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Abstract

In this paper, an original result in terms of a sufficient condition to test identifiability of nonlinear delayed-differential models with constant
delays and multi-inputs is given. The identifiability is studied for the linearized system and a criterion for linear systems with constant
delays is provided, from which the identifiability of the original nonlinear system can be proved. This result is obtained by combining a
classical identifiability result for nonlinear ordinary differential systems due to M.S. Grewal and K. Glover [4] with the identifiability of
linear delayed-differential models developed by Y. Orlovet al. [10]. This paper is a generalization of [2], which deals withthe specific
case of nonlinear delayed-differential models with two delays and a single input.
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1 Introduction

Differential systems with delays enter into the modeling
of many problems and are frequently used in domains like
electronics, telecommunications, biology, epidemiologyor
aerospace. Satelite remote control or network communica-
tion protocol models fall for instance into this framework.
When the identifiability analysis of delays arises, it is im-
possible to directly use the classical criteria based on a sim-
ilarity transformation approach [13] or a series expansion
approach [14] because delays occur in an implicit way in
the state equations (argument of the functions of input and
state). Then two approaches for identifiability analysis can
be considered.
The first one consists in approximating the functions with
delays [6] so that the approximate system is described by or-
dinary differential equations. It is clear that the identifiability
of this approximated system does not imply the identifiabil-
ity of the original system. The second approach consists in
approximating the nonlinear system by linearization around
an equilibrium state, which is the method followed in this
paper. We extend a classical identifiability result for nonlin-
ear ordinary differential systems due to M.S. Grewal and K.
Glover [4] to nonlinear delayed-differential models. We are
hence interested in the identifiability of the linearized sys-
tem and present a criterion to test the identifiability of a lin-
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ear system with constant delays [1], [10], [11], from which
the identifiability of the original nonlinear system can be
proved. The result of [4] is extended in two ways, by taking
into account any number of delays acting on the state and
on the input, and by considering the general case of multiple
inputs, which was not considered in the extention proposed
in [2]. The new proof requires to define a different norm for
the inputs, to provide a bound for the estimation of the state
norm that accounts for the delays and to deal with higher
dimension.
This paper is organized as follows. In Section 2, we give
some generalities on delayed-differential models and define
identifiability for such systems. In Section 3, the result of
identifiability with linearization around an equilibrium state
is given through a criterion allowing us to test the identi-
fiability of a linear system with constant delays [1], [10],
[11]. Section 4 provides an illustrative example for which
our identifiability analysis method is fully developped. The
last section concludes the paper and discusses potential ap-
plication domains which could benefit from our result.

2 Problem formulation

In this work, we consider linear and nonlinear systems with
real positive delays. These systems are characterized by the
length of their memory, i.e. the largest of their delays. The
memory, positive, can be finite or infinite. It is supposed fi-
nite. For such a system, the state at one time pointt is de-
fined on one interval[t′, t], wheret′ depends on the delays.
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If τm andνm are the greatest delays on the state and the in-
put, respectively, the knowledge ofx(t) on [t0−τm, t0] and
of u(t) on [t0 − νm, t] are necessary and sufficient to de-
terminex(t) for all t ≥ t0. Thus, for a system with delays,
the initial state (or initial function) must be given for allt
in [t0 − τm, t0] wheret0 is the initial time of observation.
The nonlinear time-delayed systemΓ, of specific state and
input delaysτi andνj , can be written in the general form:



































ẋ(t, P ) = f(x(t, P ), x(t − τ1, P ), ..., x(t − τl, P ),

u(t), u(t− ν1), ..., , u(t− νr), p1, ..., pp),

y(t, P ) = Cx(t, P ), t > 0,

x0(s, P ) = φ(s, P ), −τm ≤ s ≤ 0,

u0(s) = η(s), −νm ≤ s ≤ 0.

