
HAL Id: hal-00514500
https://hal.science/hal-00514500v1

Submitted on 2 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical foundations of value withdrawal
explanations for domain reduction

Gérard Ferrand, Willy Lesaint, Alexandre Tessier

To cite this version:
Gérard Ferrand, Willy Lesaint, Alexandre Tessier. Theoretical foundations of value withdrawal expla-
nations for domain reduction. Electronic Notes in Theoretical Computer Science, 2002, 76, pp.99-114.
�hal-00514500�

https://hal.science/hal-00514500v1
https://hal.archives-ouvertes.fr

Electronic Notes in Theoretical Computer Science 76 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume76.html 16 pages

Theoretical Foundations of Value Withdrawal
Explanations for Domain Reduction

G. Ferrand, W. Lesaint and A. Tessier

Laboratoire d’Informatique Fondamentale d’Orléans,
rue Léonard de Vinci, BP 6759,

F-45067 Orléans Cedex 2, France

Abstract

Solvers on finite domains use local consistency notions to remove values from the
domains. This paper defines value withdrawal explanations. Domain reduction is
formalized with chaotic iterations of monotonic operators. With each operator is
associated its dual which will be described by a set of rules. For classical consistency
notions, there exists such a natural system of rules. The rules express value removals
as consequences of other value removals. The linking of these rules inductively
defines proof trees. Such a proof tree clearly explains the removal of a value (which
is the root of the tree). Explanations can be considered as the essence of domain
reduction.

1 Introduction

Constraint programming [19] is an important programming paradigm of the
last years. It combines declarativity of relational style and efficiency of con-
straint solvers which are implemented for specific domains. We are interested
here in the constraints over finite domains [23,24]. A constraint is a relation
between variables. In finite domains, each variable can only have a finite set
of possible values. The aim of constraint programming is to prove satisfia-
bility or to find one or all the solutions of a Constraint Satisfaction Problem
(a set of variables with their domains and a set of constraints). In theory,
solutions can be obtained by an enumeration of all the combination of values
for the variables of the problem (the labeling method). But in practice this
method could be very expensive, so one prefers to interlace the labeling with
domain reduction stages. Domain reduction consists in eliminating some val-
ues from variable domains which cannot belong to a solution according to the
constraints. In general, these values are characterized by a notion of local con-
sistency. This paper only deals with the domain reduction part. The labeling
can be seen as additional constraints.

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume76.html

Ferrand, Lesaint and Tessier

Several works [12,5,3] formalize domain reduction thanks to operators
(these operators reduce the variable domains). In practice, they are applied
according to different strategies. Chaotic iterations [8] have been used in or-
der to describe domain reduction from a theoretical general point of view.
It ensures confluence, that is to obtain the same reduced domain whatever
the order of application of the operators is. Domain reduction can then be
described with notions of fix-points and closures.

From another point of view, constraint community is also interested in
explanations (or nogoods). The notions of explanations seem to be an in-
teresting answer to constraint retraction problems: they have been used for
dynamic constraint satisfaction problems, over-constrained problems, dynamic
backtracking, An explanation is roughly a set of constraints responsible
for a value withdrawal: domain reduction by this set of constraints, or any
super-set of it, will always remove this value. There exist other applications
of the explanations, among others debugging applications. See http://www.e-
constraints.net for more details.

This paper is an attempt to lay a theoretical foundation of value with-
drawal explanations in the above-mentioned framework of chaotic iteration.
It presents the first results obtained by the authors in the french project OAD-
ymPPaC 1 .

A first notion of explanation is defined as a set of operators (from which
one can find the set of constraints responsible for the value removal). A
monotonic operator can always be defined by a set of rules (in the sense of
the inductive definitions of Aczel [1]). Usual local consistencies are expressed
by such a natural system. Note that this system is not computed, it is just a
theoretical tool to define explanations in our theoretical model. Rules express
value removals as consequences of other value removals. So, a more precise
notion of explanation can be obtained: the linking of these rules allows to
inductively define proof trees. Such a proof tree clearly explains the removal
of a value (the root of the tree) by the solver and then it is called an explanation
for this value withdrawal. It is important to note that the single role of a solver
is to remove values and that our explanations are proofs of these removals,
that is explanations are the essence of domain reduction.

