The Challenge of Believability in Video Games: Definition, Agents' Models and Imitation Learning

Fabien TENCÉ, Cédric BUCHE, Pierre DE LOOR and Olivier MARC

1 March 2010

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Introduction	ı			

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Introduction	า			

Graphics/sound

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Introductio	n			

Graphics/sound

Content/interactions

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Introductio	n			

 \sim Immersion

Content/interactions

 $\sim\!\mathsf{Presence}$

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Introductio	n			

 \sim Immersion

Content/interactions

 \sim Presence

Goal: Improve presence with artificial characters

Introduction	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Plan				

1 Believability

- 2 Agents' Models
- Imitation Learning

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Plan				

- Definition
- Evaluation

2 Agents' Models

Imitation Learning

4 Conclusion

	Believability ●000	Agents' Models 000	Imitation Learning 000	Conclusion
Believability	: A Complex	< Notion from	Arts	
Believable Cha	racters			
Characters that	t achieve the "il	llusion of life" [Th	omas 81].	
Characters that	t achieve the "il	llusion of life" [Th	omas 81].	

 Introduction
 Believability •000
 Agents' Models 000
 Imitation Learning 000
 Conclusion

 Believability:
 A Complex Notion from Arts...

 Believable Characters

 Characters that achieve the "illusion of life" [Thomas 81].

 Introduction
 Believability •000
 Agents' Models 000
 Imitation Learning 000
 Conclusion

 Believability:
 A Complex Notion from Arts...

 Believable Characters

 Characters that achieve the "illusion of life" [Thomas 81].

	Believability 0●00	Agents' Models 000	Imitation Learning 000	Conclusion
Applied	to Video G	ames		

Fabien Tencé (UEB, Virtualys)

1 March 2010 5 / 1

[Livingstone 06]

Fabien Tencé (UEB, Virtualys)

The Challenge of Believability

[Livingstone 06] 1 March 2010 5 / 18

Fabien Tencé (UEB, Virtualys)

The Challenge of Believability

[Livingstone 06] 1 March 2010 5 / 18

	Believability 0●00	Agents' Models 000	Imitation Learning 000	Conclusion
Applie	ed to Video (Games		

Fabien Tencé (UEB, Virtualys)

. .

The Challenge of Believability

[Livingstone 06] 1 March 2010 5 / 18

	Believability 00●0	Agents' Models 000	Imitation Learning 000	Conclusion
Believability	Definition			

Characters giving the illusion that they are controlled by a living entity

	Believability 00●0	Agents' Models 000	Imitation Learning 000	Conclusion
Believability	Definition			

Characters giving the illusion that they are controlled by a living entity

Pro/Con:

X Reminds users that they are in a video game

 \checkmark Agents are not tagged as being artificial

	Believability ○○○●	Agents' Models 000	Imitation Learning 000	Conclusion
Evaluation of	of Believabili	ty		

Judges

• Experience

Measures

	Believability ○○○●	Agents' Models 000	Imitation Learning 000	Conclusion
Evaluation of	of Believabili	ty		

Judges

• Experience

Measures

	Believability ○○○●	Agents' Models 000	Imitation Learning 000	Conclusion
Evaluation (of Believabili	ty		

- Judges
 - Level of experience [Bossard 09]
 - Cultural origin [Mac Namee 04]
 - Actors or spectators
- Experience

Measures

	Believability ○○○●	Agents' Models 000	Imitation Learning 000	Conclusion
Evaluation	of Believal	pility		

- Judges
 - Level of experience [Bossard 09]
 - Cultural origin [Mac Namee 04]
 - Actors or spectators
- Experience
 - Which video game
 - Humans and/or agents for reference [Mac Namee 04]
 - Judges know who is human and who is not
- Measures

	Believability ○○○●	Agents' Models 000	Imitation Learning 000	Conclusion
Evaluation	of Believabil	itv		

- Judges
 - Level of experience [Bossard 09]
 - Cultural origin [Mac Namee 04]
 - Actors or spectators
- Experience
 - Which video game
 - Humans and/or agents for reference [Mac Namee 04]
 - Judges know who is human and who is not
- Measures
 - Questionnaire and/or body's response monitoring
 - Questions/Answers

	Believability 0000	Agents' Models	Imitation Learning 000	Conclusion
Plan				

Believability

2 Agents' Models

- In Industry
- In Research

3 Imitation Learning

4 Conclusion

Commonly-Used Models in Industry

• Finite state machines (FSM)

