
HAL Id: hal-00514561
https://hal.science/hal-00514561

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An inverse method applied to the determination of
deformation energy distributions in the presence of

pre-hardening stresses
Félix Latourte, Amine Samida, Andre Chrysochoos, Stéphane Pagano,

Bertrand Wattrisse

To cite this version:
Félix Latourte, Amine Samida, Andre Chrysochoos, Stéphane Pagano, Bertrand Wattrisse. An in-
verse method applied to the determination of deformation energy distributions in the presence of
pre-hardening stresses. Journal of Strain Analysis for Engineering Design, 2008, 43, pp.705-717.
�10.1243/03093247JSA428�. �hal-00514561�

https://hal.science/hal-00514561
https://hal.archives-ouvertes.fr


An inverse method applied to the determination of
deformation energy distributions in the presence of pre-
hardening stresses
F Latourte1, A Samida2, A Chrysochoos2,3, S Pagano2,3, and B Wattrisse2,3*
1Dynamic Inelasticity Laboratory, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois,

USA
2Mechanics and Civil Engineering Laboratory, Montpellier II University, Montpellier, France
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Abstract: This paper presents an experimental procedure to estimate the deformation energy
distribution within plane samples submitted to mechanical loading. This procedure combined
a digital image correlation (DIC) technique giving in-plane displacement fields with an
identification method that separately provided fields of material properties and stress
distributions developed during the loading. The method was first applied to simulated data
to characterize the capabilities of the image processing. Finite element computations were first
performed on a complex structure using a standard linear kinematical hardening model to
generate multistage loadings leading to heterogeneous displacements and distributions of
deformation energy. Loads and displacements were then used as inputs to check the
robustness of the image processing by comparing the identified deformation energy fields with
the computed ones. The procedure was then applied to experimental data. Tests were
conducted under conditions similar to the numerical tests. The identification of a linear
kinematical hardening model gave deformation energy patterns showing a good agreement
with the simulated results, even in the presence of residual stresses induced by a pre-
hardening.

Keywords: digital image correlation, deformation energy distributions, pre-hardening
stresses

1 INTRODUCTION

The conversion of mechanical energy into heat has

been investigated for a wide range of materials by

many researchers, including those in references [1]

to [5]. Using different experimental techniques

(calorimeter [6], thermocouples [7], infrared (IR)

sensors [8, 9]), these studies gave similar results,

showing that a variable amount of mechanical

energy is converted into heat during inelastic

transformation. Such methods generally provide a

macroscopic estimate of the Taylor–Quinney co-

efficient that links mechanical and dissipated ener-

gies. Here, ‘macroscopic’ refers to the scale of the

sample gauge part. Nevertheless, in the case of

heterogeneous loading (e.g. necking, shear bands),

global energy measurements are representative both

of the material behaviour and combined structural

effects. Under such conditions, the overall Taylor–

Quinney coefficient can no longer be representative of

the sole material behaviour. The material behavioural

analysis then needs a local construction of the energy

balance that requires an estimate of the deformation

energy locally given to the material.

In this paper, a specific procedure is presented

that is designed to estimate locally the deformation

energy in the case of quasi-static, heterogeneous

tests during elastoplastic transformations. Various
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causes can explain the response heterogeneity of a

sample, like structural effects associated with the

overall loading or with the boundary conditions, or

material effects resulting, for example, from a non-

homogeneous initial state of the material. The

latter situation is often encountered in particular

mechanical situations, such as fatigue, for which

the initial state plays a key role in the subsequent

material evolution. The aim of this paper is to

investigate such heterogeneous responses in order

to verify the abilities of the developed protocol in

order to distinguish structural and material effects

better in terms of deformation energy.

Deformation energy constitutes the energy input

provided during a mechanical test, and its assess-

ment is necessary to perform a local energy balance.

The set-up combined an identification method

providing stress and mechanical parameter fields

with an imaging technique, namely digital image

correlation (DIC), now commonly used to measure

displacement and strain fields on the surface of thin

specimens [10].

In what follows, first the procedure allowing the

estimation of the deformation energy fields asso-

ciated with a heterogeneous material response is

presented. Then, the method is tested on numerical

examples to assess the performances and robustness

of the method. Finally the identification results

obtained on a dual-phase steel sample (commercial

grade DP600) are discussed.