The paper will be illustrated by examples in GNU-Prolog [11]. More exam-
ples, more detailled proofs of lemmas and some basic notions about monotonic
operators, closures, rules and proof trees can be found in [13]. The paper is
organized as follows. Section 2 gives some notations and definitions about
Constraint Satisfaction Problems in terms of rules in a set theoretical style.
Section 3 recalls in our formalism a model for domain reduction based on
local consistency operators and chaotic iterations. Section 4 associates deduc-
tion rules with this model. Section 5 uses deduction rules in order to build
explanations.

1 More details on this RNTL project at http://contraintes.inria.fr/OADymPPaC/

2

Ferrand, Lesaint and Tessier

2 Preliminaries

We recall the definition of a constraint satisfaction problem as in [23]. The
notations used are natural to express basic notions of constraints involving
only some subsets of the set of all variables.

Here we only consider the framework of domain reduction as in [5,7,24].

A Constraint Satisfaction Problem (CSP) is made of two parts, the syn-
tactic part:

• a finite set of variable symbols (variables in short) V ;

• a finite set of constraint symbols (constraints in short) C;

• a function var : C → P(V), which associates with each constraint symbol
the set of variables of the constraint;

and a semantic part for which preliminaries are needed.

We are going to consider various families f = (fi)i∈I . Such a family can be
identified with the function i 7→ fi, itself identified with the set {(i, fi) | i ∈ I}.
We consider a family (Dx)x∈V where each Dx is a finite non empty set.

In order to have simple and uniform definitions of monotonic operators
on a power-set, we use a set which is similar to an Herbrand base in logic
programming: we define the global domain by D =

⋃
x∈V ({x} × Dx). We

consider subsets d of D. We denote by d|W the restriction of a set d ⊆ D to a
set of variables W ⊆ V , that is, d|W = {(x, e) ∈ d | x ∈ W}. We use the same
notations for the tuples (valuations). A global tuple t is a particular d such that
each variable appears only once: t ⊆ D and ∀x ∈ V, ∃e ∈ Dx, t|{x} = {(x, e)}.
A tuple t on W ⊆ V , is defined by t ⊆ D|W and ∀x ∈ W, ∃e ∈ Dx, t|{x} =
{(x, e)}. So a global tuple is a tuple on V .

Then the semantic part of the CSP is defined by:

• the family (Dx)x∈V (Dx is the domain of the variable x);

• a family (Tc)c∈C such that: for each c ∈ C, Tc is a set of tuples on var(c)
(Tc is the set of solutions of c).

A global tuple t is a solution to the CSP if ∀c ∈ C, t|var(c) ∈ Tc.

Let d ⊆ D, for x ∈ V we define dx = {e ∈ Dx | (x, e) ∈ d}. To give any
d ⊆ D amounts to give a family (dx)x∈V with dx ⊆ Dx. So we can note: ∀x ∈
V , d|{x} = {x}×dx; d =

⋃
x∈V d|{x}; for d, d′ ⊆ D, (d ⊆ d′ ⇔ ∀x ∈ V, dx ⊆ d′x);

Example 2.1 We introduce a CSP which will be used in several examples
throughout the paper. Let us consider the CSP defined by:

• V = {x, y, z};
• C = {x < y, y < z, z < x};
• var(x < y) = {x, y}, var(y < z) = {y, z} and var(z < x) = {x, z};
• D = {(x, 0), (x, 1), (x, 2), (y, 0), (y, 1), (y, 2), (z, 0), (z, 1), (z, 2)};
• Tx<y = {{(x, 0), (y, 1)}, {(x, 0), (y, 2)}, {(x, 1), (y, 2)}},

3

Ferrand, Lesaint and Tessier

Ty<z = {{(y, 0), (z, 1)}, {(y, 0), (z, 2)}, {(y, 1), (z, 2)}},
Tz<x = {{(x, 1), (z, 0)}, {(x, 2), (z, 0)}, {(x, 2), (z, 1)}};

To reduce the domains of variable means to replace each Dx by a subset dx

of Dx without losing any solution. Such dx is called a domain of the variable x
and d =

⋃
x∈V ({x}×dx) is called a domain. Dx is merely the greatest domain

of x.