(1)
wherex(t, P ) ∈ Rn and y(t, P ) ∈ Rm denote the state
variables and the measured outputs respectively. The input
u is piecewise continuous with values inRk, and the ini-
tial function x0 is continuous ins ∈ [−τm, 0]. The pa-
rametersτ1,...,τl, ν1,...,νr represent the delays to be esti-
mated.τm and νm are respectively the maximum delay
of τi and νj . The vector of delays is included inUd ⊂
Rl+r. The unknown constantsp1,..., pp belonging toUp ⊂
R

p and gathered in the vectorPs must also be estimated.
Hence the estimation concerns the parameter vectorP =
(p1, ..., pp, τ1, ..., τl, ν1, ..., νr) ∈ UP ⊂ Rp+l+r. The func-
tion f(., ., ., ., p1, ..., pp) is real and twice continuously dif-
ferentiable for everyP ∈ UP onM (a connected open sub-
set ofRn× ...×Rn×Rk× ...×Rk such that(x(t, P ), x(t−
τ1, P ), ..., x(t− τl, P ), u(t), u(t− ν1), ..., , u(t− νr)) ∈ M
for everyP ∈ UP and everyt ∈ [0, T ]), whereT is the time
duration.φ(., P ) (respectivelyη(.)) is a continuous func-
tion, bounded on[−τm, 0] in Rn (respectively on[−νm, 0]
in Rk). The output is a linear function of the state (C is a
matrix of appropriate dimensions).
The general theory of systems with delays is developed in
[5], [8]. Many works concern the analysis and the control of
linear delayed models but there are much less works about
identifiability analysis. The identifiability of these models
has been analysed with restrictive conditions on the struc-
ture of the system [9] or [12]. The identifiability conditions
of transfer functions are provided with sufficient nonsmooth
inputs in [10], [11]. But to our knowledge there is no gen-
eral result for solving the identifiability problem for general
nonlinear delayed-differential models with unknown con-
stant delays such as (1). The proposed approach for solving
the identifiability problem of systems given by (1) relies on
the analysis of the identifiability of a form linearized around
an equilibrium state. The definition of model identifiability
considered in this paper is the following:

Definition 2.1 The modelΓ given by (1) is globally (resp.
locally) identifiable atP ∈ UP if there exists a controlu
such that, for anỹP ∈ UP , the equalityP = P̃ follows from
y(t, P̃ ) = y(t, P ) ∀t ∈ [0, T ] (resp. if there exists an open
neighbourhoodW of P such thatΓ is globally identifiable

at P with UP restricted toW ).

In most models, there exist atypical points inUP for which
the model is unidentifiable. To account for these singulari-
ties, the previous definition can be generically extended.Γ
is said to be (globally) structurally identifiable if it is (glob-
ally) identifiable at allP ∈ UP except at a subset of points
of zero measure inUP .
The following section formulates the identifiability problem
and summarizes some results that are then used to derive
our result.

3 Identifiability results

To assess the identifiability of system (1), our approach re-
lies on testing the identifiability of a form linearized around
an equilibrium state, which leads to a sufficient condition
for the nonlinear system. The test is performed as proposed
by MS. Grewal and K. Glover in [4] for ordinary differential
systems and it relies on the result of [1] in which L. Belk-
oura et al. propose a criterion allowing to test identifiability
of a linear system with delays.
In the following section, we recall some definitions and re-
sults of identifiability for linear systems.

3.1 Identifiability result for linear delayed-differential sys-
tems

The identifiability of linear delayed-differential systems has
been analyzed by [9], [12] and [1]. The results of this sub-
section are mainly taken from [1]. The linear time-delayed
model is supposed to be given by:








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















ẋ(t) = A0x(t) +
∑l

i=1 Aix(t− τi)

+B0u(t) +
∑r

i=1 Biu(t− νi),

x0(s) = φ(s), −τl ≤ s ≤ 0,

u0(s) = η(s), −νr ≤ s ≤ 0

(2)

with 0 < τ1 < τ2 < ... < τl and 0 < ν1 < ν2 < ... <
νr, x(t) ∈ Rn, u(t) ∈ Rm is piecewise continuous,φ ∈
L2(−τl, 0;R

n). The delays belong toUd, a subset ofRl×Rr.
The components of the state are assumed to be available.
Identifiability analysis is driven by the following definition:

Definition 3.1 If the model is given by:




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





























˙̃x(t) = Ã0x̃(t) +
l

∑

i=1

Ãix̃(t− τ̃i) + B̃0u(t)

+

r
∑

i=1

B̃iu(t− ν̃i),

x̃0(s) = φ̃(s), −τ̃l ≤ s ≤ 0,

u0(s) = η(s), −ν̃r ≤ s ≤ 0,
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then the matrices of coefficientsAi, (i = 0, ..., l), Bj, (j =
0, ..., r) and the delaysτk, (k = 1, ..., l), νp, (p = 1, ..., r)
of system (2) are structurally globally identifiable underu(t)

if: x(t) = x̃(t), t ≥ 0 ⇒



























Ai = Ãi, (i = 0, ..., l),

τk = τ̃k (k = 1, ..., l),

Bj = B̃j, (j = 0, ..., r),

νp = ν̃p, (p = 1, ..., r).

In the following, for z ∈ C, we noteA(z) andB(z) the
expressionsA(z) = A0 +A1z

τ1 + ...+Alz
τl , andB(z) =

B0+B1z
ν1+...+Brz

νr . Then we have the following result.

Theorem 1 (From [1]) Considering the model (2), if there
exists a complex numberz such that:

rank[B(z)|A(z)B(z)|...|An−1(z)B(z)] = n,

then there exists a controlu(t) for which the matrices of
coefficientsAi, (i = 0, ..., l), Bj , (j = 0, ..., r) and the
delaysτk, (k = 1, ..., l) et νp, (p = 1, ..., r) are structurally
globally identifiable.

In the case of multi-inputs, it is sufficient to find an input
of type “ square pulse ” with discontinuities of full rank,
i.e. discontinuities are incommensurable and verify a rank
condition [1]. Otherwise, a piecewise constant input can be
appropriate.
The above result is used in Section 3.2 to test the identifiabil-
ity of the linearized nonlinear delayed-differential system.

3.2 A sufficient condition for identifiability of nonlinear
delayed-differential systems

The identifiability of nonlinear dynamical systems (without
delays) by linearization around an operating state has been
shown by M.S. Grewal and K. Glover [4]. The idea of the
present paper is to extend this approach to the class of non-
linear delayed-differential models with unknown constant
delays. The considered operating state of system (1) is an
equilibrium statexe corresponding to a constant inputū:

{

0 = f(xe, ..., xe, ū, ..., ū, Ps) ,

ye = Cxe .
(3)

To simplify the notation, the point(xe, ..., xe, ū, ..., ū, Ps)
given in (3) is notedE.
Given a constant input̄u ∈ Rk, let us consider the operating
statexe defined by (3). For a givenP ∈ UP , the statexe

may not be unique.

Moreoverx(t, P ) = xe is the solution of:












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











ẋ(t, P ) = f(x(t, P ), x(t − τ1, P ), ..., x(t − τl, P ),

u(t), u(t− ν1), ..., u(t− νr), Ps) , t ∈ [0, T ] ,

x0(s, P ) = xe , s ∈ [−τm, 0] ,

y(t, P ) = Cx(t, P ) .

(4)
corresponding to the inputu(t) = ū, t ∈ [−νm, T ].
Now let us consider a perturbationν(t) of ū for t ≥ 0 and
let us define the corresponding system:



































ẋ(t, P ) = f(x(t, P ), x(t − τ1, P ), ..., x(t− τl, P ),

ū+ ν(t), ū + ν(t− ν1), ...,

ū+ ν(t− νr), Ps) , t ∈ [0, T ] ,

x0(s, P ) = xe , s ∈ [−τm, 0] ,

y(t, P ) = Cx(t, P ) .