2 DEFORMATION ENERGY ESTIMATE

The local estimate of deformation energy requires

stress and strain fields to be computed. These were

obtained through a mixed approach combining

experimental measurements and a numerical iden-

tification method. The strain distributions were

derived from displacement fields obtained by a

digital image correlation technique, while stresses

were computed through the constitutive equations

of an elastoplastic model previously identified on the

basis of the displacement fields. In this work a J2

plasticity criterion associated with a usual linear

kinematical hardening was chosen to describe the

hardening effects in tension.

2.1 DIC

The in-plane components of the displacement vector

were obtained by a DIC algorithm applied to the

images recorded by a high-resolution camera (ATMEL

Camelia 8M). The camera was located perpendicularly

to the tested specimen fixed between the grips of a

hydraulic testing machine (MTS). The average spot

size of the speckle image recorded by the camera was

estimated as the mean radius of the autocorrelation

peak at its half height. In this case it was approxi-

mately 1 pixel.

The components of the displacement vector u(ux,

uy) were determined at a given point M(x, y) whose

coordinates were given with respect to the frame of

reference, by maximizing the normalized correlation

coefficient defined for continuous signals by

where I1 stands for the reference initial image and I2

for the deformed image, W 5 (Wx(x, y), Wy(x, y))
expresses for the local transformation between the
two images, and CZ refers to the correlation zone. The
local transformation can be associated, for example,
with rigid-body translations [11], affine transforma-
tions [12], or quadratic transformations [13]. Here the
following polynomial transformation is identified

Wx x, yð Þ~
Xdi

i~0

Xdj

j~0

aijx
i yj

Wy x, yð Þ~
Xdi

i~0

Xdj

j~0

bijx
i yj ð2Þ

where di and dj are the degrees of the polynomial

transformation along the x and y directions respec-

tively. The correlation computation consisted of

determining the set of transformation coefficients

(aij, bij) that maximize the correlation coefficient

C(W). The dedicated optimization was performed

iteratively: at the first iteration, the transformation

was supposed to be null, whereas for the ith iteration,

the in-plane displacement components uk
x ,uk

y

� �
of a

set of points Mk located in the vicinity of the point M

were computed as

uk
x ,uk

y

� �
~ arg max

ak
00

,bk
00ð Þ

eCC ak
00,bk

00

� �h i
ð3Þ

C Wð Þ~
Ð

CZ I1 x, yð ÞI2 xzWx x, yð Þ, yzWy x, yð Þ
� �

dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
CZ I1 x, yð Þ2dxdy

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
CZ I2 xzWx x, yð Þ, yzWy x, yð Þ

� �2
dxdy

q ð1Þ
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Here a so-called classical normalized correlation

coefficient was maximized, which was associated with

a rigid-body translation motion between the initial

image I1 and the final image modified by the

transformation computed at the previous iteration

I2 xzWi{1
x x, yð Þ, yzWi{1

y x, yð Þ
h i

.

The maximization of eCC was performed using the

discrete values of eCC(dxm, dyn) computed from the

multiple pixel virtual displacements (dxm, dyn).

These discrete data were interpolated in the vicinity

of their maximum by quadratic functions giving a

subpixel displacement resolution [14].

The computed displacement components uk
x ,uk

y

� �
were approximated in the least-squares sense by

polynomial expressions given in equation (2) to give

the value of the local transformation coefficients at

the current ith iteration Wi
x x, yð Þ, Wi

y x, yð Þ
h i

. This

computation was repeated until convergence, and

the convergence criterion was stated as the differ-

ence between the displacements computed at point

M for two successive iterations.

For the applications presented in this paper, a

biquadratic local transformation was chosen (i.e.

di 5 dj 5 2), and the convergence criterion was

equal to 0.01 pixel. This relatively high value was

chosen for all the computations (associated with

both simulated and real images) in order to limit

possible numerical oscillations in the iterative

computation of the 18 parameters of the local

transformation (aij, bij). Furthermore, the quantity

I2 xzWi{1
x x, yð Þ, yzWi{1

y x, yð Þ
h i

was estimated using

a bilinear interpolation of the grey level intensity in
image I2.