Here, we focus on the reduction stage. Intuitively, we want all the solu-
tions to remain in the reduced domain and we attempt to approximate the
smallest domain containing all these solutions. So this domain must be an
“approximation” of the solutions according to the subset ordering ⊆. Next
section describes a model for the computation of such approximations.

3 Domain reduction

A way to compute an approximation of the solutions is to associate with the
constraints a notion of local consistency which is expressed here by some lo-
cal consistency operators. The type of such an operator is (Win, Wout) with
Win, Wout ⊆ V . A local consistency operator is applied to the whole domain.
But in fact, it eliminates from the domains of Wout some values which are
inconsistent with respect to the domains of Win and the local consistency no-
tion used. We introduce the use of local consistency operators by the following
example.

Example 3.1 Arc consistency is a simple and particular case of hyper-arc
consistency. Let c ∈ C with var(c) = {x, y}. The property of arc consistency
for d ⊆ D is: (1) ∀e ∈ dx,∃f ∈ dy, {(x, e), (y, f)} ∈ Tc; (2) ∀f ∈ dy,∃e ∈
dx, {(x, e), (y, f)} ∈ Tc.

We can associate with (1) the operator r defined by: r(d) = D|V \{x} ∪
{(x, e) ∈ D | ∃(y, f) ∈ d, {(x, e), (y, f)} ∈ Tc}. It is obvious that the property
(1) is equivalent to d ⊆ r(d). Here, Wout = {x} and we can take Win = {y}.
There exist different possibilities to choose r, but for reasons which will appear
later this one is the most convenient. An operator associated with (2) can be
defined in the same way.

This example motivates the following definition.

Definition 3.2 A local consistency operator of type (Win, Wout), Win, Wout ⊆
V , is a monotonic function r : P(D)→ P(D) such that: ∀d ⊆ D,

• r(d)|V \Wout = D|V \Wout ,

• r(d) = r(d|Win
).

We can note that r(d)|V \Wout does not depend neither on d, nor on r and
that r(d)|Wout only depends on d|Win

.

Definition 3.3 We say a domain d is r-consistent if d ⊆ r(d), that is, d|Wout ⊆
r(d)|Wout .

4

Ferrand, Lesaint and Tessier

The solver is described by a set of such operators associated with the
constraints of the CSP. We can choose more or less accurate local consistency
operators for each constraint (in general, the more accurate they are, the more
expensive is the computation). Any notion of local consistency in the frame-
work of domain reduction may be expressed by such operators. Reduction
operators are associated with these operators in order to reduce the domains.

Definition 3.4 The reduction operator associated with the local consistency
operator r is the monotonic and contracting function d 7→ d ∩ r(d).

All the solvers proceeding by domain reduction may be formalized by op-
erators with this form. GNU-Prolog associates with each constraint as many
operators as variables in the constraint (Wout is always a singleton).

Example 3.5 In GNU-Prolog, these operators are written x in r [7], where
r is a range dependent on the domains of a set of variables. GNU-Prolog has
two kinds of local consistency: hyper-arc consistency and partial hyper-arc
consistency. The constraint x #= y (partial arc consistency) is implemented
by two GNU-Prolog rules x in min(y)..max(y) and y in min(x)..max(x).
The rule x in min(y)..max(y) uses the local consistency operator of type
({y}, {x}) defined by r(d)|{x} = {(x, e) | min(dy) ≤ e ≤ max(dy)} where
min(dy), max(dy) are respectively the smallest and the greatest value in the
domain of y. The reduction operator associated with this local consistency
operator computes the intersection with the domain of x and is applied by
activation of the rule.

The local consistency operators we use must not remove solutions from the
CSP. This is formalized in [13] by notions of correct operators that are not
essential here.

The solver applies the reduction operators one by one replacing the domain
with the one it computes. The computation stops when a domain of a variable
becomes empty (in this case, there is no solution), or when the reduction
operators cannot reduce the domain anymore (a common fix-point is reached).

