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Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-F103@ulouse, France

Abstract

In this paper, an original result in terms of a sufficient dtind to test identifiability of nonlinear delayed-differgal models with constant
delays and multi-inputs is given. The identifiability is dieexd for the linearized system and a criterion for linearteys with constant
delays is provided, from which the identifiability of the ginal nonlinear system can be proved. This result is obthimecombining a
classical identifiability result for nonlinear ordinaryfférential systems due to M.S. Grewal and K. Glover [4] witle identifiability of

linear delayed-differential models developed by Y. Orkival. [10]. This paper is a generalization of [2], which deals witle specific
case of nonlinear delayed-differential models with twoaglsland a single input.

Key words: Key words - Identifiability, Nonlinear delayed-differeatimodels.

1 Introduction ear system with constant delays [1], [10], [11], from which
the identifiability of the original nonlinear system can be

Differential systems with delays enter into the modeling Proved. The result of [4] is extended in two ways, by taking
of many problems and are frequently used in domains like into account any number of delays acting on the state and

electronics, telecommunications, biology, epidemiolagy ~ ©N the input, and by considering the general case of multiple

aerospace. Satelite remote control or network communica-INPUts, which was not considered in the extention proposed

tion protocol models fall for instance into this framework. N [2]. The new proof requires to define a different norm for
When the identifiability analysis of delays arises, it is im- the inputs, to provide a bound for the estimation of the_state
possible to directly use the classical criteria based oma si N0'M that accounts for the delays and to deal with higher

ilarity transformation approach [13] or a series expansion dimension. . . .
approach [14] because delays occur in an implicit way in 'S paper is organized as follows. In Section 2, we give
the state equations (argument of the functions of input and SOM€ generalities on delayed-differential models and defin

state). Then two approaches for identifiability analysis ca !dentifiability for such systems. In Section 3, the result of
be considered. identifiability with linearization around an equilibriuntese
The first one consists in approximating the functions with IS given through a criterion allowing us to test the identi-
delays [6] so that the approximate system is described by or-fiability of a linear system with constant delays [1], [10],

dinary differential equations. It is clear that the ideatifiity [11]. Section 4 provides an illustrative example for which
of this approximated system does not imply the identifiabil- ©Ur identifiability analysis method is fully developped.€eTh

ity of the original system. The second approach consists in 125t Section concludes the paper and discusses potential ap
approximating the nonlinear system by linearization acbun plication domains which could benefit from our result.

an equilibrium state, which is the method followed in this

paper. We extend a classical identifiability result for monl 2 Problem formulation

ear ordinary differential systems due to M.S. Grewal and K.

Glover [4] to nonlinear delayed-differential models. We ar  |n this work, we consider linear and nonlinear systems with
hence |nterested n the |dent|f|ab|l|ty Of the |Ineal’lze($-sy real positive de|ays_ These Systems are Characterize(bby th

tem and present a criterion to test the |dent|f|ab|||ty ofra li |ength of their memory, i.e. the |argest of their de|ays_ The
memory, positive, can be finite or infinite. It is supposed fi-
Email addressescj aubert @ aas. f r (Carine Jauberthie), nite. For such a system, the state at one time poigtde-
| oui se@ aas. fr (Louise Trave-Massuyes). fined on one intervdl’, t], wheret’ depends on the delays.
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If 7, andv,, are the greatest delays on the state and the in-

put, respectively, the knowledge ©ft) on [to — 7, to] @and

of u(t) on [ty — vy, t] are necessary and sufficient to de-
terminex(t) for all ¢ > t,. Thus, for a system with delays,
the initial state (or initial function) must be given for all

in [to — Tm, to] Wherety is the initial time of observation.
The nonlinear time-delayed systdm of specific state and
input delaysr; andv;, can be written in the general form:

z(t,P) = f(z(t,P),z(t — 11, P), ..., x(t — 1, P),
u(t),u(t — 1), ey, ult — V1), P15 ey Pp)s
y(t, P) = Cx(t,P), t > 0,
zo(s, P) = ¢(s,P), —1n <5 <0,

uo(s) = n(s), —vm < s <0.