Commonly-Used Models in Industry

• Finite state machines (FSM)

Behavior trees

Commonly-Used Models in Industry

• Finite state machines (FSM)

• Behavior trees

 Planners [Orkin 06, Fikes 71] State: (phone#, recipe, hungry?) Goal: (-- , -- , NO)
 (♥, --, YES) → (♥, --, NO)

	Believability 0000	Agents' Models ○●○	Imitation Learning 000	Conclusion
Models for I	Believability			

Main work:

- Embodied conversational agents [Cassell 01]
- The Oz project [Bates 92, Reilly 96, Loyall 97]
- Non-Player Characters [Mac Namee 04]
- Animated pedagogical agents [Lester 97]

	Believability 0000	Agents' Models ○●○	Imitation Learning 000	Conclusion
Models for	Believability			

Main work:

- Embodied conversational agents [Cassell 01]
- The Oz project [Bates 92, Reilly 96, Loyall 97]
- Non-Player Characters [Mac Namee 04]
- Animated pedagogical agents [Lester 97]

Pro/Con:

 \checkmark Could be used in adventure/role-playing video games

- old X Aim at the other definition of believability
- $oldsymbol{X}$ Not suited for games with a lot of action

Work for agents in first person shooters:

- Probabilistic model, whole behavior [Le Hy 04]
- Classifier Systems, whole behavior [Robert 05]
- Probabilistic model, move behavior [Gorman 06]
- Neural network, aiming/shooting/weapon [Gorman 07]

Work for agents in first person shooters:

- Probabilistic model, whole behavior [Le Hy 04]
- Classifier Systems, whole behavior [Robert 05]
- Probabilistic model, move behavior [Gorman 06]
- Neural network, aiming/shooting/weapon [Gorman 07]

Problems:

- Very hard to compare believability
- Models for whole behavior are rare

	Believability 0000	Agents' Models	Imitation Learning	Conclusion
Plan				

Believability

2 Agents' Models

Imitation Learning

- Definition and Advantages
- Application to Machine Learning

Conclusion

	Believability 0000	Agents' Models 000	Imitation Learning ●○○	Conclusion
Definition	and Advan	tages		

Imitation Learning

Increased tendency to execute a previously demonstrated behavior.

	Believability 0000	Agents' Models 000	Imitation Learning ●○○	Conclusion
Definition	and Advan	tages		

Imitation Learning

Increased tendency to execute a previously demonstrated behavior.

Advantages:

- May improve believability [Schaal 99]
- Make character design possible for non-programmers
- Mostly used in robotics, application to video games possible

	Believability 0000	Agents' Models 000	Imitation Learning ○●○	Conclusion
Imitation is	Complex			

"Fitness function":

Believability

	Believability 0000	Agents' Models 000	Imitation Learning ○●○	Conclusion
Imitation is	Complex			

"Fitness function":

Believability

Over-learning and Over-generalization :

- An agent is not a film
- But it should copy the behavior

	Believability 0000	Agents' Models 000	Imitation Learning ○●○	Conclusion
Imitation is	Complex			

"Fitness function":

Believability

Over-learning and Over-generalization :

- An agent is not a film
- But it should copy the behavior

Additional constraints:

- Fast and online learning can enhance believability
- Can handle a lot a examples (MMO)

	Believability 0000	Agents' Models 000	Imitation Learning ○○●	Conclusion
Work Using	; Imitation Le	earning		

- Neural gas [Thurau 04]
 - Learns the topography and paths

	Believability 0000	Agents' Models 000	Imitation Learning ○○●	Conclusion
Work Using	Imitation Le	earning		

- Neural gas [Thurau 04]
 - Learns the topography and paths
- Levenberg-Marquardt algorithm [Gorman 07]
 - Short-term anticipation
 - Good believability

	Believability 0000	Agents' Models 000	Imitation Learning ○○●	Conclusion
Work Using	Imitation L	earning		

- Neural gas [Thurau 04]
 - Learns the topography and paths
- Levenberg-Marquardt algorithm [Gorman 07]
 - Short-term anticipation
 - Good believability
- Baum-Welch algorithm [Le Hy 04]
 - Online learning

	Believability 0000	Agents' Models 000	Imitation Learning ○0●	Conclusion
Work Using	Imitation L	earning		

- Neural gas [Thurau 04]
 - Learns the topography and paths
- Levenberg-Marquardt algorithm [Gorman 07]
 - Short-term anticipation
 - Good believability
- Baum-Welch algorithm [Le Hy 04]
 - Online learning
- [Rao 04] used by [Gorman 06]
 - Based on Metzoff's work

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Plan				

Believability

- 2 Agents' Models
- 3 Imitation Learning

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Summary				

Characters giving the illusion that they are controlled by a living entity

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Summary				

Characters giving the illusion that they are controlled by a living entity

Believable agents' models for video games:

- Are still too young for industry
- Begins to give good results

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Summary				

Characters giving the illusion that they are controlled by a living entity

Believable agents' models for video games:

- Are still too young for industry
- Begins to give good results

Imitation learning for those models:

- Increase believability
- Simplify the parametrization

	Believability 0000	Agents' Models 000	Imitation Learning 000	Conclusion
Outlook				

Next steps:

- Define a believability evaluation for first person shooters
- Ind/Develop models that can generate believable behaviour
- **③** Use imitation learning to learn the parameters
- Omparate the models

The Challenge of Believability in Video Games: Definition, Agents' Models and Imitation Learning

Fabien TENCÉ, Cédric BUCHE, Pierre DE LOOR and Olivier MARC

1 March 2010

Joseph Bates.

The nature of characters in interactive worlds and the Oz project. Rapport technique CMU-CS-92-200, School of Computer Science, Carnegie Mellon University, 1992.

Cyril Bossard, Romain Benard, Pierre De Loor, Gilles Kermarrec & Jacques Tisseau.

An exploratory evaluation of virtual football player's believability. In In Richir, S. & Shirai, A. (Eds). Proceedings of 11th Virtual Reality International Conference (VRIC'09), April 2009.

J. Cassell.

Embodied Conversational Agents: Representation and Intelligence in User Interfaces.

Al Magazine, vol. 22, no. 4, pages 67-84, 2001.

R. Fikes & N.J. Nilsson.

STRIPS: a new approach to the application of theorem proving to problem solving. Artificial intelligence, vol. 2, no. 3/4, pages 189–208, 1971.

B. Gorman, C. Thurau, C. Bauckhage & M. Humphrys. Believability Testing and Bayesian Imitation in Interactive Computer Games.

In From Animals to Animats 9, volume 4095, pages 655–666. Springer, 2006.

B. Gorman & M. Humphrys.

Imitative learning of combat behaviours in first-person computer games.

In Proceedings of CGAMES 2007, the 11th International Conference on Computer Games: AI, Animation, Mobile, Educational & Serious Games, 2007.

- R. Le Hy, A. Arrigoni, P. Bessière & O. Lebeltel. *Teaching Bayesian behaviours to video game characters*. Robotics and Autonomous Systems, vol. 47, no. 2-3, pages 177–185, 2004.
- James C. Lester & Brian A. Stone.
 Increasing believability in animated pedagogical agents. In AGENTS '97: Proceedings of the first international conference on Autonomous agents, pages 16–21, New York, NY, USA, 1997. ACM.

Daniel Livingstone.

Turing's test and believable AI in games. Computers in Entertainment, vol. 4, no. 1, page 6, 2006.

👔 Aaron Bryan Loyall.

Believable agents: building interactive personalities. PhD thesis, Carnegie Mellon University, 1997.

B. Mac Namee.

Proactive persistent agents: using situational intelligence to create support characters in character-centric computer games. PhD thesis, University of Dublin, 2004.

J. Orkin.

Three States and a Plan: The AI of FEAR. In Proceedings of the 2006 Game Developers Conference, 2006.

R.P.N. Rao, A.P. Shon & A.N. Meltzoff.

A Bayesian Model of Imitation in Infants and Robots.

In Chrystopher L. Nehaniv & Kerstin Dautenhahn, editeurs, Imitation and Social Learning in Robots, Humans, and Animals, pages 217–248. Cambridge University Press, 2004.

W.S.N. Reilly.

Believable social and emotional agents. PhD thesis, University of Birmingham, 1996.

G. Robert & A. Guillot.

A motivational architecture of action selection for Non-Player Characters in dynamic environments.

International Journal of Intelligent Games & Simulation, vol. 4, no. 1, pages 1–12, 2005.

S. Schaal.

Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, vol. 3, no. 6, pages 233–242, 1999.

F. Thomas & O. Johnston. Disney animation: the illusion of life. Abbeville Press, 1981.

C. Thurau, C. Bauckhage & G. Sagerer.
 Learning human-like movement behavior for computer games.
 In Proceedings of the 8th International Conference on the Simulation of Adaptive Behavior (SAB'04), 2004.