From now on, we denote by R a set of local consistency operators (the set
of local consistency operators associated with the constraints of the CSP). A
common fix-point of the reduction operators associated with R starting from
a domain d is a domain d′ ⊆ d such that ∀r ∈ R, d′ = d′ ∩ r(d′), that is
∀r ∈ R, d′ ⊆ r(d′). The greatest common fix-point is the greatest d′ ⊆ d such
that ∀r ∈ R, d′ is r-consistent. To be more precise:

Definition 3.6 The downward closure of d by R, denoted by CL ↓ (d,R), is
the greatest d′ ⊆ D such that d′ ⊆ d and ∀r ∈ R, d′ ⊆ r(d′).

Note that CL ↓ (d, ∅) = d and CL ↓ (d,R) ⊆ CL ↓ (d,R′) if R′ ⊆ R.

The downward closure is the most accurate set which can be computed
using a set of (correct) local consistency operators in the framework of domain
reduction. CL ↓ (d,R) can be computed by chaotic iterations introduced for

5

Ferrand, Lesaint and Tessier

this aim in [12]. The following definition is taken from Apt [2].

Definition 3.7 A run is an infinite sequence of operators of R, that is, a run
associates with each i ∈ N (i ≥ 1) an element of R denoted by ri. A run is
fair if each r ∈ R appears in it infinitely often, that is, ∀r ∈ R, {i | r = ri} is
infinite.

The downward iteration of the set of local consistency operators R from
the domain d ⊆ D with respect to the run r1, r2, . . . is the infinite sequence
d0, d1, d2, . . . inductively defined by: d0 = d; for each i ∈ N, di+1 = di∩ri+1(di).
Its limit is ∩i∈Ndi.

A chaotic iteration is an iteration with respect to a fair run.

Note that an iteration starts from a domain d which can be different from
D. This is more general and convenient for a lot of applications (dynamic
aspects of constraint programming for example).

The next well-known result of confluence [8,12] ensures that any chaotic
iteration reaches the closure. Note that, since ⊆ is a well-founded ordering
(i.e. D is a finite set), every iteration from d ⊆ D is stationary, that is,
∃i ∈ N,∀j ≥ i, dj = di.

Lemma 3.8 The limit of every chaotic iteration of the set of local consistency
operators R from d ⊆ D is the downward closure of d by R.

Proof. Let d0, d1, d2, . . . be a chaotic iteration of R from d with respect to
r1, r2, Let dω be the limit of the chaotic iteration.

[CL ↓ (d,R) ⊆ dω] For each i, CL ↓ (d,R) ⊆ di, by induction: CL ↓
(d,R) ⊆ d0 = d. Assume CL ↓ (d,R) ⊆ di, CL ↓ (d,R) ⊆ ri+1(CL ↓
(d,R)) ⊆ ri+1(di) by monotonicity. Thus, CL ↓ (d,R) ⊆ di ∩ ri+1(di) = di+1.

[dω ⊆ CL ↓ (d,R)] There exists k ∈ N such that dω = dk because ⊆ is
a well-founded ordering. The run is fair, hence dk is a common fix-point of
the set of reduction operators associated with R, thus dk ⊆ CL ↓ (d,R) (the
greatest common fix-point). 2

Infinite runs and fairness are convenient theoretical notions to state the pre-
vious lemma. Every chaotic iteration is stationary, so in practice the compu-
tation ends when a common fix-point is reached. Moreover, implementations
of solvers use various strategies in order to determine the order of invocation
of the operators. These strategies are used to optimize the computation, but
this is out of the scope of this paper.

In practice, when a domain of variable becomes empty, we know that there
is no solution, so an optimization consists in stopping the computation before
the closure is reached. In this case, we say that we have a failure iteration.

We have recalled here a model of the operational semantics for the solvers
on finite domains using domain reduction. This model is language independent
and general enough to be applied to different solvers. Furthermore it allows
us to define a notion of explanation.