(1)
wherez(t, P) € R™ andy(t,P) € R™ denote the state

at P with Up restricted tolV).

In most models, there exist atypical pointdip for which

the model is unidentifiable. To account for these singulari-
ties, the previous definition can be generically extendied.
is said to be (globally) structurally identifiable if it is|(dp-
ally) identifiable at allP € Up except at a subset of points
of zero measure itdp.

The following section formulates the identifiability preih

and summarizes some results that are then used to derive

our result.

3 Identifiability results

To assess the identifiability of system (1), our approach re-
lies on testing the identifiability of a form linearized arnuli
an equilibrium state, which leads to a sufficient condition

variables and the measured outputs respectively. The inpuffor the nonlinear system. The test is performed as proposed

u is piecewise continuous with values k¥, and the ini-
tial function zo is continuous ins € [—7,,0]. The pa-
rametersry,...;, v1,...0 represent the delays to be esti-
mated.r,, and v, are respectively the maximum delay
of 7, and ;. The vector of delays is included itl; C
R'*7. The unknown constants,..., p, belonging tol4,, C
RP and gathered in the vectdr; must also be estimated.
Hence the estimation concerns the parameter veétes
(P1y ooy Pps Thy woes Ty V1, ooy V) € Up C RPHHT The func-
tion f(.,.,.,.,p1,...,pp) is real and twice continuously dif-
ferentiable for every? € Up on M (a connected open sub-
set ofR™ x ... x R™ x R¥ x ... x R¥ such tha{x(t, P), z(t —

71, P)y o, x(t — 11, P),u(t), u(t — 1), ..., ,u(t —v,)) € M
for everyP € Up and every € [0, T1), whereT is the time
duration.¢(., P) (respectivelyn(.)) is a continuous func-
tion, bounded olf—7,,, 0] in R™ (respectively on—v;,, 0]

in R¥). The output is a linear function of the stat€ {s a
matrix of appropriate dimensions).

The general theory of systems with delays is developed in

[5], [8]. Many works concern the analysis and the control of

linear delayed models but there are much less works about

identifiability analysis. The identifiability of these mdde

has been analysed with restrictive conditions on the struc-

ture of the system [9] or [12]. The identifiability condition
of transfer functions are provided with sufficient nonsnioot
inputs in [10], [11]. But to our knowledge there is no gen-
eral result for solving the identifiability problem for geaé
nonlinear delayed-differential models with unknown con-

witho < 71 < 1 < ...

by MS. Grewal and K. Glover in [4] for ordinary differential
systems and it relies on the result of [1] in which L. Belk-
oura et al. propose a criterion allowing to test identifidpil
of a linear system with delays.

In the following section, we recall some definitions and re-
sults of identifiability for linear systems.

3.1 Identifiability result for linear delayed-differentisys-

tems

The identifiability of linear delayed-differential systeras
been analyzed by [9], [12] and [1]. The results of this sub-
section are mainly taken from [1]. The linear time-delayed
model is supposed to be given by:

#(t) = Aga(t) + Yh_, At — )
+Bou(t) + > i, Biu(t — 1),
¢(s), —n <5 <0,

n(s), —v» <s<0

)

<mand0 < v <y < ... <
v, z(t) € R™, u(t) € R™ is piecewise continuous) €
L2(—7;,0; R™). The delays belong td,, a subset oR! x R".
The components of the state are assumed to be available.
Identifiability analysis is driven by the following defirota:

stant delays such as (1). The proposed approach for solving

the identifiability problem of systems given by (1) relies on
the analysis of the identifiability of a form linearized anolu
an equilibrium state. The definition of model identifialyilit
considered in this paper is the following:

Definition 2.1 The model" given by (1) is globally (resp.
locally) identifiable atP € Up if there exists a controls
such that, for anyP € Up, the equality? = P follows from
y(t, P) = y(t, P) ¥t € [0, T] (resp. if there exists an open
neighbourhood¥ of P such thatl" is globally identifiable

Definition 3.1 If the model is given by:

l
i(t) = AgE(t) + Z A;E(t — 73) 4+ Boul(t)
+ i Bzu(t — 171),
7o(s) = Bls), 7 <5 <0,
UO(S) = 77(8)5 _177' <s< 0,




then the matrices of coefficients, (i =0,...,1), B;, (j =
0,...,r) and the delaysy, (k=1,...,1), v, (p=1,...,7)
of system (2) are structurally globally identifiable undgt)

Ai = Aiv (7’ = 07 "'71)7

— e (k=1,..,10),

i 2(t) = 5(1),£ >0 = 4 F Tk )
B] - Bj? (] = 0,...77")7
vp="10p, (p=1,...,7).

