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ON SOME GEOMETRY OF PROPAGATION

IN DIFFRACTIVE TIME SCALES

CHRISTOPHE CHEVERRY AND THIERRY PAUL

Abstract. In this article, we develop a non linear geometric optics
which presents the two main following features. It is valid in diffractive
times and it extends the classical approaches [7, 17, 18, 24] to the case
of fast variable coefficients. In this context, we can show that the energy
is transported along the rays associated with some non usual long-time
hamiltonian. Our analysis needs structural assumptions and initial data
suitably polrarized to be implemented. All the required conditions are
met concerning a current model [2, 3, 8, 9, 10, 11, 19, 21] arising in fluid
mechanics and which was the original motivation of our work. As a by
product, we get results complementary to the litterature concerning the
propagation of the Rossby waves which play a part in the description of
large oceanic currents, like Gulf stream or Kuroshio.
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1. Detailed introduction

This article is divided in two parts. The first (Section 2) is devoted to the
WKB analysis associated with some class of quasilinear systems. The second
(Setion 3) explains how this approach can be implemented to solve concrete
questions coming from quasi-geostrophic models.

1.1. Presentation of the framework. In this paragraph, we introduce
the equations, the difficulties, and some significant results.

1.1.1. A class of equations involving a singular parameter (ε ∈ ]0, 1]). Wave
propagation phenomena are usually well described by solutions of quasilinear
hyperbolic systems of the following type:

(1.1)
QS(ε, ε t, x, u; ∂) u := S0(ε, ε t, x, u) ∂tu +

d
∑

j=1

Sj(ε, ε t, x, u) ∂ju

+ ε−1 Λ(ε, ε t, x) u − ε−1 F (ε, ε t, x, u) = 0 .

The adimensionalized parameter ε ∈ ]0, 1] represents a wave length (which
will tend to zero). We denote by t ∈ R+ and τ := ε t ∈ R+ respectively
the fast and slow time variables. The space variable x is chosen in Rd with
d ≥ 1. The state variable u describes the physics and is a vector of Cn with
n ∈ N∗

+. We denote

(ε, τ, x, u) ∈ ג := R+ × [0, T ] × Rd × Cn , T ∈ R∗
+ .

Let us now describe more precisely the operators appearing in (1.1). For j
belonging to {0, · · · , d}, the operators Sj are smooth vector fields, valued
in Sn := {S ∈ Mn(C) ; S∗ := tS̄ = S} of hermitian matrices:

Sj(ε, τ, x, u) = S∗
j (ε, τ, x, u) ∈ C∞(ג;Sn) , ∀ j ∈ {0, · · · , d} .

As usual the matrix S0 is assumed to be positive definite. In other words,
there is a constant c ∈ R∗

+ such that

(1.2) c I ≤ S0(ε, τ, x, u) , ∀ (ε, τ, x, u) ∈ ג .

The operator Λ represents dispersive phenomena [17]. It takes its values
in the set An := {A ∈ Mn(C) ; A∗ = −A} of anti-hermitian matrices:

(1.3) Λ(ε, τ, x) = −Λ∗(ε, τ, x) ∈ C∞(ג;An) .

The source term F ∈ C∞(ג; Cn) is supposed to have an expansion of the
following type:

(1.4) F (ε, τ, x, u) = F 0(τ, x) + ε F 1(τ, x) + ε2 F 2(ε, τ, x, u) .

Similarly Taylor-expanding around ε = 0 the function Λ, one can incorporate
the O(ε2) corresponding part into F 2, hence it is simply assumed that

Λ(ε, τ, x) = Λ0(τ, x) + ε Λ1(τ, x) .
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1.1.2. About geometrical optics. The geometrical optics approximation [15]
simplifies the description of the evolution of a wave by considering that
propagation takes place along rays. The simplest model corresponds to the
situation where the high frequency oscillation is along one phase only:

(1.5) uε(t, x) = Uε

(

ε t, x,
ϕ(ε t, x)

ε

)

, Uε(τ, x, θ) , θ ∈ T := R/Z .

The amplitude Uε(τ, x, θ) is assumed to be in C∞(R2
+×Rd×T; Cn) while the

phase ϕ(τ, x) is in C∞(R+ ×Rd; R). Hence, the wave uε is roughly constant
on the level surfaces of ϕ (called wave fronts) and has strong variations (at
a speed of the order of ε−1) in the directions of ∇ϕ.

The monophase WKB constructions are devised to prove the existence of
solutions to (1.1) having the form (1.5). This goes back to the works of
Choquet-Bruhat [5] as well as those of Hunter, Majda and Rosales [14]. A
rigorous justification of such developments was performed by Guès [12, 13].
Classical results are only valid on a finite time interval, of the form t ∈ [0, T ]
with T ∈ R∗

+. After such a time, two phenomena may prevent from going
further in time: the creation of shocks and the appearance of caustics.

1.1.3. On shocks. Discontinuities of order zero on solutions of (1.1) may
be caused by the nonlinearity of the coefficients of the matrices Sj . This
difficulty can be managed [1] in one space dimension (d = 1) but it seems
out of reach in higher space dimensions. Then, it may be avoided through
some linear degeneracy assumption on the coefficients.

In this article, we ensure that no shocks appear in times t ≃ 1. For this we
require that the hermitian matrices Sj depend little on the state variable.
More precisely, we impose that for all j ∈ {0, · · · , d},

(H1) Sj(ε, τ, x, u) = S0
j (τ, x) + ε S1

j (τ, x) + ε2 S2
j (ε, τ, x, u)

with S0
j and S1

j in C∞(R+ × Rd;Sn), and S2
j ∈ C∞(ג;Sn).

1.1.4. On caustics. On the domain (t, x) ∈ [0, T ] × Rd with T ∈ R∗
+, the

geometry of propagation is given by the structure of the principal symbol
associated with (1.1), namely P 0(0, x; ξ) where

P 0(τ, x; ξ) := i
d
∑

j=1

ξj S0
j (τ, x) + Λ0(τ, x) , ξ = (ξ1, · · · , ξd) ∈ R

d .

To obtain solutions uε(t, x) of (1.1) of the form prescribed by (1.5), valid
in times t ≃ 1, one first selects an eigenvalue i λ(0, x; ξ) of the matrix
S0

0(0, x)−1 P 0(0, x; ξ). The profile U0(x, θ) := U0(0, x, θ) has to be polarized
along the eigenspace associated with the eigenvalue i λ

(

0, x;∇ϕ(t, x)
)

of the

matrix S0
0(0, x)−1 P 0

(

0, x;∇ϕ(t, x)
)

, where the phase ϕ(t, x) is obtained by
solving the eikonal (Hamilton-Jacobi type) equation

(1.6) ∂tϕ + λ(0, x;∇ϕ) = 0 , ϕ(0, x) = ϕ0(x) .
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The rays t 7−→ X
(

t, x;∇ϕ0(x)
)

are obtained by projecting onto Rd the
hamiltonian flow associated with the following system of ODEs:

(1.7)

{

dX/dt = ∇ξλ(0, X; Ξ) , X(0, x; ξ) = x ,
dΞ/dt = −∇xλ(0, X; Ξ) , Ξ(0, x; ξ) = ξ .

Those curves may focalize, or even cross [15, 16]. This mechanism prevents
from solving (1.6) in the class of C1 functions. It does not occur when

i) The matrices S0
j and Λ0 do not depend on the space variable x ;

ii) The initial data ϕ0 is linear in x , meaning that there exists a direction
η ∈ Rd such that ϕ0(x) = η · x.

Condition i) yields parallel rays. It implies that λ(0, x; ξ) ≡ µ(ξ) so that
Ξ(t, x; ξ) = ξ and X(t, x; ξ) = x + ∇ξµ(ξ) t. From ii) one gets ∇ϕ0 ≡ η and
one recovers plane phases ϕ(t, x) = −µ(η) t + η · x.

The two restrictions i) and ii) appeared in the pionneering work by Donnat,
Joly, Métivier and Rauch [6] where they were used to propagate the WKB
analysis all the way to times t ≃ ε−1 or τ ≃ 1. They have since been
considered as prerequisites in contributions dealing with diffractive nonlinear
geometrical optics [17, 18, 24]. Let us also mention [20] where the long time
semiclassical evolution involving non classical phenomena is studied for the
linear quantum dynamics.

1.1.5. The analysis in diffractive times. In this article, we will consider
diffractive times τ ≃ 1 without assuming conditions i) and ii). We will
allow variable coefficients S0

j and Λ0, along with nonlinear phases. Some

attemps in this direction have been performed in [7, 14] but (after rescaling)
it was in the context of almost planar phases, meaning in particular that ϕ
is in the form ϕ(t, ε x) instead of ϕ(t, x).

In order to get to times τ ≃ 1, one still needs a degeneracy assumption
on the curvature of the characteristic variety. The stronger version of that
property consists in requiring (after an adequate change of variables in ε, t,
x and u) the existence of a spectral value such that

(H2) λ(0, x; ξ) = 0 , ∀ (x, ξ) ∈ R
d × R

d .

At first sight, condition (H2) seems to be of no interest. Indeed, as long
as t ≃ 1, nothing happens. The phase and the principal profile U0 remain
both unchanged. One finds ϕ(t, ·) = ϕ0(·) and U0(t, ·) = U0(0, ·). On the
other hand, for t ≃ ε−1 or τ ≃ 1, one expects that the dispersive effects
(and the production of Schrödinger equations) which motivate the articles
[6, 17, 18, 24] do not appear. Indeed, the hypothesis (H2) implies that the
Hessian matrix D2

ξλ(0, x, ·) is zero.

However, precisely because we do not assume i) and ii), other phenomena
can occur. Without i) and ii), the discussion concerning oscillating solutions
of (1.1), like in (1.5), is in fact rather complex as soon as diffractive times
τ ≃ 1 are reached. The corresponding study is new. It is motivated both
by mathematical and physical issues.
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1.2. The main results. In this Section 1.2, we state the main results of
our paper, postponing to the next Section 1.3 the statement of the bunch
of hypothesis (H⋆ for linear and HN⋆ for nonlinear).

1.2.1. Approximate solutions. Our first statement guarantees the existence
in diffractive times t ≃ ε−1 or τ ≃ 1 of approximate solutions to (1.1).

Theorem 1. [Approximate solutions] In the linear case (Sj independent of
u), we assume that conditions (H1) to (H8) hold. In the nonlinear (more
general) case, we have to complete these prerequisites with conditions (HN1)
to (HN5). These are structural assumptions on the expressions Sj, Λ and
F appearing in the system (1.1), which are made precise further in the text.
Consider a phase ϕ0 ∈ C∞(Rd; R), which is non stationary in the sense that

(1.8) ∃ (c, C) ∈ (R∗
+)2 ; c ≤ |∇ϕ0(x)| ≤ C , ∀x ∈ R

d .

Select a profile Uε ∈ H∞([0, 1] × Rd × T; Cn) with an asymptotic expansion
in powers of ε involving a leading term U0 such that ∂θU0(x, θ) is polarized

in the kernel of P 0
(

0, x;∇ϕ0(x)
)

:= i
∑d

j=1 ∂jϕ0 S0
j (0, x) + Λ0(0, x). Look

at an oscillatory initial datum of the form

(1.9) uε(0, x) = Uε

(

x,
ϕ0(x)

ε

)

, ε ∈ ]0, 1] .

Then, for all N ∈ N, there is a family {ua
ε}ε∈ ]0,1], involving monophase

oscillations of the form

(1.10) ua
ε(t, x) =

N+1
∑

k=0

εk Uk
(

ε t, x,
ϕ(ε t, x)

ε

)

, Uk ∈ H∞

which is an approximate solutions to the system (1.1) in diffractive times.
More precisely, the functions ua

ε(t, x) are defined on a time interval [0, T /ε]
for all ε ∈ ]0, 1] with T ∈ R∗

+. They satisfy (1.9) and

(1.11) QS(ε, ε t, x, ua
ε ; ∂) ua

ε = O(εN ) , in L∞
(

[0, T /ε];Hs
ε (Rd)

)

.

In addition, the presence of variable coefficients can induce a modification
of ϕ0 in times t ≃ 1/ε or τ ≃ 1, via some (non trivial) eikonal equation

(1.12) ∂τϕ(τ, x) = h
(

τ, x;∇ϕ(τ, x)
)

, ϕ(0, x) = ϕ0(x) .

To our knowledge, Theorem 1 cannot be derived, after a change of scalings
(in ε, t and x) or a change of variables (in u) from well-established results.

Section 2.1 introduces our notations and our strategy. The hierarchy of
equations is presented in Section 2.2 and initiated in Section 2.3. As already
explained, the main effect (for small times t ≃ 1) of the penalization term
is to polarize ∂θU

0 in the kernel of P 0 (having dimension p ∈ N∗). Then,
comes the question of the propagation in diffractive times.

Because the coefficients S0
j (τ, x) and Λ0(τ, x) may depend on the variable x,

the discussion must be organized differently from what is usually done. In
fact, it needs a refinement of the analysis inside the kernel of P 0(τ, x, ξ).
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A crucial step (Lemma 2.3) is to get the Hamiltonian h(τ, x; ξ) of (1.12). It
corresponds to the eigenvalue of some hermitian matrix H(τ, x, ξ) exhibited
in Section 2.4, see (2.31). One notices that there can be (in diffractive times)
as much as p different geometries (or p different types of rays).

The transport equation on U0 is solved in Section 2.5. The induction giving
access to the other profiles Uk with k ≥ 1 is presented in Section 2.6. This
concludes the formal WKB analysis.

1.2.2. Stability issues. Due to (H3) and (H5), the system (1.1) is compatible
with energy estimates in the space L2. Therefore, in the linear case, we can
infer from the preceding construction the existence of exact solutions uε

close (in the sense of L2) to the approximate solutions ua
ε . This is what says

our next Theorem, proven in Section 2.7.

Theorem 2. (The linear case) Let us assume conditions (H⋆) and suppose
that QS is independent of u. Consider a family {ua

ε}ε∈ ]0,1] of approximate
solutions of order N to (1.1), given by Theorem 1. Then, for all ε ∈ ]0, 1],
the exact solution uε of the Cauchy problem

(1.13) QS(ε, ε t, x, uε; ∂) uε = 0 , uε(0, ·) ≡ ua
ε(·)

is defined on the domain [0, T /ε] × Rd and it is such that

(1.14) sup
t∈[0,T /ε]

‖ (uε − ua
ε)(t, ·) ‖L2(Rd;Cn) = O(εN−1) , ∀ ε ∈ ]0, 1] .

The nonlinear situation is more delicate to deal with. It requires uniform
estimates in L∞ on the family {uε}ε. Such an information can be obtained
only through Sobolev estimates.

Theorem 3. Select any approximate solution ua
ε given by Theorem 1, with

2 + d < N . Suppose that

(1.15) ∇xS0
j ≡ 0 , ∀ j ∈ {0, 1 · · · , d} .

Then, the exact solution uε of the Cauchy problem (1.13) is defined on the
domain [0, T /ε] × Rd. It remains close to the approximate solutions ua

ε in
the sense that, for all s and N with 1 + d/2 < s < N/2, one has

(1.16) sup
t∈[0,T /ε]

‖ (uε − ua
ε)(t, ·) ‖Hs∩L∞ = O(εN−2−d) .

The condition (1.15) is rather restrictive but it seems necessary. Still, it
allows variable coefficients at the level of the matrix Λ0(τ, x). The proof of
Theorem 3 relies on energy estimates performed in the weighted space Hs

ε2 ,
where for ι ∈ N :

(1.17) ‖ u ‖Hs
ει

:=
∑

|α|≤s

‖ (ει ∂x)α u ‖L2 , (ει ∂x)α ≡ ε2 |α| ∂α1

1 · · · ∂αd

d .

The control (1.16) hides a lost of ε−2 by spatial derivative ∂j . As we will
see in the next Section 1.4, this information Hs

ε2 is not always sure to be
optimal. Nevertheless, it is sufficient to justify our WKB analysis.
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Although all hypothesis (H⋆) and (HN⋆) will be introduced in context in
the following Sections, for the comfort of the reader, we state them below.

1.3. Statement of the hypothesis. Note that our statements and the
following assumptions could be localized in a conic region (in ξ) containing
the set

{

(x,∇ϕ0(x)) ; x ∈ Rd
}

. For the simplicity of exposition, we will
not take into account such a refinement. Let us first state the assumptions
necessary for the linear results.

(H1): For all j ∈ {0, · · · , d}, we impose

Sj(ε, τ, x, u) = S0
j (τ, x) + ε S1

j (τ, x) + ε2 S2
j (ε, τ, x, u)

with S0
j and S1

j in C∞(R+ × Rd;Sn), and S2
j ∈ C∞(ג;Sn).

(H2): Let P 0(τ, x; ξ) := i
∑d

j=1 ξj S0
j (τ, x) + Λ0(τ, x) . We suppose that

the matrix S0
0(0, x)−1 P 0(0, x; ξ) has an eigenvalue i λ(0, x; ξ) satisfying

λ(0, x; ξ) = 0 , ∀ (x, ξ) ∈ Rd × Rd .