6

Ferrand, Lesaint and Tessier

Sometimes, when the domain of a variable becomes empty or when a value
is simply removed from a domain of a variable, the user wants an explanation
of this phenomenon [17]. The case of failure is the particular case where
all the values are removed. It is the reason why the basic event here is a
value withdrawal. Let us consider a chaotic iteration, and let us assume that
at a step a value is removed from the domain of a variable. In general, all
the operators used from the beginning of the iteration are not necessary to
explain the value withdrawal. It is possible to explain the value withdrawal by
a subset of these operators such that every chaotic iteration using this subset
of operators removes the considered value.

We can define an explanation set [17], which is a set of operators responsible
for a value withdrawal during a computation starting from a fixed domain d.

Definition 3.9 Let h ∈ D and d ⊆ D. We call explanation set for h wrt d a
set of local consistency operators E ⊆ R such that h 6∈ CL ↓ (d,E).

Since E ⊆ R,CL ↓ (d,R) ⊆ CL ↓ (d,E). So an explanation set E is
responsible for a value withdrawal and is independent of any chaotic iteration
with respect to R in the sense of: whatever the chaotic iteration used is, the
value will always be removed. Note that when h 6∈ d, then the empty set is
an explanation set for h.

For some applications (as debugging for example), we need a notion of
explanation which is finer than explanation set. We are interested in the
dependency between the values and the operators. This will be the purpose of
section 5, but before we need to associate systems of rules with the operators.

4 Deduction rules

We are interested by the value withdrawal, that is, when a value is not in a
domain but in its complementary. So we consider this complementary and the
“duals” of the local consistency operators. In this way, at the same time we
reduce the domain, we build its complementary. We associate rules systems
(inductive definition [1]) with these dual operators. These rules will be the
constructors of the explanations.

First we need some notations. Let d = D \ d. In order to help the un-
derstanding, we always use the notation d for a subset of D if intuitively it
denotes the complementary of a domain.

Definition 4.1 Let r be an operator, we denote by r̃ the dual of r defined
by: ∀d ⊆ D, r̃(d) = r(d).

We need to consider sets of such operators as for local consistency oper-
ators. Let R̃ = {r̃ | r ∈ R}. The upward closure of d by R̃, denoted by

CL ↑ (d, R̃) exists and is the least d′ such that d ⊆ d′ and ∀r ∈ R, r̃(d′) ⊆ d′

(see [13]).

7

Ferrand, Lesaint and Tessier

Next lemma establishes the correspondence between downward closure of
local consistency operators and upward closure of their duals.

Lemma 4.2 CL ↑ (d, R̃) = CL ↓ (d,R).

Proof.

CL ↑ (d, R̃) = min{d′ | d ⊆ d′,∀r̃ ∈ R̃, r̃(d′) ⊆ d′}

= min{d′ | d ⊆ d′,∀r ∈ R, d′ ⊆ r(d′)}

= max{d′ | d′ ⊆ d,∀r ∈ R, d′ ⊆ r(d′)}
2

In the same way we defined a downward iteration of a set of operators from
a domain, we define an upward iteration of a set of dual operators.

The upward iteration of R̃ from d ⊆ D with respect to r̃1, r̃2, . . . is the
infinite sequence δ0, δ1, δ2, . . . inductively defined by: δ0 = d and δi+1 = δi ∪
r̃i+1(δi).

We can rewrite the second item: δi+1 = δi ∪ ri+1(δi), that is, we add to δi

the elements of δi removed by ri+1.

If we consider the downward iteration from d with respect to r1, r2, . . .,
then the link between the downward and the upward iteration clearly appears

by noting that: δi∪ r̃i+1(δi) = di ∩ ri+1(di), that is, δi+1 = di+1, and ∪j∈Nδj =

CL ↑ (d, R̃) = CL ↓ (d,R) = ∩j∈Ndi.

We have shown two points of view for the reduction of a domain d with
respect to a run r1, r2, In the previous section, we considered the reduced
domain, but in this section, we consider the complementary of this reduced
domain, that is, the set of elements removed of the domain.

Now, we associate rules in the sense of [1] with these dual operators. These
rules are natural to build the complementary of a domain and well suited to
provide proof trees.