The strain field was deduced by applying spatial

differential operators on the displacement data. To

improve the signal-to-noise ratio, the displacement

field was filtered before being passed to the

identification procedure. The chosen method for

this operation was based on local least-squares

fitting of the displacement data. The displacement

field was locally approximated in the neighbourhood

of each material point M (i.e. a material surface

element) by a given function whose gradients can

also be injected in a strain computation. Naturally,

both the shape of the approximation function and

the size of the approximation zone (AZ) may affect

the efficiency of the filtering. A choose was made

here to use biquadratic approximation functions in

order to ensure the consistency with the correlation

formulation. The errors on strains were estimated on

computer-generated speckle images whose imposed

deformation pattern was consistent with the one

expected for the most strained state using the

methodology described in reference [11]. These

images were generated in order to present charac-

teristics similar to the ones measured on real images

(in terms of histograms, correlation radii, etc.).

Furthermore, the acquisition noise was simulated

on these images by adding a random distribution of

grey levels whose amplitude was 5 per cent of the

digitalization scale. The order of magnitude of the

peak-to-peak error on the strain computed with the

approximation functions was 1023, as shown in

Fig. 1. The residual repartition plotted in this figure

illustrates the efficiency of the filtering operation

and particularly the absence of introduced bias by

the filtering.

As will be presented in subsection 2.2.2, the strain

field used in the identification procedure was not

computed in this way, but directly deduced from the

filtered nodal displacements and from the differ-

entiation of the shape functions associated with the

finite element description of the displacement field.

Fig. 1 Residual on the strain field obtained by fitting the
displacement field histogram of efiltered

xx {e
imposed
xx

for a simulated image, x being the loading axis

where

eCC ak
00,bk

00

� �
~

Ð
CZ I1 x, yð ÞI2 xzWi{1

x x, yð Þzak
00, yzWi{1

y x, yð Þzbk
00

h i
dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

CZ I1 x, yð Þ2dxdy
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

CZ I2 xzWi{1
x x, yð Þzak

00, yzWi{1
y x, yð Þzbk

00

h i2

dxdy

r
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An important error source associated with DIC

computations can also come from optical deforma-

tions of the recorded images due to out-of-plane

movements or geometrical distortions. To limit the

parasitic motions, the specimens were placed be-

tween grips that were rigidly mounted on the testing

machine. The alignment was checked using the

specific procedure described in reference [11]. The

optical distortions were estimated using a para-

metric distortion model whose coefficients were

identified on measured displacement fields corre-

sponding to rigid-body motions. After being identi-

fied, the distortions were suppressed from all

acquired images by applying the inverse transforma-

tion.

2.2 Identification procedure

The material behaviour was locally identified from

in-plane displacement distributions obtained by

DIC. The identification of material properties from

field measurements is a particularly active research

area that has led to the development of various

approaches, with some of the most widespread

being the finite element model updating method

[15], the virtual field method [16], and the equili-

brium gap method [17].

The framework chosen to state and solve the

identification problem associated with an elasto-

plastic behaviour with positive linear kinematical

hardening under the small strain hypothesis is now

introduced.

2.2.1 Variational method

DIC provided in-plane displacement fields that gave,

after derivation, fields of small strain e. In the most

general case, these surface measurements do not

allow identification of material properties on a whole

volume. For this reason, work focused on thin flat

samples for which the plane stress assumption was

realistic. For each deformation increment, local

measurements of three in-plane strain components

allowed three material parameters at most to be

determined locally [18, 19].

Here the identification of a linear kinematical

hardening model under the small strain hypothesis

was considered [20]. An additive decomposition of

the strain tensor into elastic and plastic parts was

assumed. The chosen plane stress J2 plasticity model

[21] depended on two kinds of mechanical para-

meters: first, the two independent coefficients of the

isotropic elastic behaviour (Young’s modulus E and

Poisson’s ratio n) and then the two plastic para-

meters (yield stress s0 and hardening modulus k). To

identify this set of four parameters, a two-step

method allowed first the two elastic coefficients in

a pure elastic loading increment to be identified. The

couple (s0, k) was then identified on the next

elastoplastic loading increments.

