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ABSTRACT: A strategy for the analytical solving of ordinary differential equations and a first implementation
of it based on mobile agent community, using jini Numerical algorithms are already designed in many domains
such that electromagnetism, fluid theory. Numerical codes were developed from these mathematical analyses
with interesting performance. Our work is about our runtime platform to execute existing numerical codes by
the use of mobile agents. They act as workers which manage parts of a numerical code on a set of computers.
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1 INTRODUCTION

Numerical analysis naturally finds applications in all
fields of engineering and the physical sciences, but to-
day, the life sciences and even the arts have adopted
elements of scientific computations. When scientists
and engineers need numerical answers to mathemat-
ical problems, they turn to computers or more spe-
cific computing architecture. Nevertheless, there is a
widespread misconception about the process of com-
putation. The role of numbers is essential. During
a research process, scientist set numerical measure-
ments which led to physical laws expressed mathe-
matically. So, these formal expressions are a basis
for numerical algorithms, but the role of computer is
more complex.

In many cases, a mathematical expression cannot be
transformed into an automaton or a sequence of op-
erations. Because, it is not always possible to build a
precise and fast algorithm, this construction changes
to an approximate fast answer that is accurate to ten
or twenty digits of precision. For scientific applica-
tion, such an answer is often as good as exact. Nu-
merical analysis is the study of algorithms for solving
problems of continuous mathematics. A lot of sub-
jects are touched such that to solve a system of n
linear equations in n unknowns of to find the short-
est tour between p cities. But famous algorithms al-
ready exist about solver of partial differential equa-
tion (DPE) or solver ordinary differential equation
(ODE). Various declinations of such algorithms exist
depending on the input data types, or on this data
size. This means that a second problem arises for
engineer: how to use these algorithms on a common
platform. Because an ODE algorithm is defined on

a specific cluster of computers, it is not usable on a
workstation easily. Also an engineer has to manage
several configurations due to his current work. We
decided to assist engineer to adapt execution of se-
lected numerical code (Hairer & Wanner 1987). Our
work is not to create or to change an existing code
into a more suitable one, but we want to use numer-
ical codes which are already validated in an adaptive
environment.

The adaptation has several facets: one of them is used
during execution. If a hundred processors are avail-
able, a simulation can use them. But if during this ex-
ecution, some of them have to be stopped or used by
someone else, and then the execution must continue
onto a subset of processors. A second facet is about
the scheduling of numerical code (Powell 1981). Fre-
quently code is divided into parts which are totally
independent; also parallelization is possible if there
are enough processors. The adaptation is to treat
these parts concurrently or not depending of execu-
tion state.

Our solution (Dumont & Mourlin 2007, Dumont &
Mourlin 2008) is based on the use of mobile agent and
the construction of agent coalition: one per comput-
ing case study. Previously, we present results about
numerical code written into Java language, because
this programming language is compatible with our
platform called MCA for Mobile Computing Architec-
ture. Now, we present through this document a more
powerful approach where existing numerical code is
used in the original programming language, but the
scheduling is done through the use of mobile agents.
The next section is about the use of mobile agent
into a mobile coalition. Next we detail technical ar-
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chitecture of MCA platform and precisely the role of
Worker agent. Next we explain a case study about
polynomial equation solver and our results (Nocedal
& Wright 1999). Finally, we highlight key points of
our work and the next step of our research approach
in the domain of computing technology.

2 MOBILE AGENT AND COALITION

Mobile agents are software abstractions that can mi-
grate across the network (mobile characteristic) rep-
resenting users (called agents) in various tasks. Mo-
bility has advantages over static alternatives with
benefits, such as improved locality of reference, ability
to represent disconnected resources, flexibility, and
customization.

2.1 State of the art

The term ”mobile agent” was introduced by script
languages, which supported mobility at the program-
ming language level. Many mobile agent systems fol-
lowed, most implemented in Java, which already sup-
ports mobile code, but also in scripting languages,
such as Perl or Python. Mobile agents seem suit-
able for applications, such as web commerce, system
administration and management (especially network
management), and information retrieval. However,
few systems actually deployed them in an industrial
setting.

Research projects already exist about platform based
on mobile agent such as D’Agents at Dartmouth
University (Gray, Kotz, Cybenko & Rus 2000), or
Tacoma mobile-agent system as well as the Storm-
Cast distributed application. But all these systems
need to develop new codes with specific guidelines.
And because mobile agent concept is not normalized,
it is not possible to reuse a mobile agent application
from one platform to another one. Also, we designed
our platform with a first objective to be adaptive. It
means an ability to reuse existing code into a runtime
context managed by mobile agents (Cabri, Leonardi
& Zambonelli 2000).

2.2 Role of mobile agent

Mobile agents can be deployed in distributed sys-
tems because mobile agents have a number of key
features that allow them to reduce the network load
and overcome network problems. They can encap-
sulate computing protocols, and they can work re-
motely, even asynchronously and disconnected from
its group called coalition.

The idea of mobile code is easy to understand, but it
presents all sorts of interesting technical challenges.
Distributed computations are somewhat more com-

plex. The key concept of mobile agent is about its
migration process.

First, migration is used by an agent to access to an
available resource. This is particularly useful when
there are a lot of processors and some of them are
available for a computation and some others become
free during first computing step. Thus, it is pos-
sible to take up these new resources. In our con-
text, it means that mobile agents help to the manage-
ment of a computing case study (Lal & Pandey 1999)
(Tschudin 1997).

Secondly, migration needs to manage lookup services
where agents are recorded. When a resource becomes
free, its access is saved into a lookup service. Also,
when a failure occurs, the states of all the lookup ser-
vices are an indicator to retrieve a stable state of a
computation. For numerical codes, it means that mo-
bile agents allow restarting an interrupted execution.

Third, migration is also a key feature for dynamic
deployment by launching mobile code from a central
place. Then, they migrate and reside at different com-
puters, rather than installing copies of the software
at all servers individually. This involves that all nu-
merical code are saved on to some computers, maybe
one, and their parts are exported to free computers.
Of course, if a new version of the agent is available,
computers are informed by remote events. The new
version agent migrates all computers. All agents are
then synchronized.

This migration concept relate well with several tech-
nologies such as CORBA and Jini (Java Intelli-
gent Network Interface). While both technologies
are quite similar, Jini has some advantages : pass-
by-value and pass-by-reference (CORBA only does
pass-by-reference), dynamic loading interface, Leas-
ing mechanism, multicast lookup request, variety of
protocols (CORBA only uses IIOP) ... . For these
points, the useful services available in that framework
and our experience in previous research activities, we
decided to use Jini framework.

2.3 Mobile agent coalition

When a platform is just based on a set of mobile
agents, it means that only one computing case is con-
sidered on that platform. A structure has to be cre-
ated like a group or coalition. In our context a colla-
tion is a group of mobile agent with a common objec-
tive: a numerical case study with a specific code and
selected input data.

Through a more technical approach, a collation is a
space where interaction can be done without pertur-
bation. Also, we develop this concept to manage sev-
eral computing case studies on to the same set of com-
puters. Agent communication for the mobile agent’s



MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

coalition means, at least most of the time, the ex-
change of objects or object references. This can be
message or more partial results. At a higher level,
a coalition can have its own communication strategy
and specific rules for the data persistence (da Silva &
da Silva 1997).

In previous section, we explained about the role of the
agent migration. Now, we can extend this concept
with migration strategy for a coalition. On a grid
of processors, this corresponds to a wave where all
agents move by application of the same migration law.
This kind of rule can be based on the lookup of a kind
of resource such as a specific solver or a particular size
of memory or more powerful a load balancing decision
from the master of the coalition.

3 AN ARCHITECTURE ADAPTED TO

NUMERICAL SIMULATION

In this part, without going into details as we did
previously (Dumont & Mourlin 2007, Dumont &
Mourlin 2008), we will describe our architecture. We
can highlight two features of it: the adaptability and
the mobility. Java has become necessary in terms of
programming language; effectively, it allows any OS
with a Java virtual machine to execute a Java byte
code. All components (ComputingMaster, Comput-
ingWorker, ComputeAgent, MCASpace...) of our ar-
chitecture are developed in Java. We will see their
utility as a first step.

Java allows us to accept any type of OS or architec-
ture (with few exceptions). This means that compo-
nents of our architecture (especially the Computing-
Worker) can easily adapt to different contexts. But,
in addition to its execution context, a component
must also adapt to the calculation case in which it
wishes to participate. The whole calculation case (its
tasks, data, properties and of course its algorithm)
must be mobile and ready to be hosted by a Comput-
ingWorker. In a second part we will see why MCA is
also mobile agents architecture.

3.1 A Space Based Architecture

To use mobile agents in Java, we decided to use the
Jini framework (cf Section 2.2). Among the many ser-
vices available in that framework, 2 are particularly
useful for our architecture: its Lookup service (Dis-
covery and Join) and its JavaSpace implementation
(Outrigger API).

Our architecture is based on a space: the MCASpace.
As we have seen in section 2.3, we can execute several
computation cases simultaneously. One computation
case becomes an agent coalition in the space. As a
shared memory, a coalition contains different types of
entries (Task, MCAProperties, and Datahandler).

At the beginning of a case will involve the Computing-
Master : it initializes the case. 2 types of computation
case are possible:

• The case requires input data, the Computing-
Worker cuts data into several files and it writes
matching DataHandler : ie a link (FTP ,SFTP,
HTTP, Local...) to a file.

• All tasks for the computation case are not all de-
pendent on them. They are defined before start-
ing the case. The ComputingMaster plays the
role of a scheduler (Otherwise it is the task itself
that write the following tasks in the MCASpace).

In all cases, the ComputingMaster writes the first
task to execute and then signals the end of the com-
putation case to the coalition of agents involved in
the latter.

Finally, the ComputingWorker is the component that
executes the algorithm of calculation (using the Com-
puteAgent we will see in the next section). The num-
ber of ComputingWorker may vary during the execu-
tion of the case.
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MCAProperties

Task1
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Task3

ComputingMaster
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MCAProperties

Task1 Task2

DH1

DH2
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Figure 1: Components of MCA
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3.2 A Mobile Agents Based Architecture

We just see the static components of our architecture.
But its main feature is the adaptability: an incoming
ComputingWorker should not disturb the execution
of a computation case. For this we use the mobility
of different ways.

Firstly, we saw that the MCASpace contains several
entries. By definition these entries are mobile. The
ComputingWorker can take data, tasks and proper-
ties of the computation case without being config-
ured.

Secondly, all ComputingWorkers have the Jini
Lookup service enable and listen the arrival of a par-
ticular agent: the TaskNotifierAgent. This agent is
launched by the MCASpace upon arrival of a new
task. It travels from lookup to lookup (of Comput-
ingWorkers) to find a free ComputingWorker. Upon
its arrival on a lookup, the agent checks the state of
the ComputingWorker : if WAIT FOR COMPUTE
then the agent takes the Task on the MCASpace and
launches its execution on the ComputingWorker, else
the agent continues its roadmap.

Third, a ComputingWorker arriving in a computa-
tion case does not have the algorithm. Each task is
associated with a part of this algorithm. This part
is held by a ComputeAgent. The ComputingWorker
retrieves this agent and executes it locally.

4 EXECUTION OF NATIVE CODE

In this chapter we focus specifically on the execu-
tion of a task of a computation case (a Task en-
try in our architecture). Then the couple Comput-
ingWorker/ComputeAgent is highlighted. But why
come back to this couple? Its ability to run exist-
ing code. In the previous chapter, we described our
architecture as full-Java architecture. But this archi-
tecture gets ready to receive native code.

Let’s go back when the ComputingWorker gets a Task
on the state WAIT FOR COMPUTE. At this step, 2
cases are possible:

• The simplest case: the code of the computa-
tion case is developed in Java code. The Com-
puteAgent, necessary for the executions of the
task, is a class that implements the Java in-
terface ComputeAgentInterface and redefines the
method execute. Then the code is completely
written in Java language and can use multiple
Java API available. This case is simple but cer-
tainly the least used.

• The second case: this time, the code of the
computation case is already existing and devel-
oped in another language (C/C++). It is here

that adaptive runtime for numerical code makes
sense.

It is on this second case that we will linger throughout
this chapter. It implements several mechanisms that
are explained below. But before we begin detailing
the implementation of a ”native” agent, we will make
a brief presentation of LLVM.

4.1 LLVM : Another virtual machine

The Low Level Virtual Machine, generally known as
LLVM, is a compiler infrastructure, written in C++,
which is designed for compile-time, link-time, run-
time, and ”idle-time” optimization of programs writ-
ten in arbitrary programming languages. Originally
intended to replace the existing back-end in GCC
with a more modern substrate, the success of LLVM
has since spawned a wide variety of new front-ends
intended to work with it and replace larger portions
of the GCC stack.

How to use LLVM architecture in MCA? 2 features
are particularly useful: A Just-In-Time (JIT) code
generation system and APIs tools to simplify rapid
development of LLVM components (Begeman 2008).

4.2 A native agent

We saw in the previous chapter the configuration of a
ComputeAgent. A native agent has the same proper-
ties except that we must to specify the file containing
to execute (a LLVM bitcode file).

But it being a subclass of ComputeNatifAgent that
the ComputeAgent is actually a ”native” agent. This
class differs from the interface ComputeAgentInter-
face by its ability to execute native code. For this,
the agent will use the mechanism proposed by JNI
(Java Native Interface).

JNI is a programming framework that allows Java
code running in a Java Virtual Machine (JVM) to
call and to be called by native applications (programs
specific to a hardware and operating system platform)
and libraries written in other languages, such as C,
C++ and assembly. In our case, we use the ability to
call a dynamic library developed in C++.

Adaptability is a key feature of our MCA architec-
ture; it seems obvious that the same code will run
on several types of OS or architecture. Therefore,
the use of the virtual machine provided by LLVM is
essential to every ComputingWorker.

4.3 A runtime strategy

But how to give the possibility to ComputingWorker
use this virtual machine? In linking the 2 previously
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mentioned concepts (JNI and LLVM) that we will be
able to run native code in our Java architecture.

As we said in our presentation of LLVM, we used
the C++ API provided (which allows among others
to communicate with the virtual machine). We have
developed a dynamic library called libMCA.so. This
library provides 2 functions. Here is the definition:

void load ( const char∗ f i l e ) ;
const char∗ execute ( const char∗ funct ion ,

const char∗ parameters [ ] ) ;

The first method loads a LLVM bitcode file and the
second executes a function (defines in the file) with
parameters if necessary, it may return a result.

In definitive, JNI does not directly used to execute
native code. But it is our library, loaded using JNI,
which will execute the code contained in a LLVM bit-
code file. This file will then be able to interpret any
machine installed with LLVM. But how comes this
file there until ComputingWorker ?

Task

name1,agent1,WFC

Task

name1,agent1,CO

MCASpace

Lookup

ComputingAgent

agent1

a
lg
o
1
.b

c

ComputingWorker

ComputingAgent

agent1

Task

name1,agent1,OC

a
lg
o
1
.b

c

lib
M

C
A
.so

①

⑧

③

g
e
t
a
g
e
n
t

②
⑤d

o
w
n
lo

a
d

④

execu t e

⑦

load

⑥

WFC stands for WAIT FOR COMPUTING

CO stands for COMPUTED

OC stands for ON COMPUTING

action

transfert

Figure 2: Execution of a native task

The LLVM bitcode file is strongly linked with the
agent (We saw it during the configuration of the agent
indicates that the file is associated). Whether the
agent is native or not, it remains less mobile and
ComputingWorker will be able to recover it. The
ComputeAgent is now on the ComputingWorker (un-
til now, nothing to change compared to a traditional
agent).

Here are the specific steps to the execution of a native

agent:

1. If this is the first execution of this Com-
puteAgent, it itself will retrieve the llvm bitcode
file using the DataHandler (in the same manner
used to retrieve data needed for computations
cases).

2. The ComputeAgent (running in the Java Vir-
tual Machine of the ComputingWorker) loads
the MCA library with JNI and with it, loads the
llvm bitcode file and execute the function neces-
sary for the execution of the task.

The task was performed normally and the normal
process continues.

