Bytes= , 

, , 2 120L Bytes= 3 200L Bytes= 1
/ 800I OT sμ= , 2

/ 600I OT sμ= , 
3
/ 480I OT sμ= . 
The evaluation results using the previous FCFS strategy 

and equations (38)-(39) have been reported in Table II. 

Discussion: As can be seen on Table II (the shaded column), 
the order function at the last iteration is no longer in its 
initialized form. We can in fact note that the response to the 
first request enters completely into the switch ( 91 1082 sθ μ= ) 
shortly before the arrival of the third request ( 53 1084θ = ). 
Therefore,  and , while at the 

beginning  and ord . 

(1 ) 3resporder = (3 ) 4reqorder =

(1 )resporder = +∞ (3 ) 3reqer =

 

VI. APPLICATION AND VALIDATION 
To verify the validity of both the models and results 

generated previously, we will focus on the two automation 
architectures described previously (see Fig. 4 and Fig. 8). By 
using the experimental facilities of our laboratory, we have 
studied these two architectures. Let's now compare the results 
obtained with ALGO, the formulae and an experimental 
measurement of the response time. 

The second configuration focuses on the delay between an 
event generated on the input of remote module R15 and its 
consequence on R16 output. The histograms in Fig. 11 show a 
series of 10,000 experimental measurements and response 
times obtained using ALGO for this configuration. 

The CPU period of the PLC has been set at 5 ms and the 
scanning period at 10ms. In practice, this architecture presents 
a jitter of approx. 15% with an average value of 10 ms. This 
feature has been taken into account in the different 
calculations. Also, to calculate the response times histograms, 
about 10,000 events were generated. To avoid any 
underestimation of the response times due to generating 

events at discrete dates, a random event generator is used. The 
 event is generated at date thk ( )e SCNk k Tθ τ= ⋅ +  with τ  

randomly chosen from [ ]0, SCNT . The simulation was run 
many times, yielding the results presented in Fig. 11 and 
Table III. 

TABLE III 
RESULTS OF THE FORMULAS, ALGO AND MEASURES 

Response times in ms  
Minimum Maximum Mean 

Measures 10.40 21.90 16.10 
ALGO 10.06 22.24 15.82 

 
Case 1 

Formulae 10.06 22.24 / 
Measures 10.65 22.25 16.40 
ALGO 10.31 22.49 16.07 

 
Case 2 

Formulae 10.31 22.49 / 

Discussion of results: In both cases, a conclusion can be 
drawn regarding the validity of both the formulae and ALGO 
since the maximum calculated delays exceed those obtained 
experimentally (overestimation), and the minimum delays are 
less than the measured values. As expected, results of ALGO 
and the formulae are identical in all cases, given that they 
have been based on the same principle. The discrepancies in 
delays, with respect to measurements, are less than 3.27% in 
all cases for either the analytical formulae or ALGO. Both the 
overestimation and accuracy of the response time assessment 
have thus been achieved simultaneously. The discrepancies in 
mean response time calculus are less than 2.01% and the 
shapes of both the experimental measurement and ALGO 
histograms are in fact very similar. 

 TABLE II 
NETWORK DELAYS CALCULUS FOR AN EXAMPLE OF NAS WITH N= 3 

in
sμ  5iθ  6iθ  9iθ  10iθ  ψ  Order of 

arrival  7iτ  12iτ

154 1 Req1 i=1 150 218 1082 1150 
1086 3 Resp1 

 
68 

 
68 

506 2 Req2 i=2 500 602 1298 1400 
1304 5 Resp2 

 
102 

 
102 

1096 4 Req3 i=3 1084 1256 1926 2180 
2020 6 Resp3 

 
172 

 
170 

 

On the other hand, if we compare the results of both 
configurations (Fig. 4 and Fig. 8), a difference of 0.25 ms is 
detected between the maximum (as well as minimum) bounds. 
This corresponds exactly to the value of the frame emission 
time ; moreover, since the switches are very fast, the 
considered configurations turn out to be very similar. The 
main difference lies in the use of one RIOM as an event 
source and another as the destination, with a difference of one 
in the scanning order (R

EMT

15 and R16). This result corroborates 
the general formulae obtained in Section IV. 
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Fig. 11. Histograms of the assessed response times. 
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VII. CONCLUSION 
In this work, we have presented a new approach to 

evaluating the response time in networked automation 
architectures using client/server protocol. All delays 
experienced during the various system stages have been taken 
into account. A simple algorithm and analytical formulae for a 
trivial evaluation of response time have been developed; both 
the response time bounds and the distribution shape could thus 
be assessed. Afterwards, a comparison of results with 
experimental measurements enabled us to verify the validity 
of this method. Moreover, the analytical results obtained can 
be easily used a priori, during the design phase of an 
architecture, with application to choosing an adequate 
configuration for components in order to satisfy the desired 
time requirements of the plant. These results can also be used 
a posteriori to evaluate the response time of an existing 
architecture, as displayed in the previous examples. 
Throughout the study, many of the important results presented 
have been shown to match experimental observations. 

For future studies, it would be worthwhile to consider more 
general automation architectures along with other protocols, a 
wide array of control loops with many clients and naturally 
relax some of our hypotheses like clocks drift of frame loss. 
The challenge then is to develop an efficient method so as to 
accurately evaluate the network delays in the presence not 
only of many loops, but also with acyclic and non-real time 
traffic, as encountered in modern NAS. 
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