In the following, the elastic identification step is

first presented, followed by the elastoplastic one.

(a) Identification of the elastic constants. A varia-

tional method associated with an elastic energy

functional defined in reference [22] was used both to

identify the field of elastic parameters and to

determine the stress s locally. The energy functional

F on an appropriate domain of interest V (typically

the sample gauge part) reads

F t,Bð Þ~ 1

2

ð
V

e uð Þ{B : tÞ : B{1 : e uð Þ{B : tð
� �

dV ð4Þ

where the stress field t is statically admissible and

the compliance tensor B is supposed to be symme-

trical, non-negative, and definite.

The functional F(t, B) is separately convex, positive,

and null at point (s, Ae) if and only if (s, Ae) satisfies

the constitutive equation. Therefore, the identification

was performed by numerically minimizing the func-

tional F(t, B). A minimization conducted by a

relaxation method gave the solution stress field and

the field of elastic parameters respectively.

During the tests the overall forces applied at the

specimen boundary were recorded and passed to the

identification procedure. An augmented formulation

of equation (4) involving Lagrange multipliers was

used to solve the static admissibility: the stress

solution was compatible with the overall forces

applied on some boundaries of V and also the

stress-free boundaries.

For each loading step the variational approach

provided a couple (s, Ae), where s was a stress tensor

and Ae a compliance tensor. This couple became a

candidate solution to the elastic identification pro-

blem if it satisfied the comparison procedure on the

local compliance tensor (i.e. the relative difference of

two tensors Ae determined between two consecutive

loading steps is small enough). Otherwise the problem

was assumed to be plastic, and an elastoplastic

algorithm allowed the hardening modulus k and the

yield stress s0 to be identified separately.

(b) Identification of elastoplastic parameters. In such

a case, a variational method based on two energy

functionals was associated with two different descrip-
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tions of the mechanical problem [20]: one based on the

total displacement field, which is referred to here as

‘standard formulation’ and another one referred to as

‘incremental formulation’, based on an incremental

displacement field. These formulations involved the

secant and tangent plastic tensors (As and At) asso-

ciated with the chosen model both depending on the

unknown plastic parameters and the already deter-

mined elastic ones. The energy functionals considered

hereafter were the previously defined functional F

associated with the ‘standard formulation’ and the

functional G related to the ‘incremental formulation’

G Dt,Bð Þ~ 1

2

ð
V

e Duð Þ{B : Dt½ � : B{1

: e Duð Þ{B : Dt½ � dV ð5Þ

where Dt represents the incremental stress field and

e(Du) is the strain related to the incremental measured

displacement. Functionals F and G correspond to

constitutive error gaps written in a purely mechanical

framework. They do not take the irreversibility induced

by plasticity into account. Nevertheless, the plastic

dissipation, included in the energy balance, can be

estimated via the model and the identified parameters.

Using F, G, and two successive plastic steps it became

possible to find the incremental stress field and the

plastic coefficients k and s0. More precisely, a fixed-

point algorithm was used to solve this problem: the

functional (respectively F or G) was successively

minimized on (Ds, k) at fixed s0 and then minimized

on (Ds, k), with k being fixed at its last identified value

(obtained at the previous minimization step). To

enforce the positive definitiveness of tensor B, the

hardening modulus k was supposed to be positive. This

hypothesis naturally excludes the investigation of

softening behaviours. However, it was considered that

this limitation did not affect the generality of the

proposed procedure, the specimen softening being

able to be interpreted as a structural effect associated

with the development of strain localization, as shown

in previous work [23].

2.2.2 Numerical implementation and estimation of
the deformation energy

From a purely numerical point of view, appropriate

descriptions of the stress field, the material properties,

and the displacement field in each finite element were

required. To carry out the direct calculation, a

formulation based on a naturally equilibrated Airy

function was chosen. On each mesh element, the

chosen Airy potential was a third-degree polynomial.

The material properties were considered to be con-

stant within each finite element of the mesh. One

possibility was to combine element subassemblies

with constant material properties. To conclude with

the finite element description, it was necessary to

define the displacement interpolation. In this ap-

proach, the Q29 element, constituted of nine displace-

ment nodes, was chosen, as described in references

[24] and [20]. The associated strain was quadratic,

allowing the quadratic stress B:e(u) to remain close to

the stress given by the Airy function.