In the following, forz € C, we noteA(z) and B(z) the
expressionsi(z) = Ag+ A1z™ + ...+ A;z™, andB(z) =
Bo+B1z"* +...4+ B,.z"". Then we have the following result.

Theorem 1 (From [1]) Considering the model (2), if there
exists a complex numbersuch that:

rank[B(2)|A(2)B(2)|...| A" 1 (2) B(2)] = n,

then there exists a contral(¢) for which the matrices of
coefficients4;, (i = 0,...,1), B;, (j = 0,...,r) and the

delaysry, (k =1,...,1) ety,, (p = 1,...,r) are structurally

globally identifiable.

In the case of multi-inputs, it is sufficient to find an input
of type “ square pulse " with discontinuities of full rank,
i.e. discontinuities are incommensurable and verify a rank
condition [1]. Otherwise, a piecewise constant input can be
appropriate.

The above resultis used in Section 3.2 to test the identHiabi
ity of the linearized nonlinear delayed-differential syst

3.2 A sufficient condition for identifiability of nonlinear
delayed-differential systems

The identifiability of nonlinear dynamical systems (wittou

Moreoverz(t, P) = z. is the solution of:

z(t,P) = f(x(t,P),z(t — 11, P),...,x(t — 7, P),
uw(t),u(t —v1), ..., u(t —v.), Ps), t €[0,T7],
xo(s,P) =xc, $ € [—Tm, 0],
y(t, P) = Cz(t, P).
(4)
corresponding to the input(t) = @, t € [—vim,, T).

Now let us consider a perturbatiort) of @ for ¢ > 0 and
let us define the corresponding system:

z(t,P) = f(z(t,P),z(t — 11, P),...,x(t — 7, P),
a+v(t),u+ vt —11),...,
a+v(t—uv),Ps), t€[0,T],

zo(8,P) = xe, 8 € [T, 0],

y(t, P) = Cx(t, P).

(5)
If we introducez; (¢, P) = x(t, P)—x., the previous system
can be expressed as:

z5(t, P) = f(xe + x5(t, P),xe + x5(t — 71, P), ...,
e+ a5t — 1, P),u+v(t),a+v(t—r11),..,
u+v(t—ruv.),Ps), tel0,T],

x5(s,P) =0, s € [-Tm,0],

ys(t, P) = Cuas(t, P).

(6)
If the variables of f introduced in (6) are denoted
zi = e + x5(t — 73, P), i = 0,...,1 wherery = 0 and
w; = a+v(t—v;),j =0,..,r whereyy = 0, we get:
iR x xR xRFE x .. x RF x U, - R"
(204 +vey 21, WOy ooy Wry Ps) = f(20, vy 21,

WOy vey Wy Ps)
and if the following matrices are introduced:

delays) by linearization around an operating state has been

shown by M.S. Grewal and K. Glover [4]. The idea of the

present paper is to extend this approach to the class of non-

linear delayed-differential models with unknown constant

(@)

delays. The considered operating state of system (1) is an

equilibrium stater, corresponding to a constant inpiut

{

To simplify the notation, the pointz., ..., z., @, ..., @, Ps)
given in (3) is noted~.

Given a constant input € R¥, let us consider the operating
statez. defined by (3). For a give® € Up, the stater,
may not be unique.

0= f(Tey-ery Tey Uy ooy Uy Py ),

c 3)
Ye = Ue .

where V., f(E) (V.,f(E)) represents the jacobien ma-
trix of f with respect toz; (w;) calculated atF =
(Tey ..y e, T, ..., T, Ps), then the linear delayed system,
obtained by the linearization of (1), is given by:

£(t, P) = XL Ai(P)E(t — 7, P) + Yo Bi(P)v(t —75),
&(s,P)=0, s € [-7m,0],
n(t,P) = C&(t, P).

(8)

This last system is of the form (2) wheti = [, and its
identifiability is obtained by Theorem 1.



The following proposition is an extension of the results of
[4] to delayed-differential systems.

Proposition 3.1 If the model (8) is (structurally) globally
(resp. locally) identifiable atP € Up (resp. P € W)E|,
then the model (4) is (structurally) globally (resp. logall
identifiable atP, with a perturbation ofz as input.

The principle of the proof, as developped below, is that if
v is a control providing the identifiability of (8), then the
identifiability of the model (4) can be obtained by the con-
trol @ + ev/||7||, with e small. This proof requires to define

an appropriate norm for the inputs, to provide a bound for

in which ¢ is chosen judiciously in the following.
Since the system (8) is linear, the output corresponding to
the inputv(t) is given by:

E

n(tvP) = ﬁ(t,P).

Consequently, thd.o-norm of the difference between the
outputs of the system (8) is

=

I, P)=n(., P)|| = £K, (12)

the estimation of the state norm that accounts for the de- where the constark is strictly positive.

lays. The proof is given in the general case in whichs
not necessarily equal th However, if this is the case, a

more general result than Theorem 1 is required to assess the

identifiability of the linearized system.

Proof- Let P # P, P € Up (resp.P € W). Let us consider
the equilibrium states. andz. corresponding respectively

to P and P:
0 = f(K),
Ye = C-Te 5

Two cases are possible:

0 =f(E),

s 9)
Ye = Ule -

- Yo # e, then the system (4) is globally (resp. locally)
identifiable atP since there exists an inpatsuch that the
outputs of the system (4). andy. are distinct.

- Y. = J.. Let us evaluate the difference between the
outputs of the system (4):

y(t, P) = y(t, P) = y(t, P) — ye — (y(t, P) — Gc)

= C(x(t, P) — ze) — C(a(t, P) — &)
Clxs(t, P) — ws(t, P))
Clas(t, P) = &(t, P))+
C(&(t, P) = &(t, P))—
Clas(t, P) = £(t, P)).

Hence

y(t,P) —y(ﬁ,p) = n(tvP) —77(75715) + C((ws(t, P)

7§(t,P)) - ($5(tap) - g(t,P)))
(10)
Since the system (8) is globally (resp. locally) identifebl
at P, there exists an input(t) such that the corresponding

outputsij(t, P) andfj(t, P) are distinct. Now, take the input:

€ _

v(t) (11)

1zl =117l L20,1))s

1 Let us recall that¥ is an open neighbourhood &.

The Ly-norm of (10) leads to:

1y, P) = y( P)I| = [In(., P) = (., P)|
=[O (s (., P) = £(, P))
—(z5(, P) = £(. P)))l]

which, by introducing (12), gives

ly( P) = y(, P)I| = eK = [|C][(||s (- P) — £( P)I|
+les(. P) = (. P
(13)
In the following of the proof, a lower bound is provided for
lly(., P) —y(., P)||, which requires to estimatérs(t, P) —
£(t, P)[rn-

Estimation of||z5(t, P)||r~ (Nneeded to estimater;(t, P)—
&(t, P)||rn). The integration of (6) leads to

zs(t, P) = fot [f(az:e + z5(8, P), e + x5(s — 11, P), ...,
ZTe + $5(S - Tl;P)aﬁ + I/(S),’EL + V(S - Vl)v ad)
a+v(s—v),Ps— f(E)]ds
(14)
In the following, the terms.\", L{* and L; denote real

constants. The assumption of smoothness of the fungtion
gives:

llzs(t, P)llen < fy (Sio LV |2s(s — 73, P)[[zn

. (15)
+37_oLP |lv(s — v;)||ge )ds

t
|lzs(t, P)l[en < / (Ln|z5(s, P)lrn + La||v(s)[rs ) ds.
0

(16)
This last estimation is due to the fact that wher [0, ¢],
s—m1; € [-Ti,t — 7;]. Butzs(s, P) = 0 for s € [—7,,,0].
Then considering the values fs(t, P)||g~ for s € [0, ¢]
and takingl; as an upper bound of the coefficiemg), =
0,...,1, provides an upper bound of the first term of the



integral of (15). The same reasoning stands for the secondThe identifiability result provided in Section 3.2 is fully

term, giventhat(s) = 0for s € [-v,,,,0]. Moreovel|v|| =
¢, thus by applying Gronwall’'s lemma it leads to:

[|zs(t, P)||rn < L3e. a7)

Estimation of||z5(t, P) — £(t, P)||g~. Let us recall that:

d

4 (a5t P) — €(t.P)) =
f(ze + 25(t, P),xe + 25(t — 11, P), ..., ke + 25(t — 71, P),
a+v(t),a+vit—w),. .. a+vit—v)P,...,. Pp)

— (Xl Ai(P)E(t — 74, P) + X5_o B (P)v(t — 15)).
(18)
The assumption of smoothness of the functfogives:

jt (z5(t, P) — &(t, P)) = SL_o Ay (P)(25(t — 74, P)
—&(t—1,P))+E@F), (19)

where [l < La(Zi—ollws(t — 7, P)|IEn

(20)
+Xollv(t = 7)I[Re)

and, by applying (17){€(t)||r» < Lse?.

The same approach as in the previous estimation yields:

t
st P)=€(t, P < Lo | Ifoa(s P)=(s. P)lJends
0
+ Lze? (21)
then (Gronwall’'s lemma)|z; (¢, P) — &(t, P)||rn < Lge?.

Underestimation of|y(., P) — y(., P)||.

The overestimation dfz;(t, P)—£(t, P)||r~ applied to (13)
leads to|y(., P) — y(., P)|| > eK — Le?. Now, there exists

e > Osuchthat K —Le? > 0. Therefore, the outputg ., P)
andy(., P) are distinct and the system (4) is structurally
globally (resp. locally) identifiable aP. O

4 lllustrative example

In this section, the following example taken from [3] is used
to illustrate the approach.

(1) = —x(t) + (1 +sin®(z(1)))y(t) + 2>t — 1),

y(t) = x(t)y(t) + o(t) + w(t)
(1 sin®((1))ur (1) + y(t — 72),

0(t) = —v(t) + w(t) + v(t — 73),

w(t) = (y(t) +v(t))wt) — z(t)uy (¢) + (2 — sin(v(t)w(t)
—2(t)))uz(t) + z(t — 71 )w(t — 74).

(22)

developped and allows us to conclude on the identifiability
of the system. In a second step, the system is parameterized
by introducing thirteen constant parameters and the iden-
tifiability analysis is performed similarly, allowing us to
conclude to the identifiability of the parameterized system
as well. We assume that the state variables are available.
Let us consider inputs;, and ug,. An equilibrium state
(Ze, Ye, Ve, we) IS given by the resolution of (22) in which
the derivatives are set to and the state variables and any
of their delayed representatives are set to the correspond-
ing equilibrium valuesz., y., ve, w.. The third equation
then providesw. = 0 and studying the fourth equation
on an appropriately chosen domain leads to the existence
of z. such that—z.uq, + (2 + sin(z.))uz, = 0. Given

Te —
1 + sin®(z.)
Finally, usingz. and y. in the second equation, we get
Ve = —TeYe — (14 sin2(xe))ule — Ye.
For a matrix}, let us note); ; its components where
andj are the row and column numbers, respectively. After
linearization of the model (22), we obtain the matricks
1=0,1,2,3,4, and By of the system put in form (2):

Z., We obtainy, = from the first equation.

—14sin(2zc)y, 1+ sin?(z,) 0 0

Ye + sin(2ze uq, Te 1 1
AO = ’
0 0 -1 1
U2, cos(a:e) — U, 0 0 Ye + VePe

with p. = 1 — ug, cos(z.) and,

Ay, ; = 2z if (4,5) = (1,1), 0 otherwise,

Ay, =1if (4,7) = (2,2), 0 otherwise,

Az, = 1if (4,7) = (3,3), 0 otherwise,

Ay, = if (4,7) = (4,4), 0 otherwise,

Be {14—51112( ) if (i,5) = (2,1), —a. if (i,5) = (4,1),
" 2 +sin(z.) if (2,7) = (4,2), 0 otherwise.

By using the symbolic toolbox of Matlab, one can check that
the conditionrank[B(2)|A(2)B(2)|...|A%(2)B(z)] = 4

is satisfied for several values of for instancez = 2 or

z = 1+1. Then there exists a contro(t) for which the de-
lays i, k = 1,2, 3,4, are structurally globally identifiable.
Thus, by Proposition 3.1, the original nonlinear systemn) (22
is structurally globally identifiable.

Let us now consider the parameterized system:

#(t) = —pra(t) + (1 + pasin®(z(t)))y(t) + psz?(t — 71),
y(t) = paz(t)y(t) + psv(t) + pew(t)
+pr(1+ sin®(z(t)))ua (¢) + psy(t — 72),
o(t) = po(v(t — 73) — v(1)) + prow(t),
W(t) = pi1(y(t) + v(t))w(t) + pi2[(2 — sin(v(t)w(t)

—a(t)))uz(t) — z(t)ur (t)] + prsa(t — 7 )w(t — 74).
(23)




This system is obtained from system (22) by introducing delayed systems directly from the input-output relatioite w
thirteen constant parameters i = 1, ..., 13. These param-  parameters like in the case of nonlinear ordinary diffaegnt
eters are constants to be identified, given in the veEtor  systems.

Assuming thatp;o andp;, are different from 0, the same Identifiability is an important property that determinesg th

reasoning as for system (22) leads to an equilibrium state system-based approach of control theory in which most of

(Zey Ye, Ve, we ), in which w, = 0, y. and v, depend on
the parameters, but nat.. After linearization around this

equilibrium state, we obtain the following matrices:

Aoy, = —p1 +8in(2xe)yep2,

Aoy, Ao, 00

Ay — Aoy, Teps Ps Do 7

0 0 —pg p1o
Ao, O 0 Ao,

Ag,, =1+ sin? (ze)p2,

Aoy, = pra(he —u1,),

A044 = pll(ye + vc) - Uchep12,

Aoy, = Yepa + sin(2x)u1, pr,

the modeling is performed by estimating the parameters of
an priori given model structure. The domains in which non
linear phenomena need to be represented are numerous and
call for the kind of models that are considered in this paper.
This is the case in the aerospace domain for which we are
particularly interested in fault tolerant control. In thien-
text, identifiability is a condition for on-line applicatis. It

is indeed critical to detect the fault and immediatly idgnti
the corresponding fault model, so that the control laws can
be reconfigured appropriately. This exemplifies a research
field that can certainly benefit from the results presented in

with h, = us, cos(z.) and,

Ay, ; = xep13 if (4,5) = (4,4) and 0 otherwise,
(1 + sin®(ze))pr if (i,7) = (2,1), 2
repiz if () = (4, 1),

(2 + sin(ze))p12 if (2,7) = (4,2) and 0 otherwise.

Bo,, =

(3]

In the case of system (23), after linearization, the madrice [4]
A;,i=0,...,4 and By depend on the vector of parameters,

i.e. A; = A;(Ps) and By = By(Ps). Hence the identifi-
ability result is not immediate. We first prove the identifi- [5]
ability of the matrices and delays with the rank condition.
We obtain the existence of a control such that the matrices|s]
of coefficients and delays are structurally globally idénti

able. We then check whether this implies= P. More pre-

cisely, we obtaim; (P) = A;(P),i = 0,...,4andBy(P) = (n
By(P) which leads, for example fad;(P)1; = Ay (P)11,

to 2x.ps = 2x.p3. As x. is known and different from 0, we (8]
obtain the identifiability ofp;. Repeating the same reason-
ing, we obtain the structural global identifiability of alhp ]
rameters. Consequently, the original nonlinear systen (23
is structurally globally identifiable.

5 Conclusion

this paper.
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