Definition 4.3 A deduction rule of type (Win, Wout) is a rule h ← B such
that h ∈ D|Wout and B ⊆ D|Win

.

A deduction rule h← B can be understood as follow: if all the elements of
B are removed from the domain, then h does not participate in any solution
of the CSP and can be removed.

For each operator r ∈ R of type (Win, Wout), we denote by Rr a set of
deduction rules of type (Win, Wout) which defines r̃, that is, Rr is such that:
r̃(d) = {h ∈ D | ∃B ⊆ d, h ← B ∈ Rr}. For each operator, this set of
deduction rules exists [13]. There exist possibly many such sets, but in general
one is natural in our context.

We provide an illustration of this model for arc consistency. Examples for
partial-arc consistency and hyper-arc consistency are provided in [13].

8

Ferrand, Lesaint and Tessier

Example 4.4 Let us consider the local consistency operator r defined in ex-
ample 3.1.

r̃(d) = r(d) = {(x, e) ∈ D | ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc}.
Let B(x,e) = {(y, f) | {(x, e), (y, f)} ∈ Tc}. Then it is easy to show that

B(x,e) ⊆ d ⇔ ∀(y, f) ∈ d, {(x, e), (y, f)} 6∈ Tc. So r̃(d) = {(x, e) ∈ D |
B(x,e) ⊆ d}. Finally, r̃ is defined by Rr = {(x, e)← B(x,e) | (x, e) ∈ d}.

Example 4.5 Let us consider the CSP of example 2.1. Two local consistency
operators are associated with the constraint x < y: r1 of type ({y}, {x})
and r2 of type ({x}, {y}). The set of deduction rules Rr1 associated with r1

contains the three deduction rules: (x, 0) ← {(y, 1), (y, 2)}; (x, 1) ← {(y, 2)};
(x, 2)← ∅.

5 Value withdrawal explanations

We use the deduction rules in order to build proof trees [1]. We consider the
set of all the deduction rules for all the local consistency operators of R: let
R = ∪r∈RRr.

We denote by cons(h, T) the tree defined by: h is the label of its root and
T the set of its sub-trees. The label of the root of a tree t is denoted by root(t).
Let us recall the definition of a proof tree for a set of rules.

Definition 5.1 A proof tree cons(h, T) with respect to R is inductively de-
fined by: h← {root(t) | t ∈ T} ∈ R and T is a set of proof trees with respect
to R.

Our set of deduction rules is not complete: we must take the initial domain
into account. If we compute a downward closure from the global domain D,
then its complementary is the empty set (in this case, R is complete). But if
we compute a downward closure from a domain d ⊂ D, then its dual upward
closure starts with d. We need to add facts (rules with an empty body) in
order to directly deduce the elements of d: let Rd = {h ← ∅ | h ∈ d}. The
next theorem ensures that, with this new set of deduction rules, we can build
proof trees for each element of CL ↑ (d, R̃).

Theorem 5.2 CL ↓ (d,R) is the set of the roots of proof trees with respect to
R∪Rd.

Proof. Let E the set of the roots of proof trees wrt to R∪Rd.

E ⊆ min{d′ | d ⊆ d′,∀r̃ ∈ R̃, r̃(d′) ⊆ d′} by induction on proof trees.

It is easy to check that d ⊆ E and r̃(E) ⊆ E. Hence, min{d′ | d ⊆ d′,∀r̃ ∈
R̃, r̃(d′) ⊆ d′} ⊆ E. 2

Example 5.3 Let us consider the CSP defined in example 2.1. Six local
consistency operators are associated with the constraints of the CSP:

9

Ferrand, Lesaint and Tessier

(x, 0)

(y, 1)

(z, 2)

(y, 2)

(x, 0)

(y, 1)

(x, 0)

(y, 2)

(x, 0)

Fig. 1. Proof trees for (x, 0)

r1 of type ({y}, {x}) and r2 of type ({x}, {y}) for x < y

r3 of type ({z}, {y}) and r4 of type ({y}, {z}) for y < z

r5 of type ({z}, {x}) and r6 of type ({x}, {z}) for z < x

Figure 1 shows three different proof trees rooted by (x, 0). For example,
the first one says: (x, 0) may be removed from the domain if (y, 1) and (y, 2)
may be removed from the domain (thanks to a deduction rule of Rr2). (y, 1)
may be removed from the domain if (z, 2) may be removed from the domain
(thanks to Rr4). (y, 2) and (z, 2) may be removed from the domain without
any condition (thanks to Rr4 and Rr6).