(H3): The matrix S0 is divergence free, in the sense that

divS0 :=

d
∑

j=1

(∂jS
0
j )(τ, x) = 0 , ∀ (τ, x) ∈ [0, T ] × R

d .

(H4): There is a positive integer p ∈ N∗ such that

dim
(

ker P 0(τ, x; ξ)
)

= p , ∀ (τ, x, ξ) ∈ [0, T ] × R
d ×

(

R
d \ {0}

)

.

(H5):

[

There is a compact set K ⊂ Rd such that the fields Sj, Λ and
F evaluated at (ε, τ, x, u) are constant if τ ∈ [0, T ] and x 6∈ K.

(H6): The source term F 0 must be well prepared

F 0(τ, x) ⊥ ker Λ0(τ, x), ∀ (τ, x) ∈ [0, T ] × Rd .

Let Π(τ, x; ξ) be the unitary projector onto the kernel of P 0(τ, x; ξ). Intro-
duce the two following matrices

G(τ, x; ξ) := i
d
∑

j=1

Π S0
j (∂jΠ) Π , P 1(τ, x; ξ) := i

d
∑

j=1

ξj S1
j + Λ1

and the Hermitian square root of ΠS0
0 Π , that is the matrix M satisfying

M ≡ Π M Π ≡ M∗ , M∗ ◦ M = Π S0
0 Π .

Let us also define

H := (Π M Π)−1 Π (G + i P 1) Π (Π M Π)−1 = H∗ ≡ Π H Π .

(H7): We assume that
[

There is an eigenvalue h of H whose multiplicity
µ(τ, x, ξ) ≡ µ ∈ N∗ does not depend on (τ, x, ξ) ∈ [0, T ] × T ∗

\0.
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Given m ∈ Z and some application f(τ, x; ξ) defined on [0, T ]×Rd ×Rd, we
use the shorthand notation

(1.18) |f〉m(τ, x) := f
(

τ, x;m∇ϕ(τ, x)
)

, m ∈ Z

which simply amounts to replacing everywhere the vector ξ by m∇ϕ. For
instance |f〉0(τ, x) = f

(

τ, x; 0
)

. Let us denote by Πh
0(τ, x) the unitary

projector onto the kernel of H(τ, x; 0). Introduce the projector Q := I − Π
and the matrix G0 := |(QP 0Q)−1〉0 F 0.

(H8): The source term F 1 must be well prepared in the sense that

Πh
0

(

|Π M Π〉0
)−1

{

F 1 − |P 1〉0 G0 −

d
∑

j=1

S0
j |Q〉0 ∂jG

0
}

≡ 0 .

We can now state the assumptions necessary for the nonlinear results. The
conditions (HN⋆) are mainly technical assumptions in order to control what
happens at the level of harmonics. In contrast with the linear hypothesis,
they require to know what is ϕ on [0, T ] × Rd. For instance, the definition
of the set HA does depend on T . Also, the conditions (HN3) and (HN4)
must be tested in the whole domain [0, T ] × Rd. Therefore, the procedure
is first to solve (1.6) on [0, T ] × Rd and then to look at (HN⋆).

(HN1): There is an integer p0 ∈ N satisfying p0 ≥ p and

dim
(

ker P 0(τ, x; 0)
)

= p0 , ∀ (τ, x) ∈ [0, T ] × R
d .

(HN2): |Π〉0 S0
j |Π〉0 ≡ 0 , ∀ j ∈ {1, · · · , d} .

Consider a solution ϕ of the eikonal equation (1.6). Associated with ϕ,
define the set

HA :=
{

0
}

∪
{

m ∈ Z∗ ; m ∂τϕ = |h〉m on [0, T ] × Rd
}

.

(HN3): There is a constant c ∈ R∗
+ such that for every m ∈ HA :

c < inf
(τ,x)∈[0,T ]×Rd

min
h 6=µ∈spec H

∣

∣(µ − h)
(

τ, x;m∇ϕ(τ, x)
)∣

∣ .

(HN4): There is a constant c ∈ R∗
+ such that for every m 6∈ HA :

c < inf
(τ,x)∈[0,T ]×Rd

min
µ∈spec H

∣

∣m ∂τϕ − µ
(

τ, x;m∇ϕ(τ, x)
)∣

∣ .

(HN5): sup
m∈Z

‖ |(QP 0 Q)−1〉m ‖Hs([0,T ]×Rd) < ∞ , ∀ s ∈ R .

These assumptions (H⋆) and (HN⋆) are not so restrictive. They are verified
in various contexts including the propagation of Rossby waves (Section 3)
and of electromagnetic waves. They do not imply i) and ii). The point i)
can be lifted since the matrices S0

j (τ, x) or Λ0(τ, x) may well depend on x

while the function λ(0, x; ξ), in view of (H2), does not. The restriction ii)
can also be lifted as one can start with an arbitrary phase ϕ0 and no caustics
will appear (at least as long as ε t or τ remain small enough).
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1.4. A model arising in fluid mechanics. The present work is motivated
by physical considerations. Indeed, our WKB construction allows to account
for some wave-like features of oceanic circulation, called Rossby waves, which
are produced by the variations of the Coriolis force with latitude.

The link between this problem and our discussion is presented in detail
in [2, 3, 8, 9, 10]. Basically, we have to deal with a two-dimensional system
of compressible Euler type. The space variable is x = (x1, x2) ∈ R2. The
state variable is u = t(p, v1, v2) ∈ R3 and it must satisfy

(1.19)







dτ p + ε−1 f(p̄ + ε ps + ε2 p) (∂1v1 + ∂2v2) = ε−2 F r
0 ,

dτ v1 + ε−1 f(p̄ + ε ps + ε2 p) ∂1 p − ε−2 b(ε, x) v2 = ε−2 F r
1 ,

dτ v2 + ε−1 f(p̄ + ε ps + ε2 p) ∂2 p + ε−2 b(ε, x) v1 = ε−2 F r
2 .

The data us = t(ps, vs
1, v

s
2) represents a state of rest. It is a smooth function

of (ε, x) ∈ R+ × R2. The introduction of b(ε, x) is due to the Coriolis force.
In basic models, we have to deal with the choice b(ε, x) = sin x2. The source
term F r := t(F r

0 , F r
1 , F r

2 ) allows to take into account other influences (like
wind, · · · ). It is a smooth application which can depend on the variables
(ε, τ, x, u) ∈ R+ × R+ × R2 × R3. The notation dτ is for the particular
derivative dτ := ∂τ + vs

1 ∂1 + vs
2 ∂2 + ε v1 ∂1 + ε v2 ∂2.

In contrast to (1.1), the system (1.19) involves directly the diffractive time
variable τ , explaining the singular power ε−2 in front of b. The modeling
work leading to (1.19) is done in Paragraph 3.1. In the context of (1.19), a
version of Theorem 1 is the following :

Theorem 4. Consider a family of oscillatory initial data, like in (1.9).
Suppose that, for all θ ∈ T, the profile Uε(·, θ) is supported in a domain
D ⊂ R2 adjusted such that

(1.20) ∃ c ∈ R
∗
+ ; D ⊂

{

x ∈ R
2 ; |b0(x)| ≥ c > 0

}

, b0 := b(0, ·) .

Assume moreover that the phase ϕ0 is nonstationary in the sense of (1.8)
and that it satisfies assumptions (Hi) or (Hii) given below :

(Hi)
[

vs · ∇b0 ≡ 0 and ϕ0 = χ(b0) with χ belonging to C∞(R; R) ;

(Hii)

[

0 < inf
x∈R2

|(∂1ϕ0 ∂2b
0 − ∂2ϕ0 ∂1b

0)(x)| .

Then, there is a family {ua
ε(τ, x)}ε∈ ]0,1], as in (1.10), made of approximate

solutions to the oscillatory Cauchy problem (1.9)-(1.19). For all ε ∈ ]0, ε0]
with ε0 ∈ R∗

+, it is defined in diffractive times τ ∈ [0, T ] with T ∈ R∗
+.

More precisely, those approximate solutions oscillate with a phase solving
the eikonal equation (1.12) where the function h must be replaced by the
Rossby Hamiltonian hr given by

(1.21) hr(τ, x; ξ) := − vs · ξ +
ξ1 ∂2b

0(x) − ξ2 ∂1b
0(x)

b0(x)2 + ξ2
1 + ξ2

2

, (x, ξ) ∈ R
4 .
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The energy of Rossby waves is transported along the rays which are associated
with hr, up to some explicit damping and source terms. Moreover, there are
exact solutions {uε(τ, x)}ε∈ ]0,1] of (1.19) corresponding to the approximate
solutions ua

ε in the sense of (1.16).

This statement should be compared with the results announced in [3] and
proved in [2]. In those papers, the discussion is essentially based on the
study of a linearization of the system (1.19) around a particular stationary
solution, and the methods come from semi-classical analysis and dynamial
systems. They consist indeed in diagonalizing the linearized system using
ε-pseudodifferential symmetrizers and in obtaining dynamical information,
in terms of the wave front set of the initial data.

Theorem 4 concerns more restrictive initial data, but the preparation of the
data (the polarization on Rossby waves) has the advantage of giving rise to
a more precise description. It allows to catch quantitative informations and
to point out nonlinear mechanisms influencing the propagation.

In Paragraph 3.2, we check that the structure of (1.19) is compatible with
Assumptions (H1), · · · , (H7) and (H8) required by Theorem 1.

The paragraph 3.3 is devoted to the description of rays transporting Rossby
waves. The hamiltonien hr exhibited in (1.21) is a generalization of what is
produced in [3]. Moreover, its domain of validity is proved to be the whole
cotangent space T ∗(R2) \ {0}. On the other hand, the detailed analysis of
the corresponding bicharacteristics, and in particular the reasons why it is
posible to find trapped trajectories, is performed in [2].

The Part 3.4 aims to make sure that the requirements (HN1), · · · , (HN4)
and (HN5) are satisfied. It means, in the context of (1.19), a precise study of
harmonics. In comparison with what is obtained in [2], the present analysis
allows to catch more nonlinearity. The size of the oscillating parts can be
larger by a factor ε−1−η, with η > 0.

Another specificity of the current text is that it includes a discussion about
quasilinear transparencies. In the Paragraph 3.5, we show (see Lemma 3.1)
that the obstructions to take arbitrary large times T in Theorem 4 are not
coming from the nonlinearities but only from the restriction (1.20) or from
the possible formation of caustics when solving the eikonal equation (1.12).

1.5. About the propagation of electromagnetic waves. Our approach
can bring useful information in other physical contexts. For instance, it can
be used to explore questions linked with light propagation in inhomogeneous
media and with lasers in a plasma [17, 24, 23]. In the Paragraph 4, as an
illustration, we explain the case of ferromagnetism.

2. The WKB Analysis.

This Section 2 is devoted to the proof of Theorems 1 and 3. Parts 2.1 up
to 2.6 explain the construction of the approximate solutions ua

ε . Part 2.7
deals with nonlinear stability issues.
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2.1. Assumptions and notations. We are interested in the system (1.1)
for t ≃ ε−1. For the sake of simplicity, we will manipulate matrices Sj and
Λ which do not depend on the variables t and ε x. The influence of t and
ε x could be incorporated in the analysis but it would induce technicalities
which are not central in what follows. For this reason, we deal only with
x ∈ Rd and only with the slow variable τ ∈ R+.

Reasoning directly with τ ∈ R+, we are faced with a system (containing
singularities both in ε−1 and ε−2) :

(2.1)
QS(ε, τ, x, u; ∂) u = S0(ε, τ, x, u) ∂τu + ε−1

d
∑

j=1

Sj(ε, τ, x, u) ∂ju

+ ε−2 Λ(ε, τ, x) u − ε−2 F (ε, τ, x, u) = 0 .

We denote by T ∗ the cotangent space in x, and its elements by (x, ξ). The
null section of T ∗ is denoted by T ∗

0 , and its complement is T ∗
\0. Thus

T ∗
0 :=

{

(x, ξ) ∈ Rd × Rd ; ξ = 0
}

, T ∗
\0 :=

{

(x, ξ) ∈ Rd × Rd ; ξ 6= 0
}

.

To shorten the notation, we define, for k ∈ {0, 1}, the following differential
operators in x, using the notation introduced in (H1) :

Sk(τ, x; ∂x) :=
d
∑

j=1

Sk
j (τ, x) ∂j , ∂j :=

∂

∂xj
, j ∈ {1, · · · , d} ,

P k(τ, x; ∂x) := Sk(τ, x; ∂x) + Λk(τ, x) , ∂0 := ∂τ ≡
∂

∂τ
as well as their symbols

An ∋ Sk(τ, x; ξ) :=
∑d

j=1 i ξj Sk
j (τ, x) , (τ, x, ξ) ∈ [0, T ] × Rd × Rd ,

An ∋ P k(τ, x; ξ) :=
∑d

j=1 i ξj Sk
j (τ, x) + Λk(τ, x) .

With that notation, and expanding (2.1) in powers of ε, we find

QS(ε, τ, x, u; ∂) u ≡
1

ε2

{

Λ0(τ, x) u − F 0(τ, x)
}

+
1

ε

{

S0(τ, x; ∂x) u + Λ1(τ, x) u − F 1(τ, x)
}

+ ε0
{

S0
0(τ, x) ∂τu + S1(τ, x; ∂x) u + Λ2(ε, τ, x) u − F 2(ε, τ, x, u)

}

+ ε
{

S1
0(τ, x) ∂τu + ε S2

0(ε, τ, x, u) ∂τu +

d
∑

j=1

S2
j (ε, τ, x, u) ∂ju

}

= 0 .

The three main constraints to keep in mind are the following:

- The matrix S0 is divergence free, in the sense that

(H3) divS0 :=

d
∑

j=1

(∂jS
0
j )(τ, x) = 0 , ∀ (τ, x) ∈ [0, T ] × R

d .

This assumption ensures that the differential operator S0(τ, x; ∂x) is anti-
selfadjoint, which guarantees conservation laws.
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- There is a positive integer p ∈ N∗ such that

(H4) dim
(

ker P 0(τ, x; ξ)
)

= p , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗
\0 .

For any point (τ, x, ξ) ∈ [0, T ] × T ∗, we denote by Π(τ, x; ξ) the unitary
projector onto the kernel of P 0(τ, x; ξ). We also denote by |Π〉0 the operator
|Π〉0 := Π(τ, x; 0), see (1.18) for the notation. Then Π ◦ Π ≡ Π and one has

(2.2) (P 0 Π)(τ, x; ξ) = (ΠP 0)(τ, x; ξ) = 0 , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗ .

One notices also that

(2.3) Π(τ, x; ξ) ≡ tΠ̄(τ, x; ξ) ∈ Sn , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗ .

Assumption (H4) implies that Π is smooth on T ∗
\0, which will be useful in

the discussion, when it comes to differentiating in x and ξ.

In the special case p = 1, assumption (H4) may be stated equivalently in
the following way. There is a C∞ vector field X(τ, x; ξ) on [0, T ] × T ∗

\0 with

values in Cn \ {0}, such that for any (τ, x, ξ) ∈ [0, T ] × T ∗
\0, one has

P 0(τ, x; ξ) X(τ, x; ξ) = 0 , ker P 0(τ, x; ξ) ≡ Vect 〈X(τ, x; ξ) 〉 .

Then, one deduces the explicit formula for the projector Π :

(2.4) Π(τ, x; ξ) U :=
tX̄(τ, x; ξ) · U

|X(τ, x; ξ)|2
X(τ, x; ξ) , |X|2 := tX̄ · X .

Assumption (H4) specifies (H2), except at points (τ, x, ξ) with ξ = 0. Since
the map (τ, x, ξ) 7−→ dim

(

ker P 0(τ, x; ξ)
)

is upper semi-continuous, it is
natural to supplement (H4) with :

- There is an integer p0 ∈ N satisfying p0 ≥ p and

(HN1) dim
(

ker P 0(τ, x; 0)
)

= p0 , ∀ (τ, x) ∈ [0, T ] × R
d .

The reason why the assumptions are different for points of T ∗
\0 and of T ∗

0

is due to physical applications, in which it often happens that p0 > p. As
usual, one requires above constant multiplicity. That is a serious constraint
but it is inevitable if one seeks WKB expansions at any order in ε.

If p = p0, the Assumption (HN1) is nothing but the continuation of (H4)
to points (τ, x, ξ) of [0, T ] × T ∗

0 . This allows to extend the regularity of the
projector Π(τ, x; ξ) to the whole cotangent space [0, T ]×T ∗. For ξ = 0, one
has P 0(τ, x; 0) = Λ0(τ, x) and the constraint (2.2) becomes

(2.5) (Λ0 |Π〉0)(τ, x) = (|Π〉0 Λ0)(τ, x) = 0 , ∀ (τ, x) ∈ [0, T ] × R
d .