By the previous identification procedure, knowl-

edge at each loading step of both the incremental

and total stress fields was assured. Furthermore, the

quadratic strain associated with the measured in-

plane displacement could be computed in each

finite element. The averaged deformation energy

wdef(Vi, t) on a given stress element Vi at time t is

defined by

wdef Vi, tð Þ~ 1

Vi

ðt
t~0

ð
x,yð Þ[Vi

s x, y, tð Þ

: _ee x, y, tð Þ dx dy dt ð6Þ

From a numerical point of view, the following

discrete form of equation (6) was used

wdef Vi, tnð Þ~ 1

2

1

Vi

Xn{1

i~1

ð
x,yð Þ[Vi

s x, y, tiz1ð Þzs x, y, tið Þ½ �

: e x, y, tiz1ð Þ{e x, y, tið Þ½ � dx dy ð7Þ

where the spatial integration is exact, using the shape

functions of the finite elements, and n stands for the

number of load steps used for the identification.

3 APPLICATION EXAMPLE

The distribution of deformation energy was computed

with the strain measurement fields and the computed

stress fields derived from the identified model. For

elastoplastic materials, the stress developed in a given

situation directly depends upon the initial self-

equilibrated residual stress pattern preceding the

loading. Unfortunately, in most situations, this resi-

dual stress state cannot be easily determined.

For material behaviours like linear kinematical

hardening, the presence of an initial residual stress

state is directly translated as an offset of the current

yield stress. The latter being one of the material

parameters, it was then possible to account for the

http://sdj.sagepub.com/


unknown initial state distribution using the identifica-

tion procedure described in the previous section; the

existence of a residual stress pattern was consequently

translated as a distribution of yield stresses.

The aim of the proposed method was to determine

the distribution of the deformation energy within a

heterogeneously strained zone. Work first focused on

an academic situation where the strain localization

was related to a non-zero residual stress state and

generated in such a way that the associated stresses

were sufficiently important to be experimentally

revealed. The main idea was to validate the approach

on simple tests where heterogeneities could be easily

tracked.

Here, the residual stress state resulted from a

mechanical loading on a complex shape sample

machined in an initially homogeneous material. The

structural effects induced a heterogeneous harden-

ing state of the material that generated a controlled

and identifiable residual stress state after unloading.

This final state represented the heterogeneous

reference state for the subsequent loading step on

which the deformation energy had to be estimated.

3.1 Numerical experiment

In a first step, the whole procedure was assessed on

numerically obtained data in order to estimate its

performance on ‘perfect’, noise-free data. By ‘per-

fect’, it was assumed that the finite element

description of the material behaviour was in com-

plete agreement with the hypotheses conceded in

the identification procedure: small perturbation

hypothesis, plane stress assumption, and constitu-

tive equations (isotropic linear elasticity and linear

kinematic hardening).

3.1.1 General description of the simulations

The loading of the sample was simulated using a

finite element code. The specimen geometry re-

sembled the typical ‘dog-bone’ tensile specimen but

with a trapezoidal area of additional width in the

specimen centre, allowing the response of the

specimen to be non-homogeneous. The loading

was applied in four consecutive loading steps (see

Fig. 2). The first two steps corresponded respectively

to the loading and the total overall unloading of the

sample, leading to the development of a hetero-

geneous inelastic stress state within the structure.

The third step was related to the redistribution of the

residual stresses associated with the ‘machining’ of

the two triangular-shaped domains. This operation

was intended to obtain the geometry of a standard

tensile specimen, with a heterogeneous residual

stress pattern. Numerically, this operation was done

by changing the mechanical properties of the

element set corresponding to these two zones and

Fig. 2 Mesh and pre-deformed state of the sample
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computing the resulting self-equilibrated stress state

(see Fig. 2, material 2); the rigidity of the material

was divided by a factor 104. Consequently, the

mechanical contribution of these zones was negli-

gible in terms of overall deformation energy. This

operation allowed account to be taken of the non-

uniform initial distribution of the hardening state

variables, without any numerical difficulty. Finally,

after the last simulated loading step, strain localiza-

tion effects due to the heterogeneous pre-hardening

state of the material were observed as expected.