Each deduction rule used in a proof tree comes from a packet of deduction
rules, either a packet Rr defining a local consistency operator r, or the packet
Rd. We can associate sets of local consistency operators with a proof tree.

Definition 5.4 Let t be a proof tree. A set of local consistency operators
associated with t is a set X such that, for each node of t labeled by h ∈ d, if
B is the set of labels of its children then there exists r ∈ X, h← B ∈ Rr.

Note that there exist several sets associated with a proof tree because, for
example, a deduction rule may appear in several packets or each super-set is
also convenient. It is important to recall that the root of a proof tree does not
belong to the closure of d by the set of local consistency operators. So there
exists an explanation set (definition 3.9) for this value. The biggest one is the
whole set R of local consistency operators, but we prove in the next theorem
that the sets defined above are also explanation sets for this value. In fact,
such a set of operators is responsible for the withdrawal of the root of the tree:

Theorem 5.5 If t is a proof tree, then a set of local consistency operators
associated with t is an explanation set for root(t).

Proof. by theorem 5.2 and definition 3.9. 2

We proved that we can find explanation sets in proof trees. So it remains to

10

Ferrand, Lesaint and Tessier

find proof trees. We are going to show that some proof trees are “computed”
by chaotic iterations, but it is important to note that some proof trees do not
correspond to any chaotic iteration. We are interested in the proof trees which
can be deduced from a computation.

Example 5.6 The first and third proof trees of figure 1 correspond to some
chaotic iterations. But the second one does not correspond to any (because
(x, 0) could not disappear twice).

From now on, we consider a fixed chaotic iteration d = d0, d1, . . . , di, . . .
of R with respect to the run r1, r2, In this context we can associate with
each h 6∈ CL ↓ (d,R), one and only one integer i ≥ 0. This integer is the step
in the chaotic iteration where h is removed from the domain.

Definition 5.7 Let h 6∈ CL ↓ (d,R). We denote by step(h), either the integer
i ≥ 1 such that h ∈ di−1 \ di, or the integer 0 if h 6∈ d = d0.

A chaotic iteration can be seen as the incrementaly construction of proof
trees. We define the set of proof trees Si which can be built at a step i ∈ N.
More formally, the family (Si)i∈N is defined by: S0 = {cons(h, ∅) | h 6∈ d};
Si+1 = Si ∪ {cons(h, T) | h ∈ di, T ⊆ Si, h← {root(t) | t ∈ T} ∈ Rri+1}.

We prove that the roots of the trees of Si are exactly the elements removed
from the domain at the steps j ≤ i of the chaotic iteration.

Lemma 5.8 {root(t) | t ∈ Si} = di. So, {root(t) | t ∈ ∪i∈NSi} = CL ↓ (d,R).

Proof. {root(t) | t ∈ Si} = di by induction on i.

{root(t) | t ∈ ∪i∈NSi} = ∪i∈N{root(t) | t ∈ Si}

= ∪i∈Ndi

= ∩i∈Ndi

= CL ↓ (d,R)
2

This lemma is important because it ensures that, whatever the chaotic
iteration used is, we can incrementaly compute the proof trees for each element
which is not in the closure. All proof trees do not correspond to a chaotic
iteration, but for each one, there exists a proof tree with the same root which
corresponds to the chaotic iteration. Consequently, we will call explanation a
proof tree and computed explanation a proof tree of ∪i∈NSi.

Let t ∈ ∪i∈NSi, according to definition 5.4 and theorem 5.5, the set of
local consistency operators {rstep((x,e)) | (x, e) has an occurrence in t and
step((x, e)) > 0} is an explanation set for root(t). From a theoretical point of
view, the fundamental object is the explanation t.