For monophase, linear geometrical optics, the phase ϕ is non stationary in
x and the oscillations are pure (carried by harmonics of the type m ϕ with
m 6= 0 fixed), so one does not need to consider the set T ∗

0 ; hence (HN1) is
not relevant. However, in a nonlinear situation that is no longer the case.
That accounts for the denomination (HN1) for that assumption.
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- Looking at the eigenvalue λ(τ, x, ξ) ≡ 0, we can observe that the solutions
of (1.7) are simply X(t, x, ξ) = x for all t ∈ R+. Thus, the constraint (H4)
can be viewed as the strong form of a capture condition on the rays. The
speed of propagation associated with (2.1) is of the order O(ε−1). But waves
which are approximately polarized in the kernel of P 0 (like those on which
we will focus) remain located at a fixed distance of X, as long as τ ≃ 1, and
this uniformly with respect to the parameter ε ∈ ]0, 1].

In this article, we focuss on such waves. Thus, we will be able to localize the
discussion on a set

{

(τ, x) ; |x|+c τ ≤ C
}

for constants c and C independent
of the parameter ε ∈ R+. The following assumption is therefore natural and
does not reduce generality:

(H5)

[

There is a compact set K ⊂ Rd such that the fields Sj, Λ and
F evaluated at (ε, τ, x, u) are constant if τ ∈ [0, T ] and x 6∈ K.

In the following, we shall sometimes denote ∂0 := ∂τ . Profiles U ∈ L2(T)
are decomposed into Fourier series

U(θ) =
∑

m∈Z

Um ei m θ , Um ≡ Fm(U) :=

∫

T

U(θ) e− i m θ dθ .

Given m ∈ Z and some application f(τ, x; ξ) defined on [0, T ]×Rd ×Rd, we
use the shorthand notation

|f〉m(τ, x) := f
(

τ, x; m∇ϕ(τ, x)
)

, m ∈ Z ,

which simply amounts to replacing everywhere the vector ξ by m∇ϕ. For
example, |Π〉0(τ, x) is the unitary projector on the kernel of Λ0(τ, x) and
replacing ξ by m∇φ in condition (2.2) yields

(|P 0〉m |Π〉m)(τ, x) = (|Π〉m |P 0〉m)(τ, x) = 0 , ∀ (τ, x) ∈ [0, T ] × Rd .

The symbol |·〉 (without the index m) is to designate the action on L2(T)
associated with the Fourier multipliers |·〉m with m ∈ Z. For instance

(|Π〉U)(τ, x, θ) :=
∑

m∈Z

|Π〉m(τ, x) (FmU)(τ, x) ei m θ .

Note that the norm of |Π〉m is bounded by 1 for all m, so the operator |Π〉
is defined and continuous on Hs(T; Cn) for all s ∈ R. We define

Q(τ, x; ξ) := I − Π(τ, x; ξ) , tQ̄ ≡ Q , Q ◦ Q ≡ Q .

The linear map P 0(τ, x; ξ) is one-to-one on the vector space Q(τ, x; ξ)(Cn).
Therefore, it has a partial inverse (right and left) denoted by (QP 0 Q)−1

and characterized by the relations

(QP 0 Q)−1 P 0 ≡ P 0 (QP 0 Q)−1 ≡ Q .

2.2. The hierarchy of equations. To simplify, we will work in the whole
space Rd and postpone the discussion about the localization of the solutions.
We look for approximate solutions ua

ε(τ, x) to (2.1) as monophase oscillations
like in (1.10), where the phase ϕ(τ, x) is smooth with bounded derivatives.
More precisely, we impose

ϕ ∈ C∞([0, T ] × Rd; R) , ∇ϕ := (∂1ϕ, · · · , ∂dϕ) ∈ C∞
b ([0, T ] × Rd; R) .
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We fix ϕ(0, ·) by prescribing the initial data ϕ0 ≡ ϕ(0, ·) with ϕ0 as in (1.8).
We are interested in non stationary phases in the sense that

(2.6) ∃ (c, C) ∈ (R∗
+)2 ; c ≤ |∇ϕ(τ, x)| ≤ C , ∀ (τ, x) ∈ [0, T ] × R

d .

We will denote by T the torus R/Z, and elements of T are denoted θ. The
solutions uε of (2.1) are therefore sought under the form

(2.7) uε(τ, x) = Uε

(

τ, x,
ϕ(τ, x)

ε

)

, Uε ∈ C∞([0, T ] × R
d × T; Cn) ,

where the function Uε(τ, x, θ) is smooth on R+×[0, T ]×Rd×T. In particular,
it may be Taylor-expanded in ε near ε = 0, under the form

Uε(τ, x, θ) =

N
∑

k=0

εk Uk(τ, x, θ) + O(εN ) , N ≫ 1 .

Plugging the expansion (2.7) into (2.1) and re-ordering in terms of powers
of ε yields a hierarchy of equations which starts at order ε−2. One gets

+∞
∑

j=−2

εj Γj(τ, x;U0, · · · , U j+2) = 0 .

Introduce the following differential operators

D−2(τ, x; ∂θ) :=
d
∑

j=1

∂jϕ S0
j ∂θ + Λ0 ,

D−1(τ, x; ∂x, ∂θ) := ∂τϕ S0
0 ∂θ +

d
∑

j=1

∂jϕ S1
j ∂θ + Λ1 +

d
∑

j=1

S0
j ∂j ,

D0(τ, x; ∂τ , ∂x, ∂θ) := ∂τϕ S1
0 ∂θ + S0

0 ∂τ +
d
∑

j=1

S1
j ∂j ,

as well as the nonlinear expression

(2.8)
NL(τ, x, U) :=

d
∑

j=1

∂jϕ S2
j (0, τ, x, U) ∂θU

+Λ2(0, τ, x, U) U − F 2(0, τ, x, U) .

Easy computations allow to find Γ−2 = D−2 U0 − F 0 and

Γ−1 = D−2 U1 + D−1 U0 − F 1 ,

Γ0 = D−2 U2 + D−1 U1 + D0 U0 + NL(τ, x, U0) .

For k ≥ 1, one obtains Γk by linearizing the nonlinear terms in Γ0. The
equations are therefore of the same type as in the case of Γ0, up to a source
term, denoted Bk, which only depends on the profiles U j for j going from 0
to k − 1. Some computations allow to deduce that

Γk = D−2 Uk+2 + D−1 Uk+1 + D0 Uk

+
[

(Uk · ∇u)NL
]

(τ, x, U0) + Bk(τ, x, U0, · · · , Uk−1) .
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Let us now describe briefly the strategy. To obtain an approximate solution

Ua
ε (τ, x, θ) =

N+1
∑

k=0

εk Uk(τ, x, θ) , N ≫ 1

at order εN , in the sense that

QS(ε, τ, x, ua
ε ; ∂) ua

ε = O(εN ) , ua
ε(τ, x) = Ua

ε

(

τ, x, ϕ(τ,x)
ε

)

,

it is enough to solve the system

(2.9) Γj(τ, x;U0, · · · , U j+2) ≡ 0 , −2 ≤ j ≤ N − 1 .

We shall deal with the constraints Γj ≡ 0 one after the other (for j going
from −2 to N − 1). The cases j = −2 to j = 0 are dealt with in detail in
Parts 2.3 to 2.5 respectively. This gives an algorithm providing successively
pieces of the Uk, as presented in the induction property (Pk) in Part 2.6. In
the end one recovers all the Uk for k ≤ N + 1.

2.3. The preliminary polarization condition. The equation Γ−2 ≡ 0 is
the same as

(2.10) |P 0〉m U0
m ≡ 0 , ∀m ∈ Z

∗

combined with (for m = 0) :

(2.11) |P 0〉0 U0
0 − F 0 ≡ Λ0 U0

0 − F 0 ≡ 0 .

Composing (2.11) on the left with |Π〉0, one obtains the necessary condition

(H6) |Π〉0 F 0 ≡ 0 .

The polarization condition (H6) is sufficient to solve (2.11). To sum up :

Proposition 2.1. Under the assumptions which are given in Theorem 1,
the equation Γ−2 ≡ 0 reduces to the following constraint :

(2.12) U0 = |Π〉U0 + G0 with G0 := |(QP 0Q)−1〉0 F 0.

At this stage, the part |Q〉U0 ≡ G0 is entirely determined, while |Π〉U0 may
yet be chosen arbitrary. For m ∈ Z∗, assumption (H4) and (2.6) yield

dim
(

ker |P 0〉m(τ, x)
)

= p , ∀ (τ, x) ∈ [0, T ] × R
d .

One has p degees of freedom on U0
m. In particular, one can demand that the

oscillation uε be non trivial, by choosing a coefficient U0
1 in such a way that

(2.13) U0
1 ≡ F1(U

0) ≡ |Π〉1 U0
1 6≡ 0 .

In the case when p = 1, using (2.4) one finds that for m ∈ Z∗,

(2.14) U0
m(τ, x) = u0

m(τ, x) |X〉m(τ, x) , u0
m ∈ C∞([0, T ] × R

d; C)

while for m = 0, one must have

(2.15) U0
0 = u0

0 |X〉0 + G0 , u0
0 ∈ C∞([0, T ] × R

d; C) .

The restriction (2.13) is guaranteed as soon as u0
1(τ, x) 6≡ 0.
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2.4. The eikonal equation. In this Section 2.4, we will determine the
phase ϕ, a part of |Π〉U0, and a part of |Q〉U1.

2.4.1. Introduction. This Paragraph 2.4.1 is devoted to the study of equation
Γ−1 ≡ 0. After proving some preparatory algebraic results, we begin the
analysis by deducing from the equation Γ−1 ≡ 0 an equation on the phase.
The result is summarized below.

Proposition 2.2. Under the assumptions which are given in Theorem 1,
the equation Γ−1 ≡ 0 implies that the phase satisfies the eikonal equation
(1.12) where the hamiltonian h(τ, x, ξ) is defined on T ∗ and is an eigenvalue
of the matrix H(τ, x, ξ) defined in (2.31) in terms of Λ0, Λ1, S0

j with j ≥ 0

and S1
j with j ≥ 1. Up to shrinking T ∈ R∗

+, we can obtain (2.6).

Finally additional information on U0 and U1 is also deduced. The statement
requires some additional notation so we postpone it to Paragraph 2.4.7.

2.4.2. A preliminary algebraic computation. The following lemma, which is
classical in this context, will be very useful in the following.

Lemma 2.1. One has

(2.16) |Π〉m S0
j |Π〉m ≡ 0 , ∀ (j,m) ∈ {1, · · · , d} × Z

∗ .

Proof. Differentiating the relation (2.2) with respect to the direction ξj

gives, for any (τ, x, ξ) in [0, T ] × T ∗
\0 :

(2.17) i S0
j (τ, x) Π(τ, x; ξ) + P 0(τ, x; ξ) (∂ξj

Π)(τ, x; ξ) = 0 .

One then applies the operator Π to that equation and one uses again (2.2),
to find

(2.18) Π(τ, x; ξ) S0
j (τ, x) Π(τ, x; ξ) = 0 , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗

\0 .

Finally noticing that m∇ϕ(τ, x) is nonzero due to (1.8) and to the fact
that m 6= 0, we get directly (2.16).

✷

This result 2.1 is due to the fact that the group velocity (∇ξλ)(τ, x; ξ) which
is associated with a trivial eigenvalue λ ≡ 0 is simply zero.

Note that |Π〉0 is defined using only Λ0. Since the matrices S0
j and Λ0

have been chosen independently, there is no reason for (2.16) to be satisfied
when m = 0. This leads to the following supplementary assumption :

(HN2) |Π〉0 S0
j |Π〉0 ≡ 0 , ∀ j ∈ {1, · · · , d} .

The mode m = 0 is not sollicited in a linear situation. Thus, the condition
(HN2) is useful only in a nonlinear framewok.
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Remark 2.1. The condition p = p0 clearly relates the behaviours of P 0

on T ∗
0 and T ∗

\0. In particular, the map Π : T ∗ −→ Sn becomes continuous.

Taking the limit ξ → 0 in (2.18) gives

lim
|ξ|−→0

Π(τ, x; ξ) S0
j (τ, x) Π(τ, x; ξ) = (|Π〉0 S0

j |Π〉0)(τ, x) = 0 .

This is precisely (HN2).

2.4.3. Some polarization constraints. Since the constraint Γ−1 ≡ 0 is linear,
it may be decomposed into conditions on the Fourier coefficients Γ−1

m . For
every m ∈ Z∗, one gets

(2.19) |P 0〉m U1
m + i m ∂τϕ S0

0 U0
m + |P 1〉m U0

m +
d
∑

j=1

S0
j ∂jU

0
m = 0

while for m = 0 one has

(2.20) |P 0〉0 U1
0 + |P 1〉0 U0

0 +
d
∑

j=1

S0
j ∂jU

0
0 = F 1 ≡ F0 F 1 .

Let us introduce the following matrix, for each point (τ, x, ξ) ∈ [0, T ] × T ∗ :

(2.21) G(τ, x; ξ) := i
d
∑

j=1

[

Π S0
j (∂jΠ) Π

]

(τ, x; ξ) .

The application G(τ, x; ξ) inherits properties which are stated below and
which are proved in the Appendix 5, paragraph 5.2.

Lemma 2.2. For all (τ, x, ξ) ∈ [0, T ] × T ∗, the operator G(τ, x; ξ) can be
identified with the action of some hermitian matrix which is of size p0 × p0

when ξ ∈ T ∗
0 and of size p × p when ξ ∈ T ∗

\0. The application G is of class

C∞ on [0, T ] × T ∗
\0 with values in Sn.

Suppose moreover that

(2.22) The fields of matrices Sj and Λ are real-valued.

Then, the function G ∈ C∞([0, T ] × T ∗
\0;Sn) satisfies

(2.23) G(τ, x;−ξ) = − Ḡ(τ, x; ξ) , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗ .

Let us also define the matrix

(2.24) Gm :=
d
∑

j=1

|Π〉m S0
j (∂j |Π〉m) |Π〉m , m ∈ Z .

Now, we can come back to the study of (2.19) and (2.20).

• The case m = 0. We recall (2.12) which yields

∂jU
0
0 = |Π〉0 ∂jU

0
0 + (∂j |Π〉0) |Π〉0 U0

0 + |Q〉0 ∂jG
0 .
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Compose (2.20) on the left by |Π〉0. Then, use (HN2) in order to get the
polarization constraint

(2.25)

[

|Π P 1 Π〉0 + G0

]

U0
0 = |Π〉0 F 1 − |Π P 1〉0 G0

−
∑d

j=1 |Π〉0 S0
j |Q〉0 ∂jG

0 . •

• The case m ∈ Z∗. Using (2.12), one has

∂jU
0
m = ∂j(|Π〉m U0

m) = |Π〉m ∂jU
0
m + (∂j |Π〉m) |Π〉m U0

m .

To get rid of U1
m in (2.19) we can apply (right and left) the operator |Π〉m.

Using Lemma 2.1, we find the polarization constraint

(2.26)
[

i m ∂τϕ |Π S0
0 Π〉m + |Π P 1 Π〉m + Gm

]

U0
m = 0 .

•

Now, let us study Gm in more detail. Recall that

(2.27) ∂j |Π〉m(τ, x) = |∂jΠ〉m(τ, x) +
d
∑

k=1

m ∂2
jkϕ(τ, x) |∂ξk

Π〉m(τ, x) .

One sees, in the formula (2.24) defining Gm where ∂j |Π〉m is replaced as
indicated in (2.27), the quantities |∂jΠ〉m for j ∈ {1, · · · , d}, which would not
appear if the matrices Λ0 and S0

j were constant. One also notices in (2.27)
the presence of second order derivatives of ϕ, which would not appear if the
phase ϕ was linear. Under conditions i) and ii) of the Introduction, those
contributions would therefore disappear, and we would simply have to deal
with Gm ≡ 0 for all m ∈ Z.

Due to (2.27), one has G0 ≡ −i |G〉0 with G as in (2.21). When defining G0,
the contributions ∂2

jkϕ(τ, x), which are multiplied by the factor m = 0, play
no role. Although that is not the case at first sight for Gm when m ∈ Z∗,
it turns out that they also vanish. This fact is pointed out in the next
statement, where it appears that Gm only depends on ∇ϕ(τ, x), and can
easily be deduced from G. As the proof of that statement (which relies on
algebraic computations) is rather technical, we postpone it to the appendix
5, paragraph 5.3.

Lemma 2.3. Consider a smooth phase ϕ satisfying (1.8). Then

(2.28) i Gm ≡ i
d
∑

j=1

|Π〉m S0
j (∂j |Π〉m) |Π〉m ≡ |G〉m , ∀m ∈ Z

where G is defined in (2.21).

2.4.4. Long-time hamiltonians, and the eikonal equation. In this section we
shall concentrate on the equation (2.26) in the case when m = 1. This will
allow to deduce an equation on the phase ϕ. Lemma 2.3 implies that one is
considering the equation

(2.29)
{

i ∂τϕ |Π S0
0 Π〉1 + |Π (P 1 − iG) Π〉1

}

U0
1 = 0 .
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In view of (1.2), the matrix ΠS0
0 Π is positive definite on Π(Cn). Therefore

(2.30) ∃M ∈ Sn ; M ≡ Π M Π ≡ M∗ , M∗ M = Π S0
0 Π ,

and one has

∃ c ∈ R∗
+ ; (M − c Π)(τ, x; ξ) ≥ 0 , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗ .

In particular, the map M is invertible as an operator from Π(Cn) to itself.
For (τ, x, ξ) ∈ T ∗, we can introduce the matrix

(2.31) H := (Π M Π)−1 Π (G + i P 1) Π (Π M Π)−1 = H∗ ≡ Π H Π .

In view of the definition of H and due to the Lemma 2.2, the matrix H is
hermitian. Hence, it is diagonalizable with real eigenvalues. Let us denote
by spec H ⊂ R the set of its eigenvalues. We assume that

(H7)

[

There is an eigenvalue h of H whose multiplicity
µ(τ, x, ξ) ≡ µ ∈ N∗ does not depend on (τ, x, ξ) ∈ [0, T ] × T ∗

\0.

From now on, we assume (H7) and we select accordingly some eigenvalue h of
H which is thus defined on [0, T ]×T ∗

\0. For (τ, x, ξ) ∈ [0, T ]×T ∗
\0, we denote

by Πh(τ, x; ξ) the unitary projector onto the kernel of (H −h I)(τ, x; ξ). For
(τ, x, ξ) ∈ [0, T ] × T ∗

\0, we denote by Qh(τ, x; ξ)) the unitary projector onto

the kernel of (Π − Πh)(τ, x; ξ).

The Assumption (H7) implies that the maps h and Πh are C∞ on [0, T ]×T ∗
\0.

The field H(τ, ·) is in fact defined on the whole of T ∗. It is continuous on
T ∗
\0. However, when p0 > p, it is possible that H(τ, ·) is not continuous on

T ∗ since the behaviour of Π(τ, ·) near T ∗
0 is not known.

The unitary projector onto the kernel of |H〉0(τ, x) ≡ H(τ, x; 0) is denoted
by Πh

0(τ, x). The spectrum of H(τ, x; 0) may have nothing to do with that of
the matrices H(τ, x; ξ) for ξ 6= 0. This is the reason why the function h has
not been defined on T ∗

0 . However, when p0 = p, both maps H and h may
be continuously extended from T ∗

\0 to T ∗, in which case h(τ, x; 0) may be

defined without ambiguity. Before going further, we put aside the following
result which will be proved in the Appendix 5, paragraph 5.4

Lemma 2.4. Suppose (2.22) and that p0 = p = 1. Then, the function h
is continuous on [0, T ] × T ∗ and it is odd with respect to the variable ξ. In
particular, it satisfies

(2.32) h(τ, x; 0) = 0 , ∀ (τ, x) ∈ [0, T ] × R
d .

From now on, the phase ϕ is required to satisfy the Cauchy problem (1.12)
which has a smooth, C∞ solution locally in time. Up to shrinking T ∈ R∗

+,
the function ϕ satisfies (2.6). The Proposition 2.2 is proved.
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2.4.5. The extra polarization condition. Remark that equation (1.12) implies
that (2.12) and (2.29) become

U0
1 ≡ |Π〉1 U0

1 , |H − h Π〉1 |M〉1 U0
1 ≡ 0 .

Let us comment on those equations. In fast times t ≃ 1, one recovers
the first polarization constraint, along |Π〉1(C

n). To go beyond that time,
up to the slow time τ ≃ 1, a new, intermediate polarization is required,
along |Πh〉1(C

n). To summarize, one has

(2.33) U0
1 ≡ |Π〉1 U0

1 ≡ |(Π M Π)−1 Πh (Π M Π)〉1 U0
1 .

Solving (2.26) therefore reduces to imposing (1.12) and (2.33). The scalar,
nonlinear evolution equation (1.12) can be interpreted as an eikonal equation
corresponding to a long time propagation (τ ≃ 1) of oscillatory quantities

of the type ei ϕ(τ,x)/ε, polarized according to (2.33).

One can consider the function h(τ, x; ξ) to be some long-time hamiltonian
associated with the eigenvalue λ ≡ 0. There are, with this formulation,
as many long-time hamiltonians as there are eigenvalues (counted without
their multiplicity) in the spectrum of H. These are at most p.

When p = 1, The discussion is easier. The matrix H can ve viewed as a
scalar real-valued function and we can talk about the long-time hamiltonian.
Besides, the assumption (H7) is necessarily verified (with p̃ = m = 1).

When p = 1, we have simply

Πh ≡ Π , Xh ≡ X , M ≡ (tX̄ S1
0 X)

1

2 ∈ R∗
+ .

Let us define Qh := Π − Πh. Then, retain the following relations

I ≡ Q + Qh + Πh , Πh ◦ Π ≡ Π ◦ Πh ≡ Πh .

The application (H − h I)(τ, x; ξ) is linear and bijective if we look at it as
acting on the vector space Qh(τ, x; ξ)(Cn). It has a partial (left and right)

inverse which is denoted by
(

Qh (H−h I) Qh
)−1

and which is characterized
through the identities

(Qh (H − h I) Qh)−1 (H − h I) ≡ (H − h I) (Qh (H − h I) Qh)−1 ≡ Qh .

2.4.6. Study of the harmonics. Recall that the phase ϕ has been determined
through (1.12). In the present dispersive context, the harmonics m ϕ with
m 6= 1 are not sure to be still solutions to (1.12). Nothing guarantees that

(2.34) m ∂τϕ(τ, x) = h
(

τ, x;m∇ϕ(τ, x)
)

, ∀ (τ, x) ∈ [0, T ] × R
d .

Let us define

(2.35) HA :=
{

0
}

∪
{

m ∈ Z
∗ ; relation (2.34) is satisfied

}

.

Due to (1.12), one has 1 ∈ HA. In (2.35), one imposes also 0 ∈ HA. This
convention must be commented. Recall that p0 ≥ p ≥ 1 meaning that
det P 0(τ, x; 0) = detΛ0(τ, x) = 0, implying that the trivial phase ϕ ≡ 0 is
characteristic. Thus, it is natural to incorporate the mode m = 0 inside
HA. On the other hand, in the context of Lemma 2.4, the relation (2.34) is
obvious for m = 0.
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Since U0(0, ·) is real valued, assumption (2.13) requires that at time τ = 0
both harmonics m = −1 and m = 1 have nontrivial contributions. If the
matrices Sj and Λ are real valued, one expects that oscillations in e− i ϕ/ε

and ei ϕ/ε will propagate and interact due to the nonlinearity of the equation.
Generically, even if U0

0 (0, ·) ≡ 0, an average mode U0
0 (τ, ·) 6≡ 0 will therefore

be produced for τ ∈ R∗
+. The question of the creation and propagation

of that mode (and the others) is a delicate matter. To deal with it, we
introduce the following assumptions:

(HN3)

There is a constant c ∈ R∗
+ such that for every m ∈ HA :

c < inf
(τ,x)∈[0,T ]×Rd

min
h 6=µ∈spec H

∣

∣(µ − h)
(

τ, x; m∇ϕ(τ, x)
)∣

∣ ,

as well as:

(HN4)

There is a constant c ∈ R∗
+ such that for every m 6∈ HA :

c < inf
(τ,x)∈[0,T ]×Rd

min
µ∈spec H

∣

∣m ∂τϕ − µ
(

τ, x;m∇ϕ(τ, x)
)∣

∣ .

Remark 2.2. The assumption (HN3) is necessarily verified when p = 1.
Indeed, when p = 1, there is no spectral value µ ∈ specH such that µ 6= h.
Therefore, there is nothing to check concerning (HN3).

Remark 2.3. Fix any m ∈ HA. Due to (1.8) and (H5), there is a constant
cm ∈ R∗

+ such that

cm < inf
(τ,x)∈[0,T ]×Rd

min
h 6=µ∈spec H

∣

∣(µ − h)
(

τ, x;m∇ϕ(τ, x)
)∣

∣ .

Assumption (HN3) always holds when the cardinal of HA is finite. If it
is not, the problem lies for large values of |m|. Besides, one is certain to
have (HN3) if there is an asymptotic spectral gap near h, in the sense that

0 < inf
(τ,x)∈[0,T ]×Rd

min
h 6=µ∈spec H

lim inf
|ξ|→+∞

|(µ − h)
(

τ, x; ξ)| .

Remark 2.4. According to the condition (HN4), if the function m ϕ is not
totally characteristic along the mode h, then it can be characteristic at no
point (τ, x) ∈ [0, T ] × Rd and for no mode µ ∈ spec H. Such a separation
between characteristic and non characteristic harnonics is very classical in
geometrical optics. This information will later play an important role when
it comes to letting some operators act continuously in Hs.

2.4.7. Polarization constraints on U0 and U1. For (τ, x) ∈ [0, T ]×Rd, note
Πh

0(τ, x) or |Πh〉0(τ, x) the unitary projector onto the kernel of |H〉0(τ, x).
Define also Qh

0 := |Π〉0 − Πh
0 and the following action (as a formal series):

|(QP 0 Q)−1〉U :=
∑

m∈Z

|(QP 0 Q)−1〉m (FmU)(τ, x) ei m θ .

Introduce the projectors

Πh
M := Πh (Π M Π)−1 , (Πh

M )∗ ≡ Πh∗
M = (ΠM Π)−1 Πh .

In this section, we shall prove the following proposition.
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Proposition 2.3. Under the assumptions of Theorem 1 and with the above
notation, the equation Γ−1 ≡ 0 implies the following polarization constraints:

- If m 6∈ HA, then U0
m ≡ 0 ;

- If m ∈ HA \ {0}, then U0
m ≡ |Π〉mU0

m ≡ |Πh∗
M (ΠM Π)〉m U0

m ;

- If m = 0, then |Π〉0 U0
0 ≡ |Πh∗

M 〉0 |Π M Π〉0 U0
0 + G0,h with :

(2.36)
G0,h := i |Π M Π〉−1

0

(

Qh
0 |H〉0 Qh

0

)−1
|Π M Π〉−1

0 K1 ,

K1 := F 1 − |P 1〉0 G0 −
∑d

j=1 S0
j |Q〉0 ∂jG

0 .

- And finally

(2.37)
|Q〉U1 = |(QP 0 Q)−1〉

{

F 1− ∂τϕ S0
0 ∂θU

0 − Λ1 U0

−
∑d

j=1 ∂jϕ S1
j ∂θU

0 −
∑d

j=1 S0
j ∂jU

0
}

.

Combining the Propositions 2.1 and 2.3, we can see that the mean value U0
0

of the principal profile U0 must be adjusted according to

(2.38) U0
0 ≡ |Πh∗

M 〉0 |Π M Π〉0 U0
0 + G0,h + |(QP 0 Q)−1〉0 F 0 .

Proof. Let us go back to equation (2.26), which for the moment has only
been studied in the case when m = 1. Using (2.12) and the previous notation
(2.31), one gets

(2.39)
(

|H〉m − m ∂τϕ I
)

|Π M Π〉m
(

|Π〉m U0
m

)

≡ 0 , ∀m ∈ Z
∗ .

If m 6∈ HA, assumption (HN4) implies that the matrix |H〉m − m ∂τϕ I is
invertible. In view of (2.12), the condition (2.39) reduces to :

(2.40) U0
m ≡ |Π〉m U0

m ≡ 0 , ∀m 6∈ HA .

On the opposite if m ∈ HA\{0}, one gets |H〉m −m ∂τϕ I = |H −h I〉m and
(2.39) becomes the polarization condition

(2.41) U0
m ≡ |(ΠM Π)−1 Πh (ΠM Π)〉m U0

m , ∀m ∈ HA \ {0} .

The case m = 0 must be dealt with separately. Taking into account the
notation (2.36), the relation (2.25) is the same as

|H〉0 |Π M Π〉0 U0
0 = i

(

|Π M Π〉0
)−1

|Π〉0 K1 .

This enforces the compatibility condition

(H8) Πh
0

(

|Π M Π〉0
)−1

{

F 1 − |P 1〉0 G0 −
d
∑

j=1

S0
j |Q〉0 ∂jG

0
}

≡ 0 .

Under condition (C1), one has the expected result on U0
0 . The remaining

relation (2.37) comes from studying the equation |Q〉Γ−1 ≡ 0.

✷
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2.4.8. Smoothness of the profiles. More is needed than just identifying the
coefficients |Q〉m U1

m through (2.37). To complete the analysis, one needs
to give a meaning in Hs([0, T ] × Rd × T; Cn) to the profiles U j(t, x, θ),
and this requires understanding how the various operators introduced in
this construction act on Hs. To deal with |(QP 0 Q)−1〉, we introduce the
following assumption:

(HN5) sup
m∈Z

‖ |(QP 0 Q)−1〉m ‖Hs([0,T ]×Rd) < ∞ , ∀ s ∈ R ,

which is enough to ensure the boundedness of the linear map

|(QP 0 Q)−1〉 : Hs([0, T ] × R
d × T) → Hs([0, T ] × R

d × T) .

Remark 2.5. Assumption (HN5) amounts to the same thing as requiring
the existence of a a constant c ∈ R∗

+ such that for every m ∈ Z :

(2.42) c < inf
(τ,x)∈[0,T ]×Rd

min
0 6=µ∈spec P 0

∣

∣µ
(

τ, x;m∇ϕ(τ, x)
)∣

∣ .

For m ∈ Z fixed, the corresponding minoration with a constant cm ∈ R∗
+ is

a consequence of (H5), (H4) and (HN1). Thus, the problem lies for large
values of |m|, where (2.42) may be difficult to check.

Remark 2.6. We can substitute (HN5) to the more restrictive assumption

(2.43) dim
(

ker P̃ 0(τ, x; ξ̃)
)

= p , ∀ (τ, x, ξ̃) ∈ [0, T ] × T ∗
\0 × R ,

where P̃ 0(τ, x; ξ̃) :=
d
∑

j=1

i ξj S0
j (τ, x) + ξd+1 Λ0(τ, x) and ξ̃ := (ξ, ξd+1).

The condition (2.43) is clearly an extension of (H3). It gives additional
information on the structure of |ξ|−1 P 0(τ, x; ξ) whenb |ξ| → +∞. Define

µ̃(τ, x; ξ̃) the eigenvalues of P̃ 0(τ, x; ξ̃). One has (for m ∈ Z∗)

(2.44) µ
(

τ, x; m∇ϕ(τ, x)
)

= µ̃
(

τ, x;∇ϕ(τ, x),m−1
)

.

Due to (H5), (2.6) and (2.44), computing (2.42) for large values of |m|

needs only to look at directions ξ̃ which are located in a compact set of
T ∗
\0 × R. Exploiting (H5) and the continuity on [0, T ] × T ∗

\0 × R of the

nonzero eigenvalues of P̃ 0, we can deduce (2.42) and therefore (HN5).

Remark 2.7. Propositions 2.1 and 2.3 imply that at this stage, the phase is
known, as well as a large part of the profile U0 (it remains to find |Υh〉U0),
and part of the profile U1 (namely |Π〉U1).

2.5. The transport equation. In this Section 2.5, we determine |Π〉U0

and part of the expression |Π〉U1. We start by translating the equation
Fm(Γ0) ≡ 0. We get

(2.45)

|P 0〉m U2
m + i m ∂τϕ S0

0 U1
m + |P 1〉m U1

m +
∑d

j=1 S0
j ∂jU

1
m

+ i m ∂τϕ S1
0 U0

m + S0
0 ∂τU

0
m +

∑d
j=1 S1

j ∂jU
0
m

+Fm

(

NL(τ, x, U0)
)

= 0 .
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Applying the partial inverse |(ΠM Π)−1〉m to (2.45) allows to find that

i
[

m ∂τϕ |Π〉m − |H〉m
]

|Π M Π〉m U1
m

+ |(ΠM Π)−1〉m
[

i m ∂τϕ S0
0 + |P 1〉m

]

|Q〉m U1
m

+ |(ΠM Π)−1〉m

d
∑

j=1

S0
j ∂j

(

|Q〉m U1
m

)

+ |Π M Π〉m ∂τU
0
m(2.46)

+ |(ΠM Π)−1〉m

{

d
∑

j=1

S1
j ∂jU

0
m + i m ∂τϕ S1

0 U0
m

}

+ |(ΠM Π)−1〉m Fm

(

NL(τ, x, U0)
)

= 0 .

The analysis of (2.46) is done in two steps. In Paragraphs 2.5.1 to 2.5.4, we
study the constraint obtained by considering |Πh〉m (2.46) when m belongs
to HA. Then, in Paragraph 2.5.5, we study the other situations.

2.5.1. Preliminaries. For m ∈ HA, one has by definition

|Πh〉m
[

m ∂τϕ |Π〉m − |H〉m
]

= (m ∂τϕ − |h〉m) |Πh〉m = 0 .