3.1.2 Residual stress state

It has already been mentioned that the first three

steps were only designed to obtain a heterogeneous

residual stress state. At the end of the third loading

step, the numerical simulation gave access to plastic

strain and stress components. Figure 3 shows the

distribution of both equivalent plastic strain and von

Mises stress at this particular state. The strong

similarity between the Figs 3(a) and (b) is explained

by the fact that the initial state of the material (at the

beginning of the first loading step) was homoge-

neous (i.e. p 5 0 and s0 5 300 MPa).

The stress, strain, and deformation energy fields

were computed with respect to this reference state.

In order to illustrate the results associated with this

pre-hardening state, in Fig. 4 the distribution of the

axial stress and that of the deformation energy

density (expressed in MPa, which is equivalent to

1023 J/mm3) given by the direct FE computation at

the end of the fourth step were plotted. As expected,

the incremental stress and deformation energy

density developed in the two triangular-shaped

zones were negligible, which is consistent with their

negligible contribution to the overall stress pattern.

The distributions observed in Fig. 4 are not com-

pletely symmetrical due to the boundary conditions

simulating the grips: uniform pressure on one side

and null displacement on the other.

3.1.3 Identification results

The overall forces coming from the numerical

simulations were directly transferred to the identifi-

cation procedure described in section 2. The in-

plane displacement field was interpolated, using the

finite element (FE) shape functions, on a regular

27627 grid. Using this procedure, the mechanical

properties (E, n, k, s0) and the stress field were

identified on 13613 elements.

Not surprisingly, the elastic property distributions

were quite homogeneous and the mean values of the

Young’s modulus and of the Poisson ratio were equal

to the imposed values. The local fluctuations of these

identified data were associated with a standard

deviation of 0.5 MPa and 1023 respectively. The

identified plastic parameter distributions are shown

in Fig. 5. It can be observed that the hardening

modulus k was slightly overestimated (around 3 per

cent) and that its spatial fluctuation corresponded to a

standard deviation of 230 MPa, which represented 5

per cent of the imposed value (see Figs 5(a) and (b)).

Fig. 3 Mechanical fields at the end of the third load step

Fig. 4 Incremental mechanical fields at the end of the fourth load step
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The identified yield stress distribution is plotted

in Fig. 5(b). The comparison between Fig. 3(b) and

Fig. 5(b) shows a high correlation level between the

reference and identified distributions. The identified

values were quantitatively consistent with the refer-

ence ones: the maximum error of about 3 per cent was

located in the zones where stress gradients were the

most important (in the four corners of the domain and

in the middle of the free boundary). This repartition

may be due to the stress elements (see section 2) that

could not account perfectly for the spatial evolution of

the stress. The slight uncertainties on the stress

estimates affected the computing of the yield stress,

and consequently the tangent modulus.

The identified quantities directly involved in the

estimation of the deformation energy are plotted in

Fig. 6. As already mentioned, they depended on the

identified elastic parameters and thus integrated

the discrepancy on these parameters. In particular,

the axial component of the identified stress tensor is

shown in Fig. 6(a). It also reveals strong stress

gradients in the four corners of the domain and in

the neighbourhood of the two free boundaries. The

identified stress pattern was consistent with the

reference one. Nevertheless, the important stress

gradients were slightly underestimated with a max-

imum difference amplitude of around 10 per cent (see

Fig. 6(c)). Here it is reiterated that this quantity was

determined without any a priori knowledge of the pre-

hardening state of the material.

The deformation energy density patterns are

plotted in Fig. 6(b). The displacement field used for

the identification was different from the one given

by the finite element computation because it had

been interpolated on a much coarser grid. Conse-

quently, the shape functions used for the deforma-

tion computation within the identification proce-

dure were also unsuited to perfectly represent the

strain gradients. These results show, however, a good

consistency with the reference values. It can be

noticed that the profile of the discrepancy map of

the axial stress fits with that of the deformation

energy (see Figs 6(c) and (d)).