5 CASE STUDY: CUBIC EQUATION

SOLVER

Thermodynamics is based on rigorous mathematics;
the problems it solves require a considerable degree of
ingenuity and creativity, particularly about equation
of state. The use of cubic equations of state is not new
for process engineers, especially those in the natural
gas and petroleum refining industries. Nevertheless,
the convenience of having a flexible model for the rep-
resentation of strong liquid phase using an equation
of state is not always recognized by users of activ-
ity coefficient models (Satyro 2000). For example, an
equation of state with good mixing rules can provide
vapor/liquid equilibrium information, but also volu-
metric and calorimetric properties, as well as natu-
ral handling of supercritical conditions. These char-
acteristics are more and more important as synthe-
sis and separation processes are modeled together for
economic reasons, and a uniform model for high and
low pressure conditions is of evident value.

5.1 Mathematical approach

In mathematics, a cubic function is a function of the
following form where a coefficient is nonzero; or in
other words, a polynomial of degree three.

f(x) = ax3 + bx2 + cx + d (1)

Every cubic equation with real coefficients has at least
one solution x among the real numbers; this is a con-
sequence of the intermediate value theorem. We can
distinguish several possible cases using the discrimi-
nant ∆:

∆ = −4b3d + b2c2
− 4ac3 + 18abcd− 27a2d2 (2)

This approach involves complex computations, and
their cost is high when the number of cubic equations
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is large. A faster solution is built from Cardano’s
method (Dunham 1990). This method is divided into
a sequence of steps which starts with a substitution:
x = t− a/3 eliminates the quadratic term, giving the
so-called depressed cubic. The simplified equation is:

0 = t3+pt+q where p = b−
a2

3
and q = c+

2a3
− 9ab

27
(3)

The second step is another transformation based on
the introduction of two variables u and v linked by
the condition u + v = t, and substitute this in the
depressed cubic giving:

0 = u3 + v3 + (3uv + p)(u = v) + q (4)

At this point Cardano imposed a second condition for
the variables u and v: 3uv+p = 0 which gives a more
simplified equation:

0 = u6 + qu3
−

p3

27
(5)

This can be seen as a quadratic equation in u3. The
last step is the solving of this equation, we find that

u =
3

√

−
q

2
±

√

q2

4
+

p3

27
(6)

The expression above for u can generate up to three
values (there are three cubic roots related by a factor
which is one of the two complex cubic roots of one,
and two square roots of any sign ; but these 6 expres-
sions can generate only 3 pairs). This also applies to
the final solutions for x.

5.2 MCA implementation

Our computing platform allows users to use numerical
codes written in several languages. Also, we selected
a C++ code (Kaw 2009) which solves cubic equations
with algorithm based on section 5.1 approach. This
code is divided into five steps: two transformations,
a computation, and two reverse transformations. At
the end the x variable is evaluated.

The activity of that code is easily scheduled. In a se-
quence environment, it gives results from cubic equa-
tion. But our need is to solve equations of state
belonging in a set which grows continuously due to
thermo dynamical experiments. So, the code execu-
tion is not so fast and the cardinality of the input set
doesn’t reduce at all. Also we decided to use this code
in our adaptive environment. A space is created to
receive a mobile coalition. The space contains parts
of the code called task, the workers which execute

these tasks and the set of cubic equations. An equa-
tion is described with four coefficients. We choose to
use 16 computers in a first experiment and we observe
reduction of the input set and a stop of the activity
when the input data set became empty.

Moreover, when new equations were added into the
input data set, the computation restarts and a new
deployment of mobile agents occurs. This phe-
nomenon highlights properties of our approach: au-
tonomous, dynamic and adaptive. The output data
set contains results for each input equations and now
we try to solve cubic equation systems, this intro-
duces correlation between solutions.

6 CONCLUSION

To sum up, we presented quickly our computing en-
vironment and a new case study, a cubic equation
solver. This case highlights new specific features to
test: costly execution, written in a programming lan-
guage distinct from our platform. Our research has
instead focused on reuse and not on performance.
We obtained results which confirm this research ap-
proach. Our initial desire was to use existing nu-
merical code and our architecture is able to provide
mobility to a code which is not mobile initially. Be-
cause our architecture is open, we are confident that
next step will be an execution of Fortran code (very
popular in numerical codes field) into a mobile agent
environment.
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