For any m ∈ HA, we define Ũ0
m := |Πh (Π M Π)〉m U0

m ≡ |Πh〉m Ũ0
m which

is the part of U0 still unknown to us. We shall define it by computing
the equation it satisfies. Apply |Πh〉m to (2.46) and use (2.37) to replace
|Q〉m U1

m accordingly. By developing the induced expression, that is

− |Πh
M 〉m

[

i m ∂τϕ S0
0 + |P 1〉m + S0(τ, x; ∂x)

]

|(QP 0 Q)−1〉m
[

i m ∂τϕ S0
0 + |P 1〉m + S0(τ, x; ∂x)

] [

|Πh∗
M 〉m Ũ0

m

]

.

we get the following system of constraints (indexed by m ∈ HA):

(2.47)

|Πh〉m ∂τ Ũ
0
m +

d
∑

j=1

|Πh
M 〉m S1

j |Πh∗
M 〉m ∂jŨ

0
m

+Dm(τ, x; ∂x) Ũ0
m + |Πh〉m Lm(τ, x) Ũ0

m

+ |Πh
M 〉m Fm

(

NL(τ, x, U0)
)

+ |Πh〉m Fm(τ, x) = 0 ,

where Dm(τ, x; ∂x) denotes the second order differential operator

Dm(τ, x; ∂x) := |Πh
M 〉m

{

d
∑

i,j=1

Dij
m(τ, x) ∂2

ij +
d
∑

k=1

Dk
m(τ, x) ∂k

}

|Πh∗
M 〉m .

The operator involved above is anti-selfadjoint, hence the matrices D
ij
m and

Dk
m are hermitian. One has precisely

D
ij
m := − |Π〉m S0

i |(QP 0 Q)−1〉m S0
j |Π〉m ,

Dk
m := − |Π〉m

{

[

i m ∂τϕ S0
0 + |P 1〉m

]

|(QP 0 Q)−1〉m S0
k

}

|Π〉m

− |Π〉m

{

S0
k |(QP 0 Q)−1〉m

[

i m ∂τϕ S0
0 + |P 1〉m

]

}

|Π〉m

− |Π〉m

{

S0
k |(QP 0 Q)−1〉m S0(τ, x, ∂x)

(

Πh∗
M

)

}

|Π M Π〉m

− |Π〉m

{

S0(τ, x, ∂x)
(

|(QP 0 Q)−1〉m S0
k |Πh∗

M 〉m
)

}

|Π M Π〉m .
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The first line in (2.47) is clearly compatible with energy estimates (it has
the structure of a quasilinear symmetric system), however that is much less
apparent for the second line (due to the presence of Dm). That question is
examined in the next Paragraphs 2.5.2 and 2.5.3.

2.5.2. Erasing the second order terms. In fact, the influence of the second
order terms is reduced to zero, as is apparent in the following statement.

Lemma 2.5. For all m ∈ HA, one has

(2.48) Dij
m + Dji

m ≡ 0 , ∀ (i, j) ∈ {1, · · · , d}2 .

Proof. This is an adaptation of arguments which are classical in diffractive
nonlinear geometric optics, see for instance [7]. Let us explain how the
general procedure can be adapted in the current context. One differentiates
the relation ΠS0

j Π ≡ 0 in the direction ξi and one applies the projector Π
on both sides. This leads to

(2.49) Π (∂ξi
Π) S0

j Π + ΠS0
j (∂ξi

Π) Π ≡ 0 .

On the other hand one has (recalling that Q ≡ I − Π)

(QP 0 Q)−1 P 0 ≡ I − Π , P 0 (QP 0 Q)−1 ≡ I − Π ,

which one also differentiates in direction ξi and composes with Π (right or
left). This gives

(2.50) (QP 0 Q)−1 S0
i Π ≡ i (∂ξi

Π) Π , Π S0
i (QP 0 Q)−1 ≡ i Π (∂ξi

Π) .

By definition, one has

D
ij
m + D

ji
m ≡ −

∣

∣Π S0
i (QP 0 Q)−1 S0

j Π + Π S0
j (QP 0 Q)−1 S0

i Π
〉

m
.

Use (2.50) in order to recognize (2.49), giving rise to (2.48).

✷

2.5.3. More about the structure of one order terms. Consider the matrix

Sm0 := |Πh
M 〉m S0

0 |(Πh
M )∗〉m = (Sm0)

∗

and, for all j ∈ {1, · · · , d}, the matrices

Smj := |Πh
M 〉m S1

j |(Πh
M )∗〉m

− |Πh
M 〉m

{

[

i m ∂τϕ S0
0 + |P 1〉m

]

|(QP 0 Q)−1〉m S0
j

}

|(Πh
M )∗〉m

− |Πh
M 〉m

{

S0
j |(QP 0 Q)−1〉m

[

i m ∂τϕ S0
0 + |P 1〉m

]

}

|(Πh
M )∗〉m

− |Πh
M 〉m

{

S0
j |(QP 0 Q)−1〉m S0(τ, x, ∂x)

(

|(Πh
M )∗〉m

)

}

|Πh〉m

− |Πh
M 〉m

{

S0(τ, x, ∂x)
(

|(QP 0 Q)−1〉m S0
j |(Πh

M )∗〉m
)

}

|Πh〉m .

It is clear that the matrix Sm0 is hermitian and that it is positive definite
when restricted to |Πh〉m (Cn). On the other hand, the matrices Smj with

j ∈ {1, · · · , d} are by construction hermitian on |Πh〉m (Cn).
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With the preceding conventions, the equation (2.47) becomes

(2.51)
Sm0 ∂τ Ũ

0
m +

∑d
j=1 Smj ∂jŨ

0
m + Lm(τ, x) Ũ0

m + Fm(τ, x)

+ |Πh
M 〉m Fm

(

NL(τ, x, U0)
)

= 0 .

The first line of (2.51) is a quasilinear symmetric hyperbolic system. Thus, it
is compatible with energy estimates in Hs. We can obtain more information
about it, when assuming the following simplified setting (implying that only
one eigenvalue h of H is at play and that Πh

M ≡ Πh ≡ Π ≡ M) where we
recall that the constant µ is the one appearing in (H7) :

(2.52) µ = p , Π S1
0 ≡ S1

0 Π ≡ Π S1
0 Π ≡ Π .

Lemma 2.6. Assume (2.52). Then, the energy (meaning the L2 norm in θ

of the profile Ũ0
m) is propagated along the group velocity associated with the

Hamiltonian h(τ, x; ξ). This is due to the fact that

(2.53) Sm0 ∂τ + · · · + Smd ∂d =
[

∂τ − |∇ξh〉m · ∇x

]

|Π〉m .

Proof. Let us differentiate (2.18) (considered for the index j = k) in the
direction ξj . One gets

(2.54) Π S0
k (∂ξj

Π) + (∂ξj
Π) S0

k Π = 0 , ∀ (j, k) ∈ {1, · · · , d}2 .

Relation (2.17) can be written

(2.55) (QP 0 Q)−1 S0
j Π = i (∂ξj

Π) Π , ∀ j ∈ {1, · · · , d}

or taking the adjoint ΠS0
j (QP 0 Q)−1 = iΠ (∂ξj

Π). One can use (2.52),

(5.2) and (2.55) to simplify Smj into

Smj = − i |Π〉m
{

|P 1 (∂ξj
Π)〉m + |(∂ξj

Π) P 1〉m + i S1
j

}

|Π〉m
− i |Π〉m

{

|∂ξj
Π〉m S0(τ, x, ∂x) |Π〉m

}

|Π〉m
− i |Π〉m

{

S0(τ, x, ∂x) |(∂ξj
Π) Π〉m

}

|Π〉m .

In the last line, the derivatives contained in S0(τ, x, ∂x) can act either
on |∂ξj

Π〉m or on |Π〉m. Using (2.16) and (5.5), we obtain

|Π〉m
{

S0(τ, x, ∂x) |(∂ξj
Π) Π〉m

}

|Π〉m =

d
∑

k=1

|Π〉m S0
k ∂k

(

|∂ξj
Π〉m

)

|Π〉m .

So Smj becomes

Smj = − i |Π〉m

{

|P 1 (∂ξj
Π) + (∂ξj

Π) P 1〉m + i S1
j

}

|Π〉m

− i |Π〉m

{

d
∑

k=1

|(∂ξj
Π) S0

k ∂kΠ + S0
k (∂2

kξj
Π)〉m

}

|Π〉m

− i |Π〉m

{

∑

i,k

∂2
kiϕ |∂ξj

Π S0
k ∂ξi

Π + S0
k ∂2

ξiξj
Π〉m

}

|Π〉m .

Using (2.52), the relation H Π ≡ Π H ≡ h Π can be written

i Π P 1 Π + i
d
∑

k=1

Π S0
k (∂kΠ) ≡ h Π .
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Taking an ξj derivative of that relation and composing on both sides by Π
gives, using again (5.2),

i Π P 1 (∂ξj
Π) Π + i Π (∂ξj

Π) P 1 Π − Π S1
j Π

+ i
d
∑

k=1

Π (∂ξj
Π) S0

k (∂kΠ) Π + i

d
∑

k=1

Π S0
k (∂2

kξj
Π) Π ≡ (∂ξj

h) Π .

Replacing ξ by m∇ϕ, one sees that the two first lines in Smj are reduced
to − |∂ξj

h〉m |Π〉m. To recover (2.53), it is therefore enough to show that the
last line in Smj vanishes. But separating in the sum the index couples (i, k)
for which i ≤ k and k ≤ i, that line is nothing but

− i |Π〉m

{

∑

1≤k≤i≤d

∂2
kiϕ

∣

∣∂ξj

[

Π S0
k (∂ξi

Π) + Π S0
i (∂ξk

Π)
〉

m

}

|Π〉m

which is equal to zero since P 0 Π ≡ 0 implies that

0 ≡ Π ∂2
ξiξk

(P 0 Π) ≡ i
[

Π S0
k (∂ξi

Π) + Π S0
i (∂ξk

Π)
]

.

The lemma 2.6 is proved.
✷

2.5.4. Solving the equation on the unknown part of U0. It remains to identify
the expressions Ũ0

m with m ∈ HA. Introduce the auxiliary function

Ũ0(τ, x, θ) :=
∑

m∈HA

Ũ0
m(τ, x) ei m θ ≡ |Πh〉 Ũ0 :=

∑

m∈HA

|Πh〉m Ũ0
m(τ, x) ei m θ .

Consider also the actions |Πh
M 〉, |Πh∗

M 〉, Sj , L and F which are defined on

L2(T) through the Fourier multipliers |Πh
M 〉m, |Πh∗

M 〉m, Smj , Lm and Fm

indexed only by m ∈ HA. For instance

Sj Ũ0(τ, x, θ) :=
∑

m∈HA

Smj(τ, x) Ũ0
m(τ, x) ei m θ .

With these conventions, taking into account (2.38), we have

(2.56) U0 = Υ0 Ũ0 := |Πh∗
M 〉 Ũ0 + G0,h + G0 .

The equations (2.51) indexed by m ∈ HA are coupled together. They form
a system which can be abbreviated to

(2.57)

S0 ∂τ Ũ
0 +

∑d
j=1 Sj ∂jŨ

0 + L Ũ0 + F

+ |Πh
M 〉

[

∑d
j=1 ∂jϕ S2

j (0, τ, x,Υ0 Ũ0)
]

|Πh
M 〉 ∂θŨ

0

+ |Πh
M 〉 Λ2(0, τ, x,Υ0 Ũ0) |Πh

M 〉 Ũ0 + F 2(0, τ, x,Υ0 Ũ0) = 0 .

It is supplemented by an initial condition:

(2.58) Ũ0(0, x, θ) = Ũ
0
(x, θ) ≡ |Πh〉 Ũ

0
(x, θ) , Ũ

0
∈ H∞(Rd×T; Cn) .

The equation (2.57) is a quasilinear hyperbolic system which can be viewed
as acting on the functional space |Πh〉Hs([0, T ]×Rd×T; Cn). In this frame-
work, all operators involving derivatives are antiselfadjoint. Moreover, S0

is definite positive. It follows that the Cauchy problem (2.57)-(2.58) can be
solved by applying the standard theory. We can find some T ∈ R+

∗ and a

unique solution Ũ0 ∈ H∞([0, T ] × Rd × T; Cn) to (2.57)-(2.58).
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2.5.5. Report on the constraint Γ0 ≡ 0. The discussion about Γ0 ≡ 0 can be
divided in four intermediate steps.

i) The determination of Ũ0 (and therefore of U0 = Υ0 Ũ0) which has been
performed in the Paragraph 2.5.4.

ii) The identification of |Q〉U1 through (2.37).

At this stage, we can write

(2.59) Uk = |Q〉Uk + Ŭk + |(ΠM Π)−1〉 Ũk , Ŭk =
∑

m∈Z

Ŭk
m ei m θ

with

Ŭk :=
∑

m∈HA

|(ΠM Π)−1 Qh (ΠM Π)〉m Uk
m ei m θ +

∑

m6∈HA

|Π〉m Uk
m ei m θ ,

Ũk :=
∑

m∈Z

Ũk
m ei m θ , Ũk

m :=

{

0 if m ∈ HA ,
|Πh (ΠM Π)〉m Uk

m if m 6∈ HA .

Observe that, due to the spectral assumptions (HN3) and (HN4), the map

Uk 7−→ Ŭk is continuous in Hs([0, T ] × Rd × T; Cn).

iii) The obtention of Ŭ1. When m ∈ HA, the relation (2.34) along with
the definition of h imply that the linear map |H〉m − m ∂τϕ |Π〉m is not
one-to-one on the vector space |Π〉m(Cn). However, it has a right and left
partial inverse |H − h I〉−1

m . Applying |H − h I〉−1
m to (2.46), we can obtain

all components |Qh (ΠM Π)〉m U1
m with m ∈ HA.

On the other hand, when m ∈ HA, the hypothesis (HN4) says that the
matrix |H〉m−m ∂τϕ |Π〉m is invertible on the whole space |Π〉m(Cn). Thus,
applying the corresponding inverse, we can get |Π〉m U1

m.

iii) The link between |Q〉U2 and Ũ1. Applying the map |(QP 0 Q)−1〉m
to (2.45) yields (for k = 1 in our case)

(2.60)
|Q〉m Uk+1

m = |(QP 0 Q)−1〉m
{

Kk
m(τ, x, θ)

−
[

i m ∂τϕ S0
0 + |P 1〉m +

∑d
j=1 S0

j ∂j

]

|(ΠM Π)−1 Πh〉m Ũk
m

}

where K1
m is known. When m ∈ HA, this relation (2.60) does not allow to

conclude to the value of |Q〉m U2
m (because the term Ũ1

m is still unknown).

2.6. The induction. To pursue the analysis, we shall resort to an induction
procedure. Let us define the following property, indexed by k ∈ N:

(Pk)

i) The profiles U ℓ are known for all ℓ ∈ N with l < k ;
ii) The function |Q〉Uk is known ;

iii) The function Ŭk is known ;
iv) The relation (2.60) holds (with Kk

m known) for all m ∈ HA.

The property (P1) is exactly what has been obtained in Paragraph 2.5.5.
Let us suppose that the properties (Pl) hold for l ≤ k. We shall show that
it is possible to deduce step (Pk+1). This amounts to studying the following
system of equations : Fm

(

Γk(τ, x;U0, · · · , Uk+2)
)

≡ 0 with m ∈ Z.
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In other words, the equations under study are

(2.61)

|P 0〉m Uk+2
m

+ i m ∂τϕ S0
0 Uk+1

m + |P 1〉m Uk+1
m +

∑d
j=1 S0

j ∂jU
k+1
m

+ i m ∂τϕ S1
0 Uk

m + S0
0 ∂τU

k
m +

∑d
j=1 S1

j ∂jU
k
m

+Fm

([

(Uk · ∇u)NL
]

(τ, x, U0)
)

+Fm

(

Bk(τ, x, U0, · · · , Uk−1)
)

= 0 , m ∈ Z ,

where the contribution Fm(Bk) is known and can be handled as a source
term. The analysis of (2.61) takes place along the same lines as that devel-
oped in Paragraph 2.5 so we shall not write all the details but rather point
out the new aspects to be taken into account.

Fix m ∈ HA and apply |Πh
M 〉m to (2.61). This operation eliminates the term

|P 0〉m Uk+2
m . In the second line of (2.61), decompose Uk+1

m into |Π〉m Uk+1
m

plus |Q〉m Uk+1
m . By construction, the contributions coming from |Π〉m Uk+1

m

disappear. Replace |Q〉m Uk+1
m as it is indicated in the point iv) of (Pk). It

remains an expression involving Ũk
m.

In the third and fourth line of (2.61), decompose Uk
m as in (2.59). The

informations coming from ii) and iii) of (Pk) allow not to be concerned with

the parts |Q〉m Ŭk
m and Ŭk

m. In fact, we have Uk = Υk Ũk for some smooth
(known) map Υk. Finally, we get the following system

(2.62)
S0 ∂τ Ũ

k +
∑d

j=1 Sj ∂jŨ
k + Lm Ũk + H̃k

+ |Πh
M 〉

[

(Υk Uk · ∇U )NL
]

(τ, x, U0)
)

= 0

where H̃k is known. Let us complete (2.62) with any initial data

(2.63) Ũk(0, ·) ≡ Ũk
0 (·) ≡ |Πh〉 Ũk

0 (·) , Ũk
0 ∈ H∞(Rd; Cn) .

The system (2.62) is issued from (2.57) by a linearization procedure. It is still
hyperbolic symmetric on the functional space |Πh〉Hs([0, T ] × Rd × T; Cn).
Therefore, it is locally wellposed in time τ . In other words, we can find
some T ∈ R+

∗ and a unique solution Ũk ∈ H∞([0, T ] × Rd × T; Cn) to the

Cauchy problem (2.62)-(2.63). Knowing |Q〉Uk, Ŭk and Ũk, we can piece
together again Uk through (2.59). The point i) of (Pk+1) is verified.

The line iv) of (Pk) furnishes the relation (2.60) for the index k. Since the

profile Ũk has just been identified, we have the assertion ii) of (Pk+1).

Compose (2.61) with |Π〉m to get

i
[

m ∂τϕ |Π〉m − |H〉m
]

|Π M Π〉m Uk+1
m = Sk+1

m

where Sk+1
m is known. The matrix on the left is partly invertible. By ex-

ploiting this fact, we can have access to Ŭk+1. This is iii) of (Pk+1).

Finally, we apply |(QP 0 Q)−1〉m to (2.61). By grouping all known expres-
sions inside Kk+1

m , we just recover (2.60) written with k+1, which is precisely
the point iv) of (Pk+1).
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To conclude, properties (Pl) with l ≤ k allow to recover (Pk+1) by solving
Γk ≡ 0. It is sufficient to stop at step N − 1 to obtain (2.9). The profiles U j

with 0 ≤ j ≤ N + 1, are in H∞ if the initial data belong to H∞. Note
that one can also work with restricted (large) regularity but in that case one
expects a loss of derivatives at each step of the procedure.

In conclusion, one has

QS(ε, τ, x, ua
ε ; ∂) ua

ε = εN R
(

ε, τ, x, ϕ(τ,x)
ε

)

, (ε, τ, x) ∈ ]0, 1]× [0, T ]×Rd

where the remainder R is a C∞ function in (ε, τ, x, θ). Since the integer N
may be chosen arbitrary, this implies that ua

ε is an approximate solution
to (1.1) in the sense given in Theorem 1.

2.7. Exact solutions. In this Paragrah 2.7, we prove Theorem 3. We are
looking in diffractive times τ ≃ 1 for families {uε}ε∈ ]0,1] of solutions to the
oscillatory Cauchy problem (1.13). The aim is to show that uε remains close
to ua

ε , in the sense of (1.16). To this end, we decompose QS into two parts:

QS(ε, τ, x, u; ∂) u = QSℓ(ε, τ, x; ∂) u + QSn(ε, τ, x, u; ∂) u

where QSℓ collects all (main) linear parts:

QSℓ(ε, τ, x; ∂) :=
1

ε2
Λ0(τ, x) +

1

ε

{

d
∑

j=1

S0
j (τ, x) ∂j + Λ1(τ, x)

}

+ ε0
{

S0
0(τ, x) ∂τ +

d
∑

j=1

S1
j (τ, x) ∂j

}

.

while one finds in QSn all the other contributions, and in particular the
nonlinear ones. One has

QSn(ε, τ, x, u; ∂) u = − 1
ε2 F 0(τ, x) − 1

ε F 1(τ, x) + Λ2(ε, τ, x, u)
+ ε S1

0(τ, x) ∂τu + ε2 S2
0(ε, τ, x, u) ∂τu

+ ε
∑d

j=0 S2
j (ε, τ, x, u) ∂ju − F 2(ε, τ, x, u) .

In the following we shall first concentrate on the easier situation, that is
when the contribution QSn is linear. We will state an improved version of
Theorem 3 in that case. The paragraph 2.7 deals with the general case.
Note that we shall only give the functional setting and the main estimates
necessary in each case to conclude to stability, as the arguments giving rise
to the existence of an exact solution are very standard [4, 12, 13, 17, 18].

2.7.1. The linear case (∇uQSn ≡ 0). Since the matrices Λ0 and Λ1 are
anti-hermitian, condition (H3) implies that the action of the operator QSℓ

is compatible with L2−energy estimates, uniform in ε ∈ ]0, 1]. In other
words, there is therefore a constant C, independent of ε ∈ ]0, 1], such that
for any u ∈ C∞(R+;H∞(Rd; Cn)

)

and for all times τ ∈ R+, one has

(2.64) ‖ u(τ, ·) ‖L2 . ‖ u(0, ·) ‖L2 +

∫ τ

0
‖ QSℓ(ε, τ, x; ∂) u(s, ·) ‖L2 ds .
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Notice that the advantage of the linear case it that assumptions (HN⋆) are
not required, and the matrix coefficients S0

j may depend on x.

The existence of a local (in time) solution uε is not a problem since the
equation is linear. Knowing (1.11), the estimate (1.14) can be obtained just
by applying (2.64) to the equation satisfied by the difference uε − ua

ε . This
completes the proof of Theorem 2.

2.7.2. The nonlinear case. The framework is described in Theorem 3. The
discussion is here classical and inspired from [12, 13, 15].

Due to the nonlinearity, one needs to control uniformly uε and ∂juε in the

space L∞([0, T ] × Rd × T; Cn). To get around this difficulty, one uses the
weighted Sobolev spaces Hs

ει which were introduced at the level of (1.17).
The choice ι = 2 is sufficient to handle the penalization term ε−2 Λ0(τ, x)
because we have (for |α| = 1 below)

|〈ε2 ∂juε, ε
2∂j(ε

−2 Λ0 uε)〉L2×L2 | = |〈ε2 ∂juε, (∂jΛ
0) uε〉L2×L2 |

. ‖ ε2 ∂juε ‖L2 ‖ uε ‖L2 . ‖ uε ‖
2
H1

ε2

.

When estimating ε2 ∂kuε, difficulties come from the matrices S0
j . There is

indeed a loss in powers of ε ∈ ]0, 1] coming from the contributions

ε−1
[

ε2 ∂k ; S0
j (τ, x) ∂j

]

≡ ε−1 (∂kS
0
j )(τ, x) (ε2 ∂j) , (k, j) ∈ {1, · · · , d}2 ,

ε−1
[

ε2 ∂k ; S0
0(τ, x) ∂τ

]

≡ ε−1 (∂kS
0
0)(τ, x) (ε2 ∂τ ) , k ∈ {1, · · · , d} .

This is the reason why (1.15) is needed. It is to obtain contributions of the
order O(1) instead of being O(ε−1). Just use (1.1) and (1.2) in order to
replace the time derivative ε2 ∂τ accordingly.

Even if the condition (1.15) is very restrictive, it does not imply that the
matrix P 0(τ, x; ξ) is constant in x ∈ Rd, since Λ0(τ, x) may depend on x.
The combination of the preceding arguments gives easily (for all s ∈ N∗)

(2.65) ‖ u(τ, ·) ‖Hs

ε2
. ‖ u(0, ·) ‖Hs

ε2
+

∫ τ

0
‖ QSℓ(ε, τ, x; ∂) u(s, ·) ‖Hs

ε2
ds .

Observe that the approximate solution ua
ε oscillates at frequency ε−1, and

not ε−2 (as it could be the case for an arbitrary polarization). On the other
hand, the linearization of the system (1.1) along uε

a gives rise to functions of
ua

ε with ε in factor. These two remarks are crucial. They imply (for instance
when |α| = 0) that
∣

∣

〈

uε , ε S2
j (ε, τ, x, ua

ε) ∂juε

〉

L2×L2

∣

∣ . ‖ ε ∂ju
a
ε ‖L∞ ‖ uε ‖

2
L2 . ‖ uε ‖

2
L2 .

Another aspect of the analysis is to deduce L∞−bounds from Hs
ε2−estimates

on uε. For s > d
2 + 1, this point can be obtained by using the injections

(2.66)
‖ uε ‖W 1,∞ . ε−2 ‖ uε(ε

2 ·) ‖W 1,∞

. ε−2 ‖ uε(ε
2 ·) ‖Hs . ε−2−d ‖ uε ‖Hs

ε2
.
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As usual [4, 12], the solution uε is decomposed into ua
ε + ε2+d wε. The equa-

tion on wε involves a source term which is of size O(εN−2−d) in Hs
ε2 . Since

all nonlinear contributions are of the form ε S2
j (ε, τ, x, ua

ε + ε2+d wε), and

therefore can be uniformly controled in the Lipschitz norm through (2.66),
it is compatible with energy estimates in the space Hs

ε2 . The corresponding
bound on wε leads directly to (1.16). This ends the proof of Theorem 3.

3. Application to the propagation of Rossby waves.

Rossby waves can be found in the ocean. They are due to the variations of
the Coriolis force. They propagate on very long time scales. For example,
they can take months or even years to cross the Pacific. To see the underlying
Physics, the reader can refer to [8, 11, 19, 21].

In Section 3.1 we present the various equations and scalings useful to our
study. We explain how to relate the various terms of the equations to the
general model (1.1) studied in Theorem 1. In Sections 3.2, we check that
the linear Assumptions (H⋆) of Theorem 1 are indeed satisfied. The eikonal
equation is computed at the level of Section 3.3. The non linear aspects
linked with Assumptions (HN⋆) are considered in Section 3.4. Something
special happens in the present situation. As explained in Section 3.5, due to
transparencies, the expected non linear effects are not present. Combining
the preceding informations, we can prove Theorem 4.

3.1. The equations. The number of state variables is n = 3. The vec-
tor ũ = t(ũ1, ũ2, ũ3) ∈ R3 symbolizing those variables is decomposed into
pressure ũ1 ≡ p̃ ∈ R∗

+ and the two velocity components ũ2 ≡ ṽ1 ∈ R

and ũ3 ≡ ṽ2 ∈ R. The velocity field is ṽ ≡ t(ṽ1, ṽ2) ∈ R2. The space
dimension is d = 2. We work with

(τ, x, ξ) = (τ, x1, x2, ξ1, ξ2) ∈ R+ × R2 × R2

where the coordinates (x1, x2) ∈ R2 represent respectively the longitude
and latitude, in a Cartesian approximation. We are interested in describing
the large-scale structure of the oceans, using the following equation of the
compressible Euler type

(3.1)







(∂t + ṽ · ∇) p̃ + f(p̃) div ṽ = F s
1 ,

(∂t + ṽ · ∇) ṽ1 + f(p̃) ∂1p̃ − ε−1 b ṽ2 = F s
2 ,

(∂t + ṽ · ∇) ṽ2 + f(p̃) ∂2p̃ + ε−1 b ṽ1 = F s
3 ,

where t ∈ R+ denotes the fast time. The number ε ∈ ]0, 1] comes from
writing the physical equations in adimensionalized form. It is is supposed
to be very small. The function f ∈ C∞(R; R) plays the role of a state
law. The terms F s

j (ε, x) are the components of a field F s = t(F s
1 , F s

2 , F s
3 )

belonging to C∞([0, 1]×R2; R3) which represents exterior forcing (like wind
for instance). Finally, the function b(ε, x) satisfies

b ∈ C∞
b ([0, 1] × R2; R) , b(ε, x) = b0(x) + ε b1(x) + ε2 b2(ε, x) .
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The contribution ε−1 b ṽ⊥ is considered as a term of fast rotation. It is due
to the influence of the Coriolis force. The choice b0(x) = sin x2 is adapted
to applications in oceanography. Recall that the choice b0(x) = x2, with
limited validity in the vicinity of the equator, corresponds to the so-called
betaplane approximation. From now on, we restrict our attention to some
connected domain D ⊂ R2 satisfying (1.20). When b0(x) = sin x2, this
restriction means that we avoid the equatorial zone E := {x ; x2 = 0} while
focussing on a region D placed at midlatitudes. Moreover, we suppose that
the flow under study is close to a stationary solution us(ε, x) to (3.1), which
we choose to be of the following form:

us(ε, x) = t
(

p̄ + ε ps(ε, x), ε vs
1(ε, x), ε vs

2(ε, x)
)

, p̄ ∈ R∗
+

where
t(ps, vs

1, v
s
2) ∈ C∞

(

[0, 1];H∞(R2; R3)
)

.

This implies selecting the source term F s as follows:

F s
1 = ε2 (vs · ∇) ps + ε f(p̄ + ε ps) div vs ,

F s
2 = ε2 (vs · ∇) vs

1 + ε f(p̄ + ε ps) ∂1p
s − b vs

2 ,
F s

3 = ε2 (vs · ∇) vs
2 + ε f(p̄ + ε ps) ∂2p

s + b vs
1 ,

Up to a rescaling of the type (x, ũ) 7→ (λ x, λ ũ) with λ := f(p̄)−1, one
can assume that f(p̄) = 1. One then changes the time variable to a slow
time τ = ε t ∈ R+, and finally one modifies the source term F s(ε, x) into

F s +ε3 F p , F p(ε, τ, x) = t(F p
0 , F p

1 , F p
2 ) ∈ C∞

(

[0, 1]×R+;H∞(R2; R3)
)

.

One expects the new solution ũ, corresponding to the new source term, to
be of the form

ũ = us + ε2 u , u = t(p, v) = t(p, v1, v2) .

Considering the field F r = t(F r
1 , F r

2 , F r
3 ) ∈ C∞

(

[0, 1] × R+;H∞(R2; R3)
)

by

(3.2)
F r

1 := ε2 F p
1 + g(ε, p) div vs − ε2 (v · ∇)ps ,

F r
2 := ε2 F p

2 + g(ε, p) ∂1 ps − ε2 (v · ∇)vs
1 ,

F r
3 := ε2 F p

3 + g(ε, p) ∂2 ps − ε2 (v · ∇)vs
2 .

with g(ε, p) := f(p̄ + ε ps) − f(p̄ + ε ps + ε2 p) = O(ε2), we find that u must
solve the system (1.19). The next paragraphs are devoted to the proof of
Theorem 4, which amounts principally to checking that the hypotheses made
imply that the Assumptions of Theorem 1 are satisfied.

3.2. Assumptions (H⋆). With the notation of the general system (1.1),
one has of course here F ≡ F r, Sr

0(ε, τ, x, u) ≡ ε I and

Sr
1(ε, τ, x, u) :=





ε vs
1 + ε2 v1 f(p̄ + ε ps + ε2 p) 0

f(p̄ + ε ps + ε2 p) ε vs
1 + ε2 v1 0

0 0 ε vs
1 + ε2 v1



 ,

Sr
2(ε, τ, x, u) :=





ε vs
2 + ε2 v2 0 f(p̄ + ε ps + ε2 p)

0 ε vs
2 + ε2 v2 0

f(p̄ + ε ps + ε2 p) 0 ε vs
2 + ε2 v2



 ,
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Λr(ε, τ, x, u) ≡ Λr(ε, x) := b(ε, x)





0 0 0
0 0 −1
0 1 0



 .

We emphasize the fact that we are working on a model for Rossby waves by
adding a superscript r to all the operators. Since the functions ps, vs

1 and
vs
2 are given, by Taylor-expanding f and p̄, we can obtain

Sr0
1 (t, x) =





0 1 0
1 0 0
0 0 0



 , Sr1
1 (t, x) =





vs
1 f ′(p̄) ps 0

f ′(p̄) ps vs
1 0

0 0 vs
1



 ,

Sr0
2 (t, x) =





0 0 1
0 0 0
1 0 0



 , Sr1
2 (t, x) =





vs
2 0 f ′(p̄) ps

0 vs
2 0

f ′(p̄) ps 0 vs
2



 .

One has of course (1.2). Just take c = 1. On the other hand, the condition
(1.3) is due to the choice for b. Retain that

Λrj(t, x) = bj(x)





0 0 0
0 0 −1
0 1 0



 , j ∈ {0, 1} .

Restriction (1.4) is a consequence of the construction of F r. The nonlinearity
only appears at order ε2. One has F r0 ≡ F p(0, ·) and F r1 ≡ (∂εF

p)(0, ·).
One also can find the symbol

P r0(τ, x; ξ) ≡ P r0(x; ξ) =





0 i ξ1 i ξ2

i ξ1 0 −b0

i ξ2 b0 0



 ∈ A3 .

◦ The form required in (H1) is a consequence of the preceding expansions.

◦ The matrices Sr0
1 and Sr0

2 are constant, so (H3) follows immediately. On
the other hand, notice that

dim
(

ker P r0(τ, x; ξ)
)

= p = 1 , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗
\0

which means that (H4) and therefore (H2) are satisfied.

◦ Consider (H5). Since the speed of propagation which is associated with
the system (1.19) is clearly not uniformly controlled with respect to the
parameter ε ∈ ]0, 1], we have to explain why such a localization process is
possible. The reason is that our WKB analysis involves quantities which are
polarized according to the 0 eigenvalue, where some uniform (in ε ∈ ]0, 1])
finite speed of propagation is available (as can be seen by looking at the
transport equations).

In practice, we can select any domain D. Then, to guarantee (H5), it suffices
to extend all coefficients by a constant outside D. This manipulation does
not affect what happens in a domain of propagation contained in D.

◦ Observe that the conditions (H6) and (H8) are both satisfied because
F r = O(ε2) so that F r0 ≡ 0, Gr0 ≡ 0 and F r1 ≡ 0.
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◦ Since p = 1, the matrix H can be identified to a scalar. There is only one
eigenvalue of H which is of constant multiplicity 1. The Assumption (H7)
is obviously verified.

3.3. Description of the geometry. Rossby waves are by definition waves
which are polarized along Xr. As announced in [3], one can identify their
trajectories through semiclassical arguments as given by the integral curves
of a Hamiltonian hr.

Of course, our WKB analysis detects the same trajectories. It shows also
that the rays under question are quantitatively associated with an energy
transport, up to a damping and a source terms that can be computed (in
the spirit of the Lemma 2.6).

Since p = 1, the matrix Hr(τ, x; ξ) can be identified to a real scalar func-
tion hr(τ, x; ξ). In order to find hr : T ∗

\0 −→ R, we shall simply compute

|hr〉1 in terms of ∇ϕ, and extrapolate the values of hr(τ, x; ξ) by replacing
everywhere ∇ϕ by ξ. Equation (2.19) for m = 1 translates into

(3.3)
i ∂τϕ U r0

1 +Sr0
1 ∂1U

r0
1 + Sr0

2 ∂2U
r0
2 + |P r0〉1 U r1

1

+(i ∂1ϕ Sr1
1 + i ∂2ϕ Sr1

2 + Λr1) U r0
1 = 0 .

The polarization constraint (2.12) for m = 1 leads to

U r0
1 (τ, x, θ) = ur0

1 (τ, x) |Xr〉1(τ, x) , ur0
1 ∈ C∞([0, T ] × Rd; C) .

By Lemma 2.1 we know that

|tX̄r〉1 Sr0
1 |Xr〉1 ≡ 0 , |tX̄r〉1 Sr0

2 |Xr〉1 ≡ 0 .

Replacing Sr1
j and Λr1, for j ∈ {1, 2}, by their values one gets

|tX̄r〉1 Sr1
j |Xr〉1 ≡ vs

j

∣

∣|Xr〉1
∣

∣

2
, |tX̄r〉1 Λr1 |Xr〉1 ≡ 0 .

To get equation (2.29) one now multiplies (3.3) to the left by the vector
|tX̄r〉1, which gives

i ∂τϕ
∣

∣|Xr〉1
∣

∣

2
ur0

1 +
[

|tX̄r〉1





0 1 0
1 0 0
0 0 0



 ∂1|X
r〉1

]

ur0
1

+
[

|tX̄r〉1





0 0 1
0 0 0
1 0 0



 ∂2|X
r〉1

]

ur0
1

+ i (vs
1 ∂1ϕ + vs

2 ∂2ϕ)
∣

∣|Xr〉1
∣

∣

2
ur0

1 = 0 .

Let us collect the following identities:




0 1 0
1 0 0
0 0 0



 ∂1|X
r〉1 +





0 0 1
0 0 0
1 0 0



 ∂2|X
r〉1 =





0
− i ∂1b

0

− i ∂2b
0



 .

∣

∣|Xr〉1
∣

∣

2
= (b0)2 + (∂1ϕ)2 + (∂2ϕ)2 .

One gets directly

(3.4) ∂τϕ = |hr〉1(τ, x) = − vs · ∇ϕ +
∂1ϕ ∂2b

0 − ∂2ϕ ∂1b
0

(b0)2 + (∂1ϕ)2 + (∂2ϕ)2
.
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Remark 3.1. One can also see what formula (2.21) becomes here. Along
with Lemma 2.1, one gets

Gr(τ, x; ξ) ≡ i Π
[

Sr0
1 ∂1Π + Sr0

2 ∂2Π
]

Π

≡ i
tX̄r

|Xr|2











0 1 0
1 0 0
0 0 0



 ∂1X
r +





0 0 1
0 0 0
1 0 0



 ∂2X
r







≡
ξ1 ∂2b

0 − ξ2 ∂1b
0

(b0)2 + ξ2
1 + ξ2

2

.

Since Sr1
0 ≡ I, the formula (2.21) giving H leads simply to (1.21), that is

(3.5) hr(τ, x; ξ) = Πr (Gr + i P r1) Πr = − vs · ξ +
ξ1 ∂2b

0 − ξ2 ∂1b
0

(b0)2 + ξ2
1 + ξ2

2

.

Remark 3.2. When b0 does not depend on x1 and when vs ≡ 0, one can
recognize the hamiltonian hr(τ, x; ξ) exhibited in [2] and [3].

Let us now choose a function ϕ0(x) satisfying an estimate of the type (1.8)
and whose gradient ∇ϕ0(x) is constant outside a compact set. We can solve
locally in time on [0, T ]×R2 the Cauchy problem (3.4) with data ϕ(0, ·) ≡ ϕ0,
and this produces a phase ϕ ∈ C∞([0, T ] × Rd; R) still satisfying (1.8).

3.4. The nonlinear assumptions (HN⋆). In this paragraph 3.4, we go
over the assumptions (HN⋆) in the framework of the system (1.19).

◦ We start with (HN1). The situation can be delicate. To understant why,
look at what happens when b0(x) = sin x2. In this special case, one has

P r0(τ, x1, 0; 0, 0) ≡ 0 , dim
(

ker P r0(τ, x1, 0; 0, 0)
)

= 3 , ∀x1 ∈ R

while for x2 6= 0, one gets

dim
(

ker P r0(τ, x1, x2; 0, 0)
)

= 1 , ∀x = (x1, x2) ∈ R × R∗ .

Thus, there is a jump (from 1 to 3) in the multiplicity of the 0 eigenvalue
along the equatorial zone E := {x ; x2 = 0}. The purpose of the restriction
(1.20) is precisely to avoid the related difficulties. Basically, it requires a
localization far from equatorial zones. Since b0 is supposed to be non zero
on D, it may be extended by some non zero constant outside D. Following
the same localization argument as before, we can always assume that

(3.6) ∃ c ∈ R
∗
+ ; c ≤ |b0(x)| , ∀x ∈ R

2 .

Under that assumption, the smooth vector field

Xr(τ, x; ξ) ≡ Xr(x; ξ) := t
(

− i b0(x),−ξ2, ξ1

)

, Xr ∈ C∞(T ∗; R3)

is for all (τ, x, ξ) ∈ [0, T ]×R2 ×R2 a basis of kerP r(τ, x; ξ). In other words,
we have p = p0 = 1. In particular, the Assumption (HN1) is satisfied.

◦ Since p = p0 = 1, condition (HN2) follows simply from Remark 2.1.

◦ Since specH ≡ {hr}, one recovers (HN3) following Remark 2.2.
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◦ To be able to ensure assumption (HN4), one first needs to identify the
set HAr given by (2.34) and (2.35), using the explicit formula (3.5) obtained
for hr(τ, x; ξ). More precisely, we have to identify the elements m ∈ Z such
that the following expression is equal to zero:

(3.7)
|m ∂τϕ −hr

(

τ, x;m∇ϕ(τ, x)
)

|

= |m| |m2 − 1| |∇ϕ|2
|∂1ϕ ∂2b

0 − ∂2ϕ ∂1b
0|

[(b0)2 + |∇ϕ|2] [(b0)2 + m2 |∇ϕ|2]
.

One can distinguish the two following situations:

i) The phase ϕ is constant on the level lines of the function b0. This can
happen in particular when we impose the condition (Hi) of Theorem
4. Formula (3.4) then gives access to ϕ(τ, ·) ≡ ϕ0. In that case, one
has HAr

i := Z. Since there are no m ∈ Z outside HAr
i , there is nothing

to check concerning (HN4).
ii) The level sets of b0 are a foliation of R2 (or of the domain D where the

solutions are localized) by curves on which ϕ0 is monotonous. More
precisely, we require the condition (Hii) of Theorem 4. Notice that the
phase ϕ is C1 on [0, T ]×R2 with ∇ϕ bounded because of (1.8). In view
of (3.4), the derivative ∂τϕ is also bounded. So up to shrinking T ,we
can deduce that

(3.8) 0 < inf
(τ,x)∈[0,T ]×R2

|(∂1ϕ ∂2b
0 − ∂2ϕ ∂1b

0)(τ, x)| .

Hence the set of harmonics is reduced to HAr
ii := {−1, 0, 1}. Now,

combining (3.6), (3.7) and (3.8), we can obtain

∃ c ∈ R
∗
+ ; c |m| ≤ |m ∂τϕ − hr

(

τ, x;m∇ϕ(τ, x)
)

| , ∀m 6∈ HAr
ii .

It follows that (HN4) is satisfied.

◦ Recall that, for ξ = (ξ1, ξ2, ξ3) ∈ R3, we have defined the auxiliary matrix

P̃ r0(τ, x; ξ̃) := i ξ1 Sr0
1 (τ, x) + i ξ2 Sr0

2 (τ, x) + ξ3 Λr0(τ, x) .

◦ Now, consider (HN5). To this end, we adopt the criterion (2.43) involving

P̃ r0(τ, x; ξ̃) :=





0 i ξ1 i ξ2

i ξ1 0 − ξ3 b0

i ξ2 ξ3 b0 0



, ξ̃ = (ξ, ξ3) = (ξ1, ξ2, ξ3) .

When ξ 6= 0, the matrix P̃ r0(τ, x; ξ̃) has three distinct eigenvalues These

are µ ≡ 0 (associated with Rossby waves) and µ ≡ ±i
(

ξ2
1 + ξ2

2 + ξ2
3 (b0)2

)1/2

(associated with Poincaré waves [2, 3, 10]). Hence (2.43) holds with p = 1.
In particular, there is no jump of p near the value ξ3 = 0. Applying the
remark 2.6, we are sure that condition (HN5) is verified.

Finally, since the two matrices Sr0
1 and Sr0

2 are constant, the preliminary
(non linear) stability condition (1.15) is obviously satisfied.
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3.5. About transparencies. As already explained in the Paragraph 2.5.4,
the transport equation on the component Ũ0 of the main profile is in general
quasilinear, see (2.47). The nonlinearity comes from the contribution NL

which is defined line (2.8) with U0 given by (2.56).

Lemma 3.1. In the case of the model (1.19), the transport equation (2.57)
is linear.

Proof. This property is due to transparency relations which we exhibit below.
In the present case (1.19), denoting U = t(P, V ) with V = t(V1, V2) and
introducing h(P ) := f ′(p̄) P + 1

2 f”(p̄) (ps)2, we find

NLr(τ, x, U) = (V · ∇ϕ) ∂θU + h(P )





∇ϕ · ∂θV
∂1ϕ ∂θP
∂2ϕ ∂θP





+ b2(0, x)





0
−V2

+V1



 + f ′(p̄) P





div vs

∂1p
s

∂2p
s



 + (V · ∇)





ps

vs
1

vs
2



 .

On the other hand, we have here Πhr

≡ Πr ≡ M r so that Πhr

Mr ≡ Πr. In
what follows, the discussion depends on the symbol ⋆ which may be i or ii,
depending on the choice of the set HAr

i or HAr
ii. Recall the convention

|Πhr

Mr〉 U(t, x, θ) ≡ |Πr〉 U(t, x, θ) :=
∑

m∈HAr
⋆

|Πr〉m Um(τ, x) ei m θ

where Um := FmU . To prove the Lemma 3.1, it suffices to show that, for
all choice of m in HAr

⋆ (with the symbol ⋆ being i or ii) and for all profile
U ∈ C∞([0, T ] × R2 × T; C3), we have

(3.9) |Πr〉m Fm

(

NLr(τ, x, |Πr〉U + G0,hr

+ Gr0)
)

≡ 0 .

Because p = 1, Πr is the unitary projector onto the direction Xr. We find

|Πr〉m Um := αm





− i b0

−m ∂2ϕ
+m ∂1ϕ



 , αm :=
t|X̄r〉m · Um
∣

∣|Xr〉m
∣

∣

2 , m ∈ Z .

It follows that we can find functions f r
j (τ, x) with j ∈ {0, 1, 2} such that

|Πr〉U + G0,hr

+ Gr0 =





f r
0 (τ, x)

f r
1 (τ, x)

f r
2 (τ, x)



+ α0(τ, x)





− i b0(x)
0
0





+
∑

m∈HAr
⋆\{0}

αm(τ, x) ei m θ





− i b0(x)
−m ∂2ϕ
+m ∂1ϕ



 .

One notices that the nonlinear contribution inside (3.9) can be decomposed
into a quadratic part (denoted Qr) and a linear part (denoted Lr) :

NLr(τ, x, |Πr〉U + G0,hr

+ Gr0)
)

= Qr(τ, x, U) + Lr(τ, x) U .



ON SOME GEOMETRY OF PROPAGATION IN DIFFRACTIVE TIMES 39

Observe that the velocity component of |Πr〉U is polarized in the direction
∇ϕ⊥. It follows simplifications when computing Qr. One gets indeed

Qr(τ, x, U) := f ′(p̄) P ∂θP
t(0, ∂1ϕ, ∂2ϕ) .

Finally, we have to look at the quantity

|Πr〉m Fm

(

Qr(τ, x, U)
)

= βm(P )
∣

∣|Xr〉m
∣

∣

−2
|Xr〉m

with (for all m ∈ Z) :

βm(P ) =
i

2
m f ′(p̄) Fm(P 2) × (i b0,−m ∂2ϕ, m∂1ϕ) ·





0
∂1ϕ
∂2ϕ



 ≡ 0 .

It means that all terms coming from NLr are in fact linear in U .
✷

The transport equation (2.51) deals with the profile Ũ r0
m ≡ U r0

m which can
be here identified with the scalar coefficient αm. It follows that the equation
(2.51) translates into a constraint on αm. Lemmas 2.5 and 2.6 imply that
the constraint under question is a linear transport equation of the form

∂τα
r0
m = |∂ξ1h

r〉m ∂1α
r0
m + |∂ξ2h

r〉m ∂2α
r0
m + bm ∂θα

r0
m + cm αr0

m + dm

involving known functions bm(τ, x), cm(τ, x) and dm(τ, x). Moreover, the
antisymmetric aspect of (2.51) imposes (bm, cm, dm) ∈ C∞([0, T ] × R2; C)3.
Integrating the preceding equation with respect to the variable θ ∈ T, one
recovers here a general principle in geometrical optics which staes that the
energy is propagated, up to a damping coefficient (cm) and a source term
(dm), along rays resulting from the eikonal equation (3.4).

4. Application to the propagation of electromagnetic waves.

Models coming from electrodynamics (Maxwell-Ampère, Lorentz, Bloch, · · ·
[17, 24]) yield quasilinear symmetric systems involving some skew-symmetric
penalization term and having λ ≡ 0 as eigenvalue of high multiplicity. It is
therefore natural to study in this context how to describe the propagation in
long time of electromagnetic waves which are polarized along the eigenspace
E0 which is associated with λ ≡ 0.

The waves which, inside E0, correspond to conserved quantities (like the
divergence · · · ) lead often to a trivial geometry: the rays remain parallel
even in diffractive times. What happens in the other directions depends on
the model which is selected, together with the involved parameters such as
the inhomogeneity of the medium or the presence of forcing terms.

For instance, the work of R. Sentis [23] on the interaction of three waves
in plasma physics reveals the system of Boyd-Kadomtsev whose structure is
very close to what has been studied in Section 3.1.

In this Paragraph 4, we study another typical situation. We explain the
mechanisms underlying the propagation in a ferromagnetic medium.
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4.1. The equations. In ferromagnetic models [22, 24], the relevant quan-
tities are the electric field E(t, y), the magnetic field B(t, y) and the magne-
tization field M(t, y) which are functions from R×R3 into R3. The physical
features at a point are described through the vector

V (t, y) := t
(

E(t, y),H(t, y),M(t, y)
)

∈ R9 .

In the presence of a weak damping which is measured by ε2 with ε ∈ ]0, 1],
Maxwell-Landau-Lifshitz equations are the following

(4.1)







∂tE − ∇y × H = 0 ,
∂tH + ∇y × E + ∂tM = 0 ,

∂tM = −M × H − ε2

|M | M × (M × H) .

We fix two stationary vector fields

Es ∈ C∞([0, 1] × R3; R3) , Es(ε, y) = Es0(y) + ε Es1(y) + · · ·
Hs ∈ C∞([0, 1] × R3; R3) , Hs(ε, y) = Hs0(y) + ε Hs1(y) + · · ·

and a scalar function

α ∈ C∞([0, 1] × R3; R) , α(ε, y) = α0(y) + ε α1(y) + · · · .

We suppose that these functions are adjusted so that

∇y × Es ≡ 0 , ∇y × Hs ≡ 0 .

We require moreover that

(4.2) α(ε, y) Hs(ε, y) 6= 0 , ∀ (ε, y) ∈ [0, 1] × R
3 .

Introduce

Ξ(ε, y) := α(ε, y)−2 Hs(ε, y) = Ξ0(y) + ε Ξ1(y) + · · ·

together with the expression

V s
ε (t, y) ≡ V s

ε (y) := t
(

Es(ε, ε y) , α(ε, ε y)2 Ξ(ε, ε y) , Ξ(ε, ε y)
)

.

The expression V s
ε is a special solution of the system (4.1). We want to

understand how a small perturbation of V s
ε (for instance at the time t = 0)

can modify the long-time evolution (for times t of the order ε−2) of the
solution to (4.1). To this end, we consider

V := V s
ε + ε2 t(E,H, α−1 M) , τ = ε2 t , x = ε y .

We introduce the field F r = t(F r
1 , F r

2 , F r
3 ) ∈ C∞

(

[0, 1];H∞(R2; R9)
)

which

is given by F r
1 ≡ 0, F r

2 ≡ ε2 F̃ and F r
3 ≡ −α F r

2 . Define also

F̃ (ε, x, H,M) := α−1 M × H

+
Ξ + ε2 α−1 M

|Ξ + ε2 α−1 M |
× (α M × Ξ + Ξ × H + ε2 α−1 M × H) .

The new unknown U := t(E,H, M) must satisfy the semi-linear system

(4.3)







∂τE − ε−1 ∇x × H = ε−2 F r
1 ,

∂τH + ε−1 ∇x × E − ε−2 Ξ × H + ε−2 α Ξ × M = ε−2 F r
2 ,

∂τM + ε−2 α Ξ × H − ε−2 α2 Ξ × M = ε−2 F r
3 .
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4.2. Assumptions (H⋆). The prerequisites exposed in the introduction

are verified for the choices F ≡ F r, Sf
0 (ε, τ, x, U) ≡ ε I and

Sf (ε, τ, x, U ; ∂x) ≡

3
∑

j=1

Sf
j (ε, τ, x, U) ∂j :=





0 −∇x× 0
∇x× 0 0

0 0 0



 ,

Λf (ε, τ, x, U) :=





0 0 0
0 −Ξ× α Ξ×
0 α Ξ× −α2 Ξ×



 .

The preliminary conditions (H1), (1.2), (1.3) and (1.4) are obviously verified.
The assumption (H5) can be obtained by selecting applications α and Ξ

which are constant outside a compact set. The matrices Sf
j being constant,

we recover (H3). We compute the matrix

P f0(τ, x; ξ) ≡ P f0(x; ξ) :=





0 − i ξ× 0
+ i ξ× −Ξ0× α0 Ξ0×

0 α0 Ξ0× − (α0)2 Ξ0×



 .

The restriction (4.2) means that the vector Ξ0(x) is nonzero on R3. Thus,
the kernel of P f0(x; ξ) is of constant dimension p = 3 on T ∗

\0. It is spanned

by the three following orthogonal vectors

Zf
1 :=





ξ
0
0



, Zf
2 :=





0
α0 |Ξ0|2 ξ

|Ξ0|2 ξ − (ξ · Ξ0) Ξ0



, Zf
3 :=





0
0

Ξ0(x)



 .

We can check (H4) and therefore (H2). By the way, we can observe that the
restriction (HN1) is verified with p0 = 7 > p = 3. As usual, the constraint
(1.8) is guaranteed when the initial data ϕ0 is adjusted as in (1.8).

In what follows, we explain why Hf ≡ 0. It follows that we have (H7) with
m = p = 3 and with the spectral value hf ≡ 0.

The direction Zf
1 is associated with the divergence-free condition. Thus, we

expect that nothing happens on this side. We concentrate on the fields Zf
2

and Zf
3 which can depend on x. We keep in mind that the unitary projectors

onto these directions are given by

Πf
j (x, ξ) U :=

tZ̄f
j (x, ξ) · U

|Zf
j (x, ξ)|2

Zf
j (x, ξ) , j ∈ {1, 2, 3} .

Since the directions Zf
j are orthogonal, the unitary projector Πf onto the

kernel of P f0 can be reconstituted through the formula Πf = Πf
1 +Πf

2 +Πf
3 .

We know that the application Hf can be put in the form of some hermitian
matrix of size 3×3. Since T f ≡ Πf , we find here Hf := Πf (Gf + i P f1) Πf .

Because Πf
1(x, ξ) ≡ Πf

1(ξ) does not depend on the variable x, we recover

Gf := i
3
∑

j=1

Πf Sf0
j (∂jΠ

f
2 + ∂jΠ

f
3) (Πf

2 + Πf
3) .
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We remark that

(∂jΠ
f
k) U ≡

(

∂j

( tZ̄f
k

|Zf
k |

2

)

· U

)

Zf
k +

tZ̄f
k · U

|Zf
k |

2
∂jZ

f
k , k ∈ {2, 3} .

We recall (2.18) which amounts here to the same thing as Πf Sf0
j Πf ≡ 0.

This information allows to eliminate, when computing Gf , the contributions
which (in the right hand side) are polarized according to Πf . It remains

Gf ≡ i
3
∑

j=1

3
∑

k=2

tZ̄f
k · Πf

k

|Zf
k |

2
(Πf Sf0

j ∂jZ
f
k ) .

We have the following block structures

Sf0
j ≡





0 ⋆ 0
⋆ 0 0
0 0 0



 , ∂jZ
f
3 ≡





0
0

∂jΞ
0



 .

On the other hand, we have

∂jZ
f
2 := ∂j

(

α0 |Ξ0|2
)





0
ξ

(α0)−1 ξ



 + α0 |Ξ0|2





0
0

∂j

[

(α0)−1
]

ξ





− ∂j(ξ · Ξ
0)





0
0
Ξ0



 − (ξ · Ξ0)





0
0

∂jΞ
0



 .

The relation (2.18) allows to remove the terms which point in the directions
of Πf (R9) (those implying derivatives of coefficients). The contributions
which are likely to persist are in fact those which are polarized according
to the magnetic component (those implying derivatives of the directions).

However, these terms are not detected by the matrices Sf0
j .

This last property expresses some kind of weakness of the coupling between
the electric and magnetic field on the one hand, and the magnetization field
on the other hand. Consequently, we find Gf ≡ 0. Of course a strengthening
of the coupling would lead to a very different conclusion.

The matrices Sf1
j are all zero so that P f1 ≡ Λf1.

We write Λf1 ≡ Λf1
0 + Λf1

1 with

Λf1
0 :=





0 0 0
0 0 α1 Ξ0×
0 α1 Ξ0× − 2 α0 α1 Ξ0×



 ,

Λf1
1 :=





0 0 0
0 −Ξ1× α0 Ξ1×
0 α0 Ξ1× − (α0)2 Ξ1×



 .

It is easy to see that the terms involving Πf
1 and Λf1

0 play no part when
computing Hf . Indeed, we find

Hf ≡ (Πf
2 + Πf

3) Λf1
1 (Πf

2 + Πf
3) .
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Other simplifications occur which are due to the way we have adjusted the
stationnary solution V s

ε (manner which is in fact imposed by the skew-
symmetry of Λ). They furnish

tZ̄f
k Λf1

1 Zf
j ≡ 0 , ∀ (j, k) ∈ {2, 3}2 .

Finally, we obtain Hf ≡ 0 which means as expected that the geometry is
trivial even in diffractive times (τ ≃ 1). Note again that we have selected
here a very basic model, just to illustrate the type of discussion which can
happen. By taking into account other aspects (more inhomogeneities, more
forcing terms, · · · ), we can find hf 6≡ 0.

5. Appendix.

In this Section 5, we shall first prove a lemma giving some general algebraic
identities of frequent use in WKB analysis. Due to their generality we choose
to state the lemma in an abstract framework. Then, we provide a proof to
the Lemmas 2.2 and 2.3.

5.1. Algebraic identities. We denote by ∐ : Rd −→ Rd a linear mapping
which depends smoothly on parameters chosen in an open subset Υ of Rg

with g ∈ N∗. We denote these parameters by υ = (υ1, · · · , υg) ∈ Υ ⊂ Rg.
Those operators are characterized by the property

(5.1) ∐ ∈ C∞(R) , ∐(υ) ◦ ∐(υ) ≡ ∐(υ) , ∀ υ ∈ Υ .

In the context of this article for instance, one can choose ∐ equal to Π, |Π〉m
or Q, and υ equal to τ , x or ξ. One denotes by ∂j the differentiation in
direction υj . The result is the following.

Lemma 5.1. For any j ∈ {1, · · · , g}, one has

(∂j∐) ∐ ≡ (I −∐) (∂j∐) ,(5.2)

∐ (∂j∐) ≡ (∂j∐) (I −∐) ,(5.3)

∐ (∂j∐) ∐ ≡ 0 .(5.4)

Besides, for any couple of integers (j, k) ∈ {1, · · · , g}2, one has

(5.5) (∂j∐) (∂k∐) ∐ = ∐ (∂j∐) (∂k∐) .

Proof. To obtain (5.2) and (5.3), one just needs to apply ∂j to (5.1).
Then (5.4) follows. Similarly (5.5) is a combination of (5.2) (which is written
for j = k and composed to the left by ∂jΠ) and of (5.3).

✷

5.2. Proof of the Lemma 2.2. By construction, we have G ≡ Π G Π. The
fact that G corresponds to the action of some matrix of size p0 × p0 or p× p
(depending on whether ξ ∈ T ∗

0 or not) is a direct consequence of (H4) and
of (HN1). The regularity of G on [0, T ]×T ∗

\0 comes from the one of Π which

itself is issued from (H4).

To see why the matrix G is hermitian, it is necessary to compute

G − G∗ = i
∑d

j=1

(

Π S0
j ∂jΠ Π + Π ∂jΠ S0

j Π
)

.
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Taking the derivative of (2.18) in the direction xj and exploiting (H3) yield

G − G∗ = − i Π (divS0) Π ≡ 0 .

The constraint (2.22) implies that

P 0(τ, x;−ξ) = − i
∑d

j=1 ξj S0
j (τ, x) + Λ0(τ, x) = P̄ 0(τ, x; ξ) .

Thus, we have the relation

Π(τ, x;−ξ) = Π̄(τ, x; ξ) , ∀ (τ, x, ξ) ∈ [0, T ] × Rd × Rd .

The identity (2.23) can be now deduced from a direct computation. We
have indeed

G(τ, x;−ξ) = i
∑d

j=1

[

Π̄ S0
j (∂jΠ̄) Π̄

]

(τ, x; ξ) = − Ḡ(τ, x; ξ) .

5.3. Proof of the Lemma 2.3. In fact, one only needs to consider the
case m ∈ Z∗. Due to (1.8), one can also reduce the discussion to the set T ∗

\0.

Note incidently that the precise choice of m ∈ Z∗ has no role to play since
one can reduce the study to m = 1 simply by changing ϕ into m ϕ.

To really understand what happens, let us not suppose for the moment
that λ ≡ 0. We start with the following relation (which defines i λ to be an
eigenvalue of P 0) :

(5.6) (P 0 Π)(τ, x; ξ) = i (λ Π)(τ, x; ξ) , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗
\0 .

Since P 0 is skew-symmetric, one has λ(τ, x; ξ) ∈ R. Differentiating (5.6) in
the direction ξj yields (recalling the definition of P 0 in Paragraph 2.1)

(5.7) i S0
j Π + P 0 (∂ξj

Π) ≡ i (∂ξj
λ) Π + i λ (∂ξj

Π) .

Replacing the variable ξ by m∇ϕ gives

i S0
j |Π〉m + |P 0〉m |∂ξj

Π〉m ≡ i |∂ξj
λ〉m |Π〉m + i |λ〉m |∂ξj

Π〉m .

Taking a derivative in xj then implies that

i (∂jS
0
j ) |Π〉m + i S0

j ∂j |Π〉m + |∂jP
0〉m |∂ξj

Π〉m

+ i
d
∑

k=1

m ∂2
jkϕ S0

k |∂ξj
Π〉m + |P 0〉m ∂j |∂ξj

Π〉m ≡ i ∂j |∂ξj
λ〉m |Π〉m

+ i |∂ξj
λ〉m ∂j |Π〉m + i ∂j |λ〉m |∂ξj

Π〉m + i |λ〉m ∂j |∂ξj
Π〉m .

Now, let us project that identity right and left using |Π〉m. Before that, we
notice that according to Lemma 5.1, line (5.4), one has

|Π〉m ∂j |Π〉m |Π〉m ≡ 0 , |Π ∂ξj
Π Π〉m ≡ 0 .

Taking the adjoint of (5.6), one can see that |Π〉m |P 0〉m ≡ i |λ〉m |Π〉m.
Those simplifications allow to write that
(

d
∑

k=1

m ∂2
jkϕ |Π〉m S0

k |∂ξj
Π〉m

)

|Π〉m ≡ |∂2
jξj

λ〉m |Π〉m

+
(

d
∑

k=1

m ∂2
jkϕ |∂2

ξjξk
λ〉m

)

|Π〉m − |Π〉m (∂jS
0
j ) |Π〉m

− |Π〉m S0
j ∂j |Π〉m |Π〉m + i |Π〉m |∂jP

0〉m |∂ξj
Π〉m |Π〉m .
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Let us take the sum in j. It is at this level that cancelations occur. We can
notice that

d
∑

j=1

d
∑

k=1

m ∂2
jkϕ |Π〉m

[

S0
k |∂ξj

Π〉m − S0
j |∂ξk

Π〉m
]

|Π〉m = 0 .

Hence, we obtain
d
∑

j=1

|Π〉m S0
j

(

d
∑

k=1

m ∂2
jkϕ |∂ξk

Π〉m

)

|Π〉m

≡
d
∑

j=1

|∂2
jξj

λ〉m |Π〉m +
(

d
∑

j=1

d
∑

k=1

m ∂2
jkϕ |∂2

ξjξk
λ〉m

)

|Π〉m

+ |Π〉m

d
∑

j=1

(

− ∂jS
0
j − S0

j ∂j |Π〉m + i |∂jP
0〉m |∂ξj

Π〉m
)

|Π〉m .

We recall the identity (2.27) which we compose to the left with |Π〉m S0
j and

to the right with |Π〉m and sum over j. In view of the definition of Gm, see
(2.24), this operation yields

i Gm ≡
1

2
|Π〉m

d
∑

j=1

[

i S0
j |∂jΠ〉m − i ∂jS

0
j − |∂jP

0〉m |∂ξj
Π〉m

]

|Π〉m

+
i

2

d
∑

j=1

|∂2
jξj

λ〉m |Π〉m +
i

2

(

d
∑

j=1

d
∑

k=1

m ∂2
jkϕ |∂2

ξjξk
λ〉m

)

|Π〉m .

Finally we differentiate (5.7) along xj , project left and right with Π, and
use (5.4) to obtain

− i |Π〉m ∂jS
0
j |Π〉m − |Π〉m |∂jP

0〉m |∂ξj
Π〉m |Π〉m

= i |Π〉m S0
j |∂jΠ〉m |Π〉m − i |∂2

jξj
λ〉m |Π〉m ,

which finally gives rise to

iSm ≡ i
d
∑

j=1

|Π〉m S0
j |(∂jΠ) Π〉m +

i

2

d
∑

j=1

d
∑

k=1

m ∂2
jkϕ |∂2

ξjξk
λ〉m |Π〉m .

So (2.28) is obtained as soon as the Hessian in ξ of λ is zero. This is of
course the case when λ ≡ 0 or, more generally, when λ(τ, x; ·) is linear in ξ.
This concludes the proof of Lemma 2.3.

5.4. Proof of the Lemma 2.4. When p0 = p = 1, one has (H7) with µ = 1
and Xh ∈ C∞(T ∗; Cn

∗ ). The matrix H − h I has a unique eigenspace, which
is given by a vector field Xh ∈ C∞(T ∗

\0; C
n
∗ ). One still has the relation (2.4),

but with Xh and Πh instead of X and Π. Taking into account (2.22), the
relation (2.23) and the parity of Π, we can extract

(5.8) H(τ, x;−ξ) = − H̄(τ, x; ξ) , ∀ (τ, x, ξ) ∈ [0, T ] × T ∗ .

Given z = a + i b ∈ C, note σ(z) := a − i b.
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Obviously, we have σ(specH) ≡ spec σ(H) ≡ spec H̄. Since the eigenvalues
of an hermitian matrix are real-valued, we can deduce that specH ≡ spec H̄.
Combined with (5.8), this yields spec H(τ, x;−ξ) ≡ − specH(τ, x; ξ). In
other words, −h(τ, x;−ξ) is an eigenvalue of the matrix H(τ, x; ξ). Since
there is a unique such eigenvalue (p0 = p = 1), it must be equal to h(τ, x; ξ).
The function h is continuous in the variable ξ ∈ Rd and odd. In particular,
it must be zero when ξ = 0. This is precisely (2.32).
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Équ. Dériv. Partielles, pages Exp. No. XVII, 25. École Polytech., Palaiseau, 1996.
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