The specific influence of the superimposed noise

on the displacement measurements on the identifi-

cation results have already been presented in

reference [20]. It was observed that the noise did

not affect the systematic patterns of the identifica-

tion errors, but induced a supplementary random

error distribution whose variance increased quasi-

linearly with its amplitude.

3.2 Real experiment

A similar experiment was carried out on a specimen

machined in a 2.5 mm thick laminated sheet of

DP600 steel. The initial geometry of the sample and

the loading sequences were identical to the ones

used in numerical simulations. The first loading step

Fig. 5 Identified plastic parameters
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was a velocity-controlled tensile loading up to a

macroscopic strain of around 1 per cent. Then, the

sample was completely unloaded before removing

its two triangular-shaped sides by careful machining.

The sample was then set again between the grips

of the testing machine. It should be remembered

here that these operations were not mandatory to

estimate the deformation energy patterns. Their only

purpose was to obtain a relatively well-known

heterogeneous initial state. Images of the deforming

specimen were taken by the digital camera during all

the different mechanical loading stages. In order to

minimize the error sources due to mounting and

unmounting the specimen, rigid joints were used

between the grips and the testing machine.

By comparing an image of the specimen in its

reference state and after machining, the residual

strain field could be estimated. Figure 7 shows the

measured and simulated equivalent plastic strain at

the end of the third load step. Although the actual

behaviour of the material was surely different from

the one used in the simulation, it can be observed

that the measured and simulated residual plastic

strain patterns matched rather well. As this plastic

strain field was directly related to the residual stress

state, it was thus assumed that the residual stress

pattern developed within the sample was similar to

the one exhibited in the numerical simulations.

3.2.1 Experimental results

The macroscopic stress–strain response of the sample

during the fourth load step is given in Fig. 8. It shows

the three load levels used for the identification (one in

Fig. 6 Identified mechanical fields

Fig. 7 Measured and simulated equivalent plastic strain at the end of the third load step
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the elastic domain to identify the elastic parameters

E and n, and two in the plastic domain to identify the

two plastic parameters k and s0). Naturally, the

material response did not perfectly match the theore-

tical one associated with a linear kinematic hardening

model. Nevertheless, it was possible to estimate the

‘macroscopic’ homogeneous parameters correspond-

ing to this material behaviour, using this global

response. Naturally, the plastic parameters identified

in this manner did not account for the heterogeneity

of the initial state. They are given here uniquely to

illustrate the order of magnitude of the material

parameters: E macro 5 194 GPa, nmacro 5 0.3, k macro 5

2.4 GPa, s0
macro 5 480 MPa.

Only the displacement fields measured at the

three load levels represented in Fig. 8 were used for

the material identification. They were computed on

a regular virtual grid of 626682 measurement points,

using correlation subsets of 40640 pixels and a

biquadratic shape function for the subset transfor-

mation (as described in section 2).

The deformation field represented in Fig. 9 was

computed using a sweeping local polynomial ap-

proximation method involving biquadratic approx-

imation functions of the displacement field (which

was consistent with the supposed subset local

transformation). This procedure also allowed recov-

ery of the fitted displacement data. The difference

between the measured and the filtered axial dis-

placement in the central part of the sample is plotted

in Fig. 10. It shows that the data fitting suppressed a

random Gaussian error component associated with a

zero pixel mean and a 0.02 pixel standard deviation

(see Fig. 10(b)), without introducing bias on low-

frequency gradients.

3.2.2 Deformation energy estimate

The filtered displacement data were then interpo-

lated on a coarser 13613 grid before being used in

the identification procedure in order to regularize

the identification problem (see Fig. 11). They illus-

trate the symmetry of the measurements, which was

consistent with the expected symmetry of the

response of the specimen. From these displacement

data the following elastic parameters were identified:

E ident 5 192 GPa and nident 5 0.26. They were close to

the values deduced from the global stress–strain

curve. These results also confirm the hypothesis of a

non-damageable elasticity.