(5)
If we introducexδ(t, P ) = x(t, P )−xe, the previous system
can be expressed as:



































ẋδ(t, P ) = f(xe + xδ(t, P ), xe + xδ(t− τ1, P ), ...,

xe + xδ(t− τl, P ), ū+ ν(t), ū + ν(t− ν1), ...,

ū+ ν(t− νr), Ps) , t ∈ [0, T ] ,

xδ(s, P ) = 0 , s ∈ [−τm, 0] ,

yδ(t, P ) = Cxδ(t, P ) .

(6)
If the variables of f introduced in (6) are denoted
zi = xe + xδ(t − τi, P ), i = 0, ..., l whereτ0 = 0 and
wj = ū + ν(t − νj), j = 0, ..., r whereν0 = 0, we get:

f : Rn × ...× Rn × Rk × ...× Rk × Up → Rn

(z0, ..., zl, w0, ..., wr , Ps) 7→ f(z0, ..., zl,

w0, ..., wr, Ps)

and if the following matrices are introduced:

{

Ai(P ) = ∇zif(E), i = 0, ..., l,

Bj(P ) = ∇wj
f(E), i = 0, ..., r,

(7)

where∇zif(E) (∇wi
f(E)) represents the jacobien ma-

trix of f with respect tozi (wi) calculated atE =
(xe, ..., xe, ū, ..., ū, Ps), then the linear delayed system,
obtained by the linearization of (1), is given by:















ξ̇(t, P ) = Σl
i=0Ai(P )ξ(t− τi, P ) + Σr

j=0Bj(P )ν(t − τj) ,

ξ(s, P ) = 0 , s ∈ [−τm, 0] ,

η(t, P ) = Cξ(t, P ) .

(8)
This last system is of the form (2) whenC = I, and its
identifiability is obtained by Theorem 1.
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The following proposition is an extension of the results of
[4] to delayed-differential systems.

Proposition 3.1 If the model (8) is (structurally) globally
(resp. locally) identifiable atP ∈ UP (resp.P ∈ W ) 1 ,
then the model (4) is (structurally) globally (resp. locally)
identifiable atP , with a perturbation of̄u as input.

The principle of the proof, as developped below, is that if
ν̄ is a control providing the identifiability of (8), then the
identifiability of the model (4) can be obtained by the con-
trol ū+ εν̄/||ν̄||, with ε small. This proof requires to define
an appropriate norm for the inputs, to provide a bound for
the estimation of the state norm that accounts for the de-
lays. The proof is given in the general case in whichC is
not necessarily equal toI. However, if this is the case, a
more general result than Theorem 1 is required to assess the
identifiability of the linearized system.

Proof - Let P̃ 6= P , P̃ ∈ UP (resp.P̃ ∈ W ). Let us consider
the equilibrium statesxe andx̃e corresponding respectively
to P̃ andP :

{

0 = f(E) ,

ye = Cxe ,

{

0 = f(Ẽ) ,

ỹe = Cx̃e .
(9)

Two cases are possible:

- ye 6= ỹe, then the system (4) is globally (resp. locally)
identifiable atP since there exists an inputū such that the
outputs of the system (4)ye andỹe are distinct.

- ye = ỹe. Let us evaluate the difference between the
outputs of the system (4):

y(t, P )− y(t, P̃ ) = y(t, P )− ye − (y(t, P̃ )− ỹe)

= C(x(t, P ) − xe)− C(x(t, P̃ )− x̃e)

= C(xδ(t, P )− xδ(t, P̃ ))

= C(xδ(t, P )− ξ(t, P ))+

C(ξ(t, P ) − ξ(t, P̃ ))−

C(xδ(t, P̃ )− ξ(t, P̃ )).

Hence

y(t, P )− y(t, P̃ ) = η(t, P )− η(t, P̃ ) + C((xδ(t, P )

−ξ(t, P ))− (xδ(t, P̃ )− ξ(t, P̃ ))).