11

Ferrand, Lesaint and Tessier

6 Conclusion

This paper has laid theoretical foundations of value withdrawal explanations
in the framework of chaotic iteration. We were interested in domain reduction
for finite domains. But this work could be extended to interval constraints
[6] because our approach is general enough for any notion of local consistency
and the domain is a (finite) set of floating point values. Furthermore, labeling
could be included in this framework if we consider it as constraint addition.
But dynamic aspects are not in the scope of this paper, the focus is on pure
domain reduction by chaotic iterations.

Domain reduction can be considered as a particular case of constraint
reduction [2] because domains can be seen as unary constraints. This work
could also be extended to constraint reduction. To extend D, it would be
enough to consider the set of all possible tuples for the constraints of the CSP.
The operators should then reduce this set, that is remove tuples from the
constraints.

First, we have shown how each solver based on some notions of local consis-
tency can be described in our formalism in term of local consistency operators.
In systems like GNU-Prolog, these operators correspond to the implementa-
tion of the solver (the X in r scheme [7,10]). The associated reduction oper-
ators reduce the domains of variables according to a constraint and a notion
of local consistency.

In other works, CSP resolution is described by considering the reduced
domains instead of the removed values. Indeed, users are interested in the
solutions (which belong to the reduced domains) and the removed values are
forgotten. So a natural view of domain reduction is to consider the values
which remains in the domains. But this does not reflect the solver mechanism.
The solver keeps in the domains values for which it cannot prove that they
do not belong to a solution (incompleteness of solvers). In other words, it
computes proof only for value removals. So, we claim that domain reduction
is based on negative information and we have described it from the natural
view point of removed values.

Note that by considering d in place of d we reverse an ordering: d ⊆ d′ ⇔
d′ ⊆ d. This inversion must not be mistaken for another inversion: the inverse
ordering � defined by d′ � d⇔ d ⊆ d′ i.e. d gives more information than d′,
the least fix-point of an operator becomes the greatest fix-point of the same
operator (and vice versa). To choose � or ⊆ is just a matter of taste. But in
this paper we do not use the same idea: we cannot freely choose the ordering
because it is only for the ⊆ ordering that the least fix-point of an operator
is a set of proof tree roots. Here, the complementary of a greatest fix-point
becomes a least fix-point by the use of dual operators.

A monotonic operator can always be defined by a set of rules in the sense of
inductive definitions of [1]. We have shown in [13] that there always exists such
a system which has a natural formulation for classical notions of consistency

12

Ferrand, Lesaint and Tessier

(partial and hyper-arc consistency of GNU-Prolog for example). These rules
express a value removal as a consequence of other value removals. A notion of
explanation, more precise than explanation sets, has been defined: the linking
of these rules allows to inductively define proof trees. These proof trees explain
the removal of a value (the root of the tree), so we called them value withdrawal
explanations. Finally we have shown how to build incrementaly a proof tree
from a chaotic iteration, in other words, how to obtain an explanation from a
computation.

There already exists another explanation tree notion defined in [14] but
it explains solutions obtained by inference in a particular case. In [14] the
problem is assumed to have only one solution and the resolution of the problem
must not require any search. The inference rules used to build explanations
are defined thanks to cliques of disequalities.

There exists another formalization of solvers by domain reduction in terms
of rules in [4]. The body of such a rule contains positive information (that
is the membership of a domain) and the head contains negative information
(that is non membership of a domain). So they have not the appropriate
form to inductively define proof trees. Furthermore, the scope of these rules
is to describe a new form of consistency called rule consistency. This consis-
tency coincides with arc consistency in some cases and has been implemented
thanks to Constraint Handling Rules [15]. Note that these Constraints Han-
dling Rules could be transformed to obtain the appropriate form by allowing
disequality constraints in the body.

Explanation sets have been proved useful in many applications: dynamic
constraint satisfaction problems, over-constrained problems, dynamic back-
tracking, . . . The formalism proposed in this paper has permitted to prove the
correctness of a large family of constraint retraction algorithms [9]. Explana-
tions may be an interesting notