Automatable Evaluation Method Oriented toward Behaviour Believability for Video Games

Fabien TENCÉ and Cédric BUCHE {tence, buche}@enib.fr

VIRTUAL VISION & PROCESS

Believable Agents

Believable agent

Computer program which plays like a human player.

Important point:

• Believability is subjective

Interest:

• Suspension of disbelief [Bates 92]

Evaluation of Believability

Lot of research on the topic [Mac Namee 04, Livingstone 06, Gorman 06]

Based on humans to judge agents:

- Best way to evaluate believability
- Time-consuming

Evaluation of Believability

Lot of research on the topic [Mac Namee 04, Livingstone 06, Gorman 06]

Based on humans to judge agents:

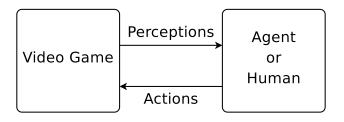
- Best way to evaluate believability
- Time-consuming

Our objective:

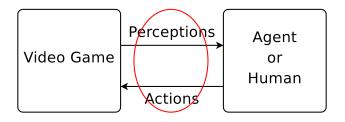
- Automatise the evaluation
 - \Rightarrow Reduce human intervention

Outline

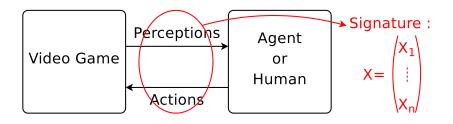
2 Sample Experiment


Proposed Evaluation Method

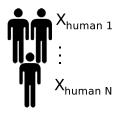
2 Sample Experiment


3 Conclusion

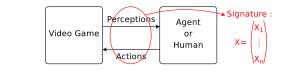
TENCÉ, BUCHE (LISyC, CERV, Virtualys) Evaluation Method for Believable Behaviours

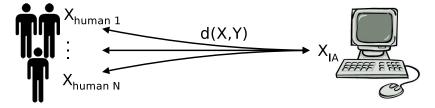

Principle: Monitoring

Principle: Monitoring



Principle: Monitoring


Principle: Distances



Principle: Distances

Proposed Evaluation Method

3 Conclusion

TENCÉ, BUCHE (LISyC, CERV, Virtualys) Evaluation Method for Believable Behaviours

Goal:

• Evaluate the believability of UT2004 agents' move

Goal:

• Evaluate the believability of UT2004 agents' move

Goal:

• Evaluate the believability of UT2004 agents' move

Objective and signature

Goal:

• Evaluate the believability of UT2004 agents' move

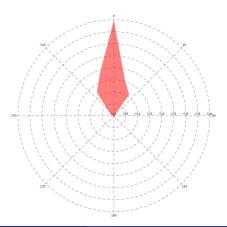
Objective and signature

Goal:

• Evaluate the believability of UT2004 agents' move

Goal:

• Evaluate the believability of UT2004 agents' move



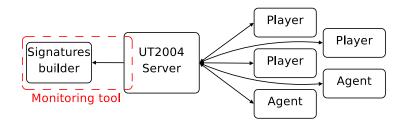
Objective and signature

Goal:

• Evaluate the believability of UT2004 agents' move



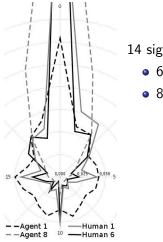
Objective and signature


Goal:

• Evaluate the believability of UT2004 agents' move

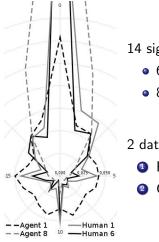
Technical Details

Based on Pogamut 2 [Burkert 07]


Source available at: svn://artemis.ms.mff.cuni.cz/pogamut/branches/fabien_tence

	0			

Protocol


Protocol

Results

- 14 signatures:
 - 6 humans
 - 8 agents

Results

- 14 signatures:
 - 6 humans
 - 8 agents
- 2 data visualisation methods:
 - Reveal the differences between signatures
 - Compare signatures' global shape

Principal Components Analysis

Objective:

• Reveal the differences between signatures

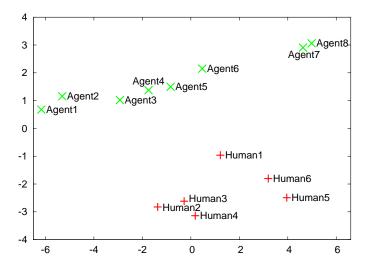
Method:

- Principal components analysis on the 14 signatures
- Ohart using the 2 principal components

Principal Components Analysis

Objective:

• Reveal the differences between signatures


Method:

- Principal components analysis on the 14 signatures
- Ohart using the 2 principal components

To make it simple:

• Taking the plan on which the projected data is the most dispersed

Principal Components Analysis

Earth Mover's Distance and MultiDimensional Scaling

Objective:

• Compare signatures' global shape

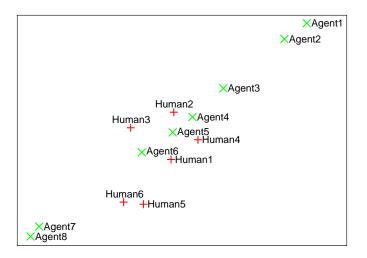
Method:

- Compute Earth Mover's Distance [Rubner 00] between the signature
- **②** Visualise these distances with MultiDimensional Scaling [Kruskal 64]

Earth Mover's Distance and MultiDimensional Scaling

Objective:

• Compare signatures' global shape


Method:

- **()** Compute Earth Mover's Distance [Rubner 00] between the signature
- Visualise these distances with MultiDimensional Scaling [Kruskal 64]

To make it simple:

• Distance on the chart pprox distance between signatures' global shape

Earth Mover's Distance and MultiDimensional Scaling

Analysis of the Results

2 analysis:

- Differences between agents and humans
 - Can be caused by players' input devices
- Few differences between signatures' global shape
 - Are signatures too simple?

Analysis of the Results

2 analysis:

- Differences between agents and humans
 - Can be caused by players' input devices
- Few differences between signatures' global shape
 - Are signatures too simple?

Conclusion:

• There are difference but it is not sure that humans can notice them

Proposed Evaluation Method

2 Sample Experiment

Strengths of the method:

- Can evaluate a large number of agents
- Simple experiments reveal differences between agents and humans

Summary

Strengths of the method:

- Can evaluate a large number of agents
- Simple experiments reveal differences between agents and humans

Remark:

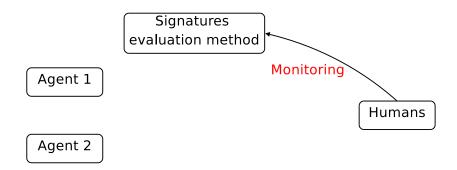
• Signatures do not have the same sensitivity as human

 \Rightarrow Is this really a problem if signatures are too sensitive?

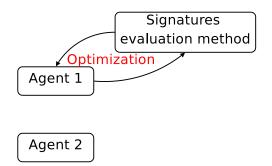
Next steps:

- Design more complex signatures
 - \Rightarrow Studies with human subjects
- Output State of the second state of the sec

Next steps:

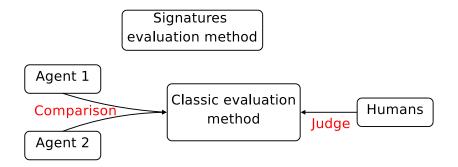

- Design more complex signatures
 - \Rightarrow Studies with human subjects
- Output State of the second state of the sec

Agent 1


Next steps:

- Design more complex signatures
 - \Rightarrow Studies with human subjects
- ② Use these signatures in a behaviour modelling project

Next steps:


- Design more complex signatures
 - \Rightarrow Studies with human subjects
- ② Use these signatures in a behaviour modelling project

Humans

Next steps:

- Design more complex signatures
 - \Rightarrow Studies with human subjects
- ② Use these signatures in a behaviour modelling project

Automatable Evaluation Method Oriented toward Behaviour Believability for Video Games

Fabien TENCÉ and Cédric BUCHE {tence, buche}@enib.fr

VIRTUAL VISION & PROCESS

Joseph Bates.

The Nature of Characters in Interactive Worlds and The Oz Project. Rapport technique CMU-CS-92-200, School of Computer Science, Carnegie Mellon University, 1992.

O. Burkert, R. Kadlec, J. Gemrot, M. Bida, J. Havlicek, M. Dorfler & C. Brom.

Towards Fast Prototyping of IVAs Behavior: Pogamut 2. Lecture Notes in Computer Science, vol. 4722, pages 362–363, 2007.

B. Gorman, C. Thurau, C. Bauckhage & M. Humphrys. Believability Testing and Bayesian Imitation in Interactive Computer Games.

Lecture Notes in Computer Science, vol. 4095, pages 655-666, 2006.

J.B. Kruskal.

Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.

Psychometrika, vol. 29, no. 1, pages 1–27, 1964.

Daniel Livingstone.

Turing's Test and Believable AI in Games. Computer Entertainment, vol. 4, no. 1, page 6, 2006.

B. Mac Namee.

Proactive Persistent Agents: Using Situational Intelligence to Create Support Characters in Character-Centric Computer Games. PhD thesis, University of Dublin, 2004.

Y. Rubner, C. Tomasi & L.J. Guibas. *The Earth Mover's Distance as a Metric for Image Retrieval.* International Journal of Computer Vision, vol. 40, no. 2, pages 99–121, 2000.