The plastic parameter distribution provided by the

identification procedure is shown in Fig. 12. Their

mean values were consistent with the ones derived

from the analysis of the macroscopic stress–strain

response of the sample: kident
mean~1950 MPa and

s0mean
ident ~480 MPa. As observed in the numerical

results, the distribution of the identified yield stress

s0 was quite symmetric with respect to both vertical

and horizontal axes. Furthermore, it matched rather

well the distribution associated with the numerical

results. It can clearly be observed that the four

corners of the domain corresponded to higher values

of yield stress and that the horizontal free bound-

aries, located in the direct neighbourhood of the

removed part of the sample, had the smallest level of

yield stress. In addition, the vertical boundaries

showed high identified yield stress values, while the

yield stress identified in the middle of the domain

was slightly larger than its mean value.

Conversely, distribution of the identified hard-

ening modulus k was slightly heterogeneous. The

standard deviation on this parameter was around

120 MPa, which corresponds to approximately 6 per

cent of kident
mean. This last result is also in good

agreement with the expectation of a homogeneous

distribution of this parameter.

The associated axial stress and strain distributions

are plotted in Fig. 13. The patterns observed were

Fig. 8 Macroscopic stress–strain curve associated with
the fourth load step

Fig. 9 Axial strain distribution exx at the end of the
fourth load step
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also in good agreement with the numerical simula-

tions presented in the previous section. Naturally,

the stress amplitudes were slightly different from the

ones numerically obtained because the materials

hardening moduli were different: the highest stress

levels were observed in the four corners of the

domain and a stress concentration developed in the

centre of the domain. Figure 13(b) shows that the

axial strain field associated with the displacement

data used for the identification was fully consistent

with the experimental and numerical deformation

fields shown in Figs 7 and 9.

The deformation energy density field was com-

puted using the method described in the previous

section. The estimate of the deformation energy

density fields is given in Fig. 14 and is also in good

agreement with the results derived from numerical

simulations (see Fig. 6(b)). In particular, the smallest

levels of deformation energy were observed in the

Fig. 10 Residual on the displacement field after the fitting operation

Fig. 11 Interpolated displacement field at the end of
the fourth load step

Fig. 12 Identified plastic parameters (hardening modulus k and yield stress s0)
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vertical boundaries of the domain, where the strains

were minimal.

4 CONCLUDING COMMENTS

In conclusion, a procedure was designed allowing

the measurement of deformation energy fields in

specimens submitted to tensile mechanical loading.

This procedure combines displacement measure-

ments obtained by DIC with the stress fields given by

a mechanical property identification method. Many

technical difficulties were overcome and the first

results presented in this paper are encouraging.

Mechanical property identification procedures

from full field measurements are most generally

developed to characterize homogeneous materials.

In some situations (e.g. necking and fatigue), the

response of a sample to simple loadings is not

homogeneous, which can be interpreted as a

heterogeneous material behaviour, associated with

a heterogeneous initial state. For that reason, an

identification procedure was devised that was

capable of characterizing heterogeneous material

behaviours. Inverse problems such as identification

are known to be very sensitive to perturbations,

being most likely noise in experimental data.

Therefore, the method was first tested on numer-

ical data obtained by a direct finite element

computation. The mechanical hypotheses asso-

ciated with the simulation were identical to the

ones conceded in the identification procedure,

small perturbations, plane stress, isotropic elasti-

city, and linear kinematic hardening, thus mini-

mizing the errors due to the inconsistency between

the chosen computational framework and the

identification formulation. The error sources were

then principally related to (a) inconsistent stress

and strain gradient estimates due to the use of a

coarser finite element mesh in the identification

procedure than in the direct computation and (b)

the imperfect hypothesis of piecewise constant

material properties.

However, the material heterogeneity imposed in

the numerical simulation was correctly retrieved by

the developed procedure, and the corresponding

deformation energy was also correctly estimated

either in its pattern or its amplitude. These results

emphasized the potential of the procedure.

The method was also applied to a set of experi-

mental data associated with a heterogeneous

material comparable with the one studied in the

numerical test. The obtained results were also very

encouraging: the trends in the identified material

parameters (hardening modulus and yield stress)

and in the deformation energy distributions

matched the ones noticed in the reference numer-

ical test. The observed discrepancies could be

related to the difference between the ‘real’ material

behaviour and its most academic modelling used

here in the identification. The next step of this work

will thus enlarge the panel of more realistic

material models considered by the identification

procedure. An important effort will also lead to

improvement of the temporal integration of the

deformation energy.
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