(10)
Since the system (8) is globally (resp. locally) identifiable
atP , there exists an input̄ν(t) such that the corresponding
outputsη̄(t, P ) andη̄(t, P̃ ) are distinct. Now, take the input:

ν(t) =
ε

||ν̄||
ν̄(t) (||ν̄|| = ||ν̄||L2(0,T )), (11)

1 Let us recall thatW is an open neighbourhood ofP .

in which ε is chosen judiciously in the following.
Since the system (8) is linear, the output corresponding to
the inputν(t) is given by:

η(t, P ) =
ε

||ν̄||
η̄(t, P ).

Consequently, theL2-norm of the difference between the
outputs of the system (8) is

||η(., P )−η(., P̃ )|| =
ε

||ν̄||
||η̄(., P )−η̄(., P̃ )|| = εK, (12)

where the constantK is strictly positive.
TheL2-norm of (10) leads to:

||y(., P )− y(., P̃ )|| ≥ ||η(., P )− η(., P̃ )||

−||C((xδ(., P )− ξ(., P ))

−(xδ(., P̃ )− ξ(., P̃ )))||

which, by introducing (12), gives

||y(., P )− y(., P̃ )|| ≥ εK − ||C||(||xδ(., P )− ξ(., P )||

+||xδ(., P̃ )− ξ(., P̃ )||).

(13)
In the following of the proof, a lower bound is provided for
||y(., P )− y(., P̃ )||, which requires to estimate||xδ(t, P )−
ξ(t, P )||Rn .

Estimation of||xδ(t, P )||Rn (needed to estimate||xδ(t, P )−
ξ(t, P )||Rn ). The integration of (6) leads to

xδ(t, P ) =
∫ t

0

[

f(xe + xδ(s, P ), xe + xδ(s− τ1, P ), ...,

xe + xδ(s− τl, P ), ū+ ν(s), ū + ν(s− ν1), ...,

ū+ ν(s− νr), Ps − f(E)
]

ds .

(14)
In the following, the termsL(1)

i , L
(2)
i andLi denote real

constants. The assumption of smoothness of the functionf
gives:

||xδ(t, P )||Rn ≤
∫ t

0
(Σl

i=0L
(1)
i ||xδ(s− τi, P )||Rn

+Σr
j=0L

(2)
j ||ν(s− νj)||Rk)ds

(15)

||xδ(t, P )||Rn ≤

∫ t

0

(L1||xδ(s, P )||Rn + L2||ν(s)||Rk)ds.

(16)
This last estimation is due to the fact that whens ∈ [0, t],
s − τi ∈ [−τi, t − τi]. But xδ(s, P ) = 0 for s ∈ [−τm, 0].
Then considering the values of||xδ(t, P )||Rn for s ∈ [0, t]

and takingL1 as an upper bound of the coefficientsL
(1)
i , i =

0, . . . , l, provides an upper bound of the first term of the

4



integral of (15). The same reasoning stands for the second
term, given thatν(s) = 0 for s ∈ [−νm, 0]. Moreover||ν|| =
ε, thus by applying Gronwall’s lemma it leads to:

||xδ(t, P )||Rn ≤ L3ε . (17)

Estimation of||xδ(t, P )− ξ(t, P )||Rn . Let us recall that:

d

dt
(xδ(t, P )− ξ(t, P )) =

f(xe + xδ(t, P ), xe + xδ(t− τ1, P ), ..., xe + xδ(t− τl, P ),

ū+ ν(t), ū + ν(t− ν1), ..., ū + ν(t− νr), P1, ..., Pp)

−(Σl
i=0Ai(P )ξ(t− τi, P ) + Σr

j=0Bj(P )ν(t − τj)).

(18)
The assumption of smoothness of the functionf gives:

d

dt
(xδ(t, P )− ξ(t, P )) = Σl

i=0Ai(P )(xδ(t− τi, P )

− ξ(t− τi, P )) + E(t), (19)

where ||E(t)||Rn ≤ L4(Σ
l
i=0||xδ(t− τi, P )||2

Rn

+Σr
j=0||ν(t− τj)||

2
Rk)

(20)

and, by applying (17):||E(t)||Rn ≤ L5ε
2.

The same approach as in the previous estimation yields:

||xδ(t, P )−ξ(t, P )||Rn ≤ L6

∫ t

0

||xδ(s, P )−ξ(s, P )||Rnds

+ L7ε
2 (21)

then (Gronwall’s lemma)||xδ(t, P )− ξ(t, P )||Rn ≤ L8ε
2.

Underestimation of||y(., P )− y(., P̃ )||.
The overestimation of||xδ(t, P )−ξ(t, P )||Rn applied to (13)
leads to||y(., P )− y(., P̃ )|| ≥ εK−Lε2. Now, there exists
ε > 0 such thatεK−Lε2 > 0. Therefore, the outputsy(., P )

and y(., P̃ ) are distinct and the system (4) is structurally
globally (resp. locally) identifiable atP . �

4 Illustrative example

In this section, the following example taken from [3] is used
to illustrate the approach.















































ẋ(t) = −x(t) + (1 + sin2(x(t)))y(t) + x2(t− τ1),

ẏ(t) = x(t)y(t) + v(t) + w(t)

+(1 + sin2(x(t)))u1(t) + y(t− τ2),

v̇(t) = −v(t) + w(t) + v(t− τ3),

ẇ(t) = (y(t) + v(t))w(t) − x(t)u1(t) + (2− sin(v(t)w(t)

−x(t)))u2(t) + x(t− τ1)w(t − τ4).

(22)

The identifiability result provided in Section 3.2 is fully
developped and allows us to conclude on the identifiability
of the system. In a second step, the system is parameterized
by introducing thirteen constant parameters and the iden-
tifiability analysis is performed similarly, allowing us to
conclude to the identifiability of the parameterized system
as well. We assume that the state variables are available.
Let us consider inputsu1e and u2e . An equilibrium state
(xe, ye, ve, we) is given by the resolution of (22) in which
the derivatives are set to0 and the state variables and any
of their delayed representatives are set to the correspond-
ing equilibrium valuesxe, ye, ve, we. The third equation
then provideswe = 0 and studying the fourth equation
on an appropriately chosen domain leads to the existence
of xe such that−xeu1e + (2 + sin(xe))u2e = 0. Given

xe, we obtainye =
xe − x2

e

1 + sin2(xe)
from the first equation.

Finally, usingxe and ye in the second equation, we get
ve = −xeye − (1 + sin2(xe))u1e − ye.
For a matrixM , let us noteMi,j its components wherei
andj are the row and column numbers, respectively. After
linearization of the model (22), we obtain the matricesAi,
i = 0, 1, 2, 3, 4, andB0 of the system put in form (2):

A0 =















−1 + sin(2xe)ye 1 + sin2(xe) 0 0

ye + sin(2xe)u1e xe 1 1

0 0 −1 1

u2e cos(xe)− u1e 0 0 ye + vepe















,

with pe = 1− u2e cos(xe) and,














































A1i,j = 2xe if (i, j) = (1, 1), 0 otherwise,

A2i,j = 1 if (i, j) = (2, 2), 0 otherwise,

A3i,j = 1 if (i, j) = (3, 3), 0 otherwise,

A4i,j = xe if (i, j) = (4, 4), 0 otherwise,

B0i,j =

{

1 + sin2(xe) if (i, j) = (2, 1), −xe if (i, j) = (4, 1),

2 + sin(xe) if (i, j) = (4, 2), 0 otherwise.

By using the symbolic toolbox of Matlab, one can check that
the condition rank[B(z)|A(z)B(z)|...|A3(z)B(z)] = 4
is satisfied for several values ofz, for instancez = 2 or
z = 1+ i. Then there exists a controlu(t) for which the de-
lays τk, k = 1, 2, 3, 4, are structurally globally identifiable.
Thus, by Proposition 3.1, the original nonlinear system (22)
is structurally globally identifiable.
Let us now consider the parameterized system:















































ẋ(t) = −p1x(t) + (1 + p2 sin
2(x(t)))y(t) + p3x

2(t− τ1),

ẏ(t) = p4x(t)y(t) + p5v(t) + p6w(t)

+p7(1 + sin2(x(t)))u1(t) + p8y(t− τ2),

v̇(t) = p9(v(t− τ3)− v(t)) + p10w(t),

ẇ(t) = p11(y(t) + v(t))w(t) + p12[(2− sin(v(t)w(t)

−x(t)))u2(t)− x(t)u1(t)] + p13x(t− τ1)w(t− τ4).

(23)
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This system is obtained from system (22) by introducing
thirteen constant parameterspi, i = 1, ..., 13. These param-
eters are constants to be identified, given in the vectorPs.
Assuming thatp10 andp12 are different from 0, the same
reasoning as for system (22) leads to an equilibrium state
(xe, ye, ve, we), in which we = 0, ye and ve depend on
the parameters, but notxe. After linearization around this
equilibrium state, we obtain the following matrices:

A0 =















A011 A012 0 0

A021 xep4 p5 p6

0 0 −p9 p10

A041 0 0 A044















,



































A011 = −p1 + sin(2xe)yep2,

A012 = 1 + sin2(xe)p2,

A021 = yep4 + sin(2xe)u1ep7,

A041 = p12(he − u1e),

A044 = p11(ye + ve)− vehep12,

with he = u2e cos(xe) and,



























































A1i,j = 2xep3 if (i, j) = (1, 1), and 0 otherwise,

A2i,j = p8 if (i, j) = (2, 2) and 0 otherwise,

A3i,j = p9 if (i, j) = (3, 3) and 0 otherwise,

A4i,j = xep13 if (i, j) = (4, 4) and 0 otherwise,

B0i,j =















(1 + sin2(xe))p7 if (i, j) = (2, 1),

−xep12 if (i, j) = (4, 1),

(2 + sin(xe))p12 if (i, j) = (4, 2) and 0 otherwise.

In the case of system (23), after linearization, the matrices
Ai, i = 0, ..., 4 andB0 depend on the vector of parameters,
i.e. Ai = Ai(Ps) andB0 = B0(Ps). Hence the identifi-
ability result is not immediate. We first prove the identifi-
ability of the matrices and delays with the rank condition.
We obtain the existence of a control such that the matrices
of coefficients and delays are structurally globally identifi-
able. We then check whether this impliesP = P̃ . More pre-
cisely, we obtainAi(P ) = Ai(P̃ ), i = 0, ..., 4 andB0(P ) =

B0(P̃ ) which leads, for example forA1(P )11 = A1(P̃ )11,
to 2xep3 = 2xep̃3. Asxe is known and different from 0, we
obtain the identifiability ofp3. Repeating the same reason-
ing, we obtain the structural global identifiability of all pa-
rameters. Consequently, the original nonlinear system (23)
is structurally globally identifiable.

5 Conclusion

This paper proves a sufficient condition for the identifiabil-
ity of nonlinear delayed-differential systems by lineariza-
tion around an operating point. It generalizes the work of
[2], which deals with the specific case study of a nonlinear
delayed-differential model with two delays and a single in-
put. The proposed condition has been tested on two relevant
examples corresponding to the considered type of model.
The condition that has been exhibited is only sufficient and
further work should concentrate on finding the necessary
part. It would be particularly interesting to find necessary
and sufficient conditions for the identifiability of nonlinear

delayed systems directly from the input-output relations with
parameters like in the case of nonlinear ordinary differential
systems.
Identifiability is an important property that determines the
system-based approach of control theory in which most of
the modeling is performed by estimating the parameters of
an priori given model structure. The domains in which non
linear phenomena need to be represented are numerous and
call for the kind of models that are considered in this paper.
This is the case in the aerospace domain for which we are
particularly interested in fault tolerant control. In thiscon-
text, identifiability is a condition for on-line applications. It
is indeed critical to detect the fault and immediatly identify
the corresponding fault model, so that the control laws can
be reconfigured appropriately. This exemplifies a research
field that can certainly benefit from the results presented in
this paper.
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