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 which is closely related.

Introduction

A pair (V, E) consisting of a countable set V of vertices and a set E ⊆ V × V of edges is called a graph. A graph is said to be a rooted tree if it has a starting vertex ρ, and any two vertices are connected by exactly one self-avoiding path. In a rooted tree the least number of edges connecting ν to ρ is denoted by |ν|, and the set {ν : |ν| = n} is called level n. The parent of a vertex ν = ρ is the unique vertex at level |ν| -1 connected to ν. If µ is the parent of ν, then we say that ν is a child of µ.

A supercritical Galton-Watson tree T is a rooted tree representing the realization of a branching process such that for each individual the expected number of children m is larger than one. Notice that T is infinite with positive probability.
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Let X := {X k , k = 0, 1, ...} be a nearest-neighbor process defined on T , with X 0 = ρ.

Indicate the first passage time of X at a vertex ν ∈ T as

T ν := min{k ≥ 1 : X k = ν} ,
and observe that T ρ is the first return time to ρ.

Definition 1. We say that X is transient if P(T ρ = ∞) > 0, and recurrent otherwise.

The excited random walk has been introduced by [START_REF] Benjamini | Excited random walk[END_REF]. They defined it on Z d as follows. Given ∈ (0, 1), the first time the walk is at a vertex, it goes to the right with probability (1 + )/(2d), to the left with probability (1 -)/(2d), and towards a different direction with probability 1/(2d). Once the walk returns to a vertex, any direction becomes equally likely. Benjamini and Wilson proved the transience when d > 1. [START_REF] Volkov | Excited random walk on trees[END_REF] considered the excited random walk on the binary tree as follows. At time T ν , the vertex ν = ρ becomes excited, i.e. the process comes back to its parent with probability 1 -, and it jumps to a child with probability /2. But, if X k = ν and k > T ν , the walk goes to any adjacent vertex with the same probability. Volkov also discussed a special case called digging random walk, where = 0 and a vertex remains excited until the r th visit. Here the transience was proved for r ∈ {1, 2}, and conjectured for r > 2.

Recently, [START_REF] Collevecchio | On the transience of processes defined on Galton-Watson trees[END_REF] introduced a clever strategy for proving the transience of processes defined on trees and other graphs with cycles.

In this paper we introduce a class of processes defined on T , that we call clouds excited random walks. As our main result, we prove the transience of some processes in this class. Furthermore, we prove Volkov's conjecture in a quite general setting. Our proofs implement Collevecchio's strategy.

Associate to each vertex

ν ∈ T a set V ν of vertices of T such that if ξ ∈ V ν , then -∞ < |ξ| -|ν| < ∞. Consider a process X := {X k , k = 0, 1, ...} on T , with X 0 = ρ,
and let F ν denote the first time all the vertices of V ν are visited by X, formally

F ν := min{n ≥ 0 : ∀ µ ∈ V ν ∃ k ≤ n such that X k = µ},
Fix ∈ (0, 1), and consider a vertex ν = ρ. On the event {ν has h children}, where h ∈ N, indicate the children of ν as ν 1 , ..., ν h , and let ν 0 be the parent of ν. The transitional probabilities are:

P(X k+1 = ν i | X k = ν) =      h if k ≤ F ν 1 h+1 otherwise for i = 1, ..., h; P(X k+1 = ν 0 | X k = ν) =      1 - if k ≤ F ν 1 h+1 otherwise.
Observe that V ν := {ν} corresponds to the excited random walk, and V ν := {ν i , i = 1, 2, ..., h} yields a new process, the delayed excited random walk. The case V ν := {∅} corresponds to the simple random walk. In Section 2 we generalize Volkov's results about the transience of both the excited and the digging random walk. In Section 3 we prove that the delayed excited random walk is transient for > 0.39.

2 Transience of excited random walks on T

Excited random walk

Suppose V ν := {ν} for each vertex ν of T . Whenever X k = ν and k > T ν , the walk picks any neighbor of ν with equal probability. To prove transience, we first solve the ruin problem on a particular random finite tree (see Lemma 1), then use this result to describe the process behavior on T (see Theorem 1).

Consider the tree consisting of the vertices {0, 1, ..., n + 1} such that 0 is only connected to 1, n + 1 only connected to n, and, for j ∈ {1, ..., n}, j only connected to j -1 and j + 1. Associate to vertex j ∈ {1, ..., n} the integer valued random variable Y j ≥ 1.

Assume that Y 1 , ..., Y n are i.i.d.. To each j ∈ {1, ..., n} link Y j -1 new vertices, each linked only to j. We have obtained a random finite tree that we denote as V n , for an example see figure 1.

Lemma 1. For an excited random walk X defined on V n , with X 0 = 0, we have

P(T n+1 < T 0 ) = n j=1 1 - c j + 1
for some constant c ∈ (0, 2).

Proof. If X has reached j ∈ {1, 2, ..., n} before T 0 , the probability to go to j + 1 before

T 0 is P(T j+1 < T 0 | T j < T 0 ) = E 1 Y j + E Y j -1 Y j j j + 1 + (1 -) j -1 j + 1 , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 0 1 2 3 4 Figure 1: The tree V 3 with {Y 1 = 3, Y 2 = 5, Y 3 = 2}.
where the process with probability

• E[1/Y j ] reaches j + 1 in one step;
• E[(Y j -1)/Y j ]j/(j + 1) goes to a child different from j + 1, then it reaches j + 1 before T 0 ;

• (1 -)(j -1)/(j + 1) firstly reaches j -1, then it goes to j + 1 before T 0 .

Clearly,

P(T n+1 < T 0 ) = n j=1 P(T j+1 < T 0 | T j < T 0 ) = n j=1 1 - 2 -(E[1/Y j ] + 1) j + 1 .
The theorem follows by setting c

:= 2 -(E[1/Y j ] + 1).
For any vertex ν = ρ, denote by ν 0 its parent, and let

H ν := min{k > T ν : X k = ν 0 }
be the first time the walk returns to ν 0 . Moreover, call a vertex µ a descendant of ν if this latter lies on the shortest path from ρ to µ. (1 -c/(j + 1)) > 1, then apply rule S n . Notice that all vertices selected according to S n are visited before T ρ , and that for the selected vertices at level kn, k ≥ 1, the number of descendants

selected at level (k+1)n is distributed like x (n) ν .
In order to prove transience, it is enough to prove that with positive probability we select an infinite number of vertices. To see this, we argue that under the assumption of recurrence, the vertices selected under the rule S n evolves like a branching process, and this is at the heart of Collevecchio's method. Hence, it is enough to prove that a) the random variables x ν is independent from the event {ν has been selected}. By our assumption of recurrence, the vertex ν is almost surely visited by the process.

Recall that the Galton-Watson tree T is the realization of a supercritical branching process. Point (a) follows from the fact that the variables x (n) ν depend, respectively, on the behaviour of the process on disjoint random subtrees of T , and these subtrees are i.i.d.. We leave to the reader the task to prove this fact rigorously by using the construction of the excited random walk, given in Lemma 3. In this construction we assign to each vertex an independent Poisson process with rate 1, and we use these processes to generate the jumps of the excited random walk from each vertex. Then we conclude that x (n) ν depends upon disjoint sets of Poisson processes. The point (b) is proved similarly. As the selected vertices evolve like a branching process, it is enough to prove that

E[x (n) ν | T ν < ∞] > 1. (1)
Let ν be a vertex with |ν| = kn, k ≥ 1, and T ν < ∞. Due to our recurrence assumption, the probability that a descendant of ν at level (k + 1)n is visited before H ν equals the
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probability that the process defined on V n and starting from 0, reaches n + 1 before T 0 .

At level (k + 1)n we expect m n descendants of ν, so by Lemma 1 we have

E[x (n) ν | T ν < ∞] = m n n j=1
(1 -c/(j + 1))

The above expectation is greater than 1. Hence X visits an infinite number of vertices before T ρ and transience follows by contradiction.

Digging random walk

In this section we study a process introduced by Volkov under the name of digging random walk. If a vertex has not been visited for at least r times in the past, it behaves like a wall for the particle, which is pushed back to its parent. More formally, we define this process on T as follows. For fixed r ∈ N, let

D ν := min n > 0 : n k=0 1 {X k =ν} = r .
Assume that ν has h children, ν 1 , ν 2 , . . . , ν h , and denote by ν 0 its parent. The transitional probabilities are

P(X k+1 = ν i | X k = ν) =      0 if k ≤ D ν 1 h+1
otherwise for i = 1, ..., h, and

P(X k+1 = ν 0 | X k = ν) =      1 if k ≤ D ν 1 h+1 otherwise .
Notice that the digging random walk can be viewed as a special case of clouds excited random walk, where = 0 and a multiset V ν := {(ν, r)} is associated to each ν.

Lemma 2. For a digging random walk defined on V n , which starts at 0,

P(T n+1 < T 0 ) = n j=1 j -1 j r j j + 1 .
Proof. We follow the proof of Lemma 1, with the necessary changes. Suppose that X k = j and k = T j . As by time k the walk reached j, then k > D i for each vertex i ≤ (j -1). This implies that the walk behaves like a simple unbiased random walk when observed on {0, 1, ..., j -1}. In particular, the probability to reach j before 0, starting from j -1, is j-1 j . Strictly after the r th visit at j, the probability to reach j + 1 before 0, starting from j -1 is j-1 j+1 , yielding the result.
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Theorem 2. The digging random walk is transient on any supercritical Galton-Watson tree T .

Proof. As in Theorem 1, we assume that T ρ < ∞ a.s., to get a contradiction. Fix n such that

m n n j=1 j -1 j r j j + 1 > 1. ( 2 
)
Apply the selection rule S n . Lemma 2 yields

E[x (n) ν | T ν < ∞] = m n n j=1 j -1 j r j j + 1 .
Notice that x (n) ν are i.i.d. random variables, and this can be seen as in the proof of Theorem 1. Hence, the vertices selected under S n evolve like a branching process that in virtue of ( 2) is supercritical, leading to a contradiction. Now, assume that r is a nonnegative integer valued random variable, and let {r ν , ν ∈ T } be an infinite sequence of independent copies of r. Transience can be proved moving from the following solution to the ruin problem arising from the process defined on

V n P(T n+1 < T 0 ) = n j=1 E j -1 j r j j + 1 .
3 Delayed excited random walk

If V ν := {ν i , i = 1, 2..., h}, then the transitional probabilities change only when all the children of ν are visited. To the best of our knowledge, this process has not been previously studied. Denote by T (2) a binary tree i.e. an infinite regular rooted tree in which any vertex has two children. The goal of this section is to prove the following.

Theorem 3. The delayed excited random walk is transient on the binary tree T (2) , for any > 0.39.

In the following, for fixed > 0.39 we assume recurrence, then reason by contradiction.

Using an approach similar to the one used in previous sections, we first define a restriction of the process to a subtree P n of T (2) defined as follows. It consists of exactly n + 2 vertices, each belonging to different levels. Starting from the closest to the root, label increasingly the vertices of P n as 0, 1, ..., n + 1. We write {δ(l), l = 0, 1, ...} for the set of times that X spends in P n , where δ(l) := min u ≥ 0 :

u k=0 1 {X k ∈P n } = l + 1 , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
and, if the minimum does not exist, set δ(l) := δ(l -1), while δ(-1) = 0. We call the process x := {x l = X δ(l) , l = 0, 1, ...} the restriction of X on P n . Denote the first passage time of x at a vertex i of P n as

t i := min{l ≥ 1 : x l = i},
note that t 0 is the first return time to the vertex 0.

Preliminary results

We find an approximate solution for the ruin problem involving the restricted process x.

Our strategy is to estimate the fraction of vertices in P n ⊂ T (2) such that, on subsequent visits, the transitional probabilities change into 1/2. To this end, we associate to each vertex in P n a random variable defined as follows. For each vertex i ∈ {1, 2, ..., n} denote by i + 1 its offspring different from i + 1, and define

Z i := T i+1 k=1 1 {X k =i} ,
that are independent Geometric( /2) random variables as proved in the following lemma.

Lemma 3. The geometric random variables Z i , i ∈ {1, 2, ..., n}, are independent.

Proof. We give a particular construction of the process that is inspired to an idea of Herman Rubin (see [START_REF] Sellke | Reinforced random walk on the d-dimensional integer lattice[END_REF]).

To each vertex of T (2) we associate three alarm clocks, one for each neighbor. Suppose that the particle is at a vertex labeled as i. When an alarm rings the particle will instantaneously jump from the neighbor associated to that alarm clock. The waiting times for the alarms are modeled using independent exponentials, in such a way that the particle behaves like a delayed excited random walk. More formally, we could assign to any vertex i ∈ {1, 2, ..., n} three independent sequences of exponential random variables

(i-1) (n), (i+1) (n), (i+1) (n) with n ≥ 1.
These triplets of sequences are going to be used to generate jumps from each vertex.

Suppose that X k = i, and recall that F i is the first time the whole set

V i := {i+1, i + 1} A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT is visited by the process. For s ∈ {i -1, i + 1, i + 1} define ψ k (s) :=              1 1-1 {k≤F i } + 1 {k>F i } if s = i -1, 2 1 {k≤F i } + 1 {k>F i } if s ∈ {i + 1, i + 1}, ∞ otherwise,
and Φ s k := k j=1 1 {X j =s, X j-1 =i} . The next jump is determined as follows:

X k+1 = s * , where s * := arg min s {ψ k (s) (s) (Φ s k )}.
This gives the right distribution. The Z i s depend on disjoint subsets of exponentials.

The following large deviations result will be often used.

Lemma 4. Consider a random variable U n distributed as a Binomial (n,p). Let f * (x) :=

x ln x p + (1 -x) ln 1-x 1-p . We have the following large deviation estimate

P(U n ≤ λn) ≤ 2 exp -n inf 0≤x≤λ f * (x) ,
where λ ∈ (0, p).

Proof. See, for example, Dembo and Zeitouni (1998, pp. 26-27).

From now on, we denote positive constants as C i , for some i ∈ N.

For fixed j ∈ P n , we have that j-1 i=1 1 {Z i ≤2} is distributed as a Binomial (j -1, /2 + /2(1 -/2)). By applying the previous lemma, for any α ∈ (0, /2 + /2(1 -/2))

P j-1 i=1 1 {Z i ≤2} < αj ≤ C 1 e -jC 2 .
(3)

The estimate (3) can be interpreted in terms of transitional probabilities. If a vertex i < j satisfies Z i ≤ 2, when the process will visit it after time t j-1 , then it will jump in any direction with equal probability. In other words, by virtue of (3) with high probability at least αj vertices of P n change their transition into 1/2 by the first time, after t j-1 , the process x visits them. To get a better estimate for the ruin problem's solution, we take into account the fraction of vertices i ∈ P n such that Z i = 3. Observe that j-1 i=1 1 {Z i =3} and j-1 i=1 1 {Z i ≤3} are Binomial with parameters (j-1, /2(1-/2) 2 )
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Hence, there exist γ 1 ∈ [α, 1) and γ 2 ∈ [0, 1) with γ 1 + γ 2 ≥ α + β, such that

P * j-1 i=1 1 {Z i ≤2} < γ 1 j j-1 i=1 1 {Z i =3} < γ 2 j ≤ C 9 e -jC 10 . (7)
So, by the Borel-Cantelli lemma, eventually, we have at least γ 1 (resp. γ 2 ) proportions of Z i ≤ 2 (resp. Z i = 3). Now for each i ∈ P n , define

t + i := min{l > t j-1 , x l = i}, H i := 1 x t + i +1 =i+1
, where H i s are random variables taking value 1 iff the process x, returned to i ∈ {1, 2, ..., j -1} after t j-1 , at the next step is at i + 1. Notice that

P * j-1 i=1 1 {H i =1} 1 {Z i =3} < γ 2 /2 1 -/2 j ≤ C 11 e -jC 12 . (8) 
Hence, if we define

W j := j-1 i=1 1 {H i =1} 1 {Z i =3} + 1 {Z i ≤2} we get P * W j < γ 1 j + γ 2 /2 1 -/2 j ≤ C 13 e -jC 14 . ( 9 
)
We want to minimize the function γ

* := γ 1 + γ 2 /2
1-/2 over γ 1 and γ 2 , where the two variables are under the constraints γ 1 + γ 2 ≥ α + β, and γ 1 ≥ α. The minimum must be attained for values of γ 1 , γ 2 satisfying γ 1 + γ 2 = α + β (for otherwise it is possible to decrease one of the variables to get a smaller value). As 1 > /2 1-/2 , we trivially have

γ * ≥ α + β /2 1 -/2 =: γ, ( 10 
)
and the lower bound is attained for γ 1 = α and γ 2 = β. Hence P * W j < γj ≤ C 13 e -jC 14 .

(11)

Transience

Lemma 6. Consider a random walk on {0, 1, ..., n + 1}, and starting from 0. For any vertex i ∈ {1, 2, ..., n}, denote by λ i ∈ (0, 1) the probability to jump from i to i + 1, and by µ i := 1 -λ i the probability to jump from i to i -1. The probability that the walk, once reached j ∈ {1, 2, ..., n} without returning to 0, hits j + 1 before 0 is

j s=1 s-1 i=1 µ i λ i j+1 s=1 s-1 i=1 µ i λ i . ( 12 
)
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Proof. See Durrett (1996, p. 296).

For the rest of this section, fix > 0.39 and choose an η small enough such that

lim n→∞ 2 n (1 -η) n /2 1 - (1-γ)n = ∞. ( 13 
)
Indeed, this is possible because for > 0.39 we have

/2 1 - (1-γ) > 1 2 ,
(recall that γ depends on , see formula ( 10)) and for any η small enough we have

(1 -η) /2 1 - (1-γ) > 1 2 .
Lemma 7. There exists an integer N η > 0 such that for any j > N η we have

P(t j < t 0 | t j-1 < t 0 ) ≥ (1 -η) /2 1 - (1-γ) . ( 14 
)
Proof. Notice that the assumption T ρ < ∞ a.s. implies that t 0 < ∞ a.s., and define

A j := {W j ≥ γj} .
Recall the solution to the ruin problem given in (12). By (11) for the process x, on A j , µ i λ i = 1 holds for at least γj vertices. Moreover, observe that on A j we have that

µ i λ i = 1-
/2 for at most (1 -γ)j vertices. Setting b := 1- /2

(1-γ) , and for all j > N η P(t j < t 0 | t j-1 < t 0 ) = P * (t j < t 0 ) ≥ P * (t j < t 0 | A j )P * (A j )

≥ j-1 s=1 b s-1 j s=1 b s-1 (1 -C 13 e -jC 14 ) = b j-1 -1 b j -1 (1 -C 13 e -jC 14 ) > (1 -η)b -1 .
Now we are able to prove Theorem 3.

Proof. Recall the recurrence assumption. Let N η be as in the statement of Lemma 7.

As > 0.39 and in virtue of (13), we can choose n such that

2 n P t N η < t 0 (1 -η) n-Nη /2 1 - (1-γ)(n-N η ) > 1.
(15)
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The existence of such a n is implied by the fact that in virtue of (13) the left hand side of (15) goes to ∞. Then generate a branching process by rule S n . Use Lemma 7 to have

E[x (n) ν | T ν < ∞] ≥ 2 n P t n+1 < t 0 = 2 n P t Nη < t 0 n+1 j=N η +1 P(t j < t 0 | t j-1 < t 0 ) ≥ 2 n P t Nη < t 0 (1 -η) n-Nη /2 1 - (1-γ)(n-N η ) > 1. ( 16 
)
In future work, the above results will be extended to any supercritical Galton-Watson tree T .

Definition 2 .

 2 (Selection rule S n ) Given an integer n > 0, choose a vertex ν at level n such that T ν < T ρ . Then at level kn, k ≥ 2, select only the vertices that i) are descendants of ν and ii) have been visited before H ν . For each selected vertex repeat the above step recursively. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Definition 3. For any vertex ν at level kn, k ≥ 1, such that T ν < ∞, let x (n) ν be random variables describing the number of descendants at level (k + 1)n that are visited by the process before H ν . Theorem 1. The excited random walk is transient on any supercritical Galton-Watson tree T . Proof. Assume recurrence, i.e. T ρ < ∞ a.s.. As m > 1, we can fix n such that m n n j=1

  ν is running over the vertices at levels multiple of n, are i.i.d., and b) x (n)
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and (j -1, /2 + /2(1 -/2) + /2(1 -/2) 2 ), respectively. Then, by Lemma 4, for any β ∈ (0, /2(1 -/2) 2 ) and α ∈ (0, /2 + /2(1 -/2)),

Lemma 5. Let M ∈ N. For any w > 0, we have

Proof. We start by proving the following inequality

Heuristically, if we increase the value of Z i for a particular vertex i, then it becomes less likely to have t j-1 < t 0 . As

is a decreasing function of the Z i 's, the inequality (6) holds. This reasoning can be made rigorous by a coupling argument. Now notice that

Letting P * (•) := P(• | t j-1 < t 0 ), the previous lemma, combined with (3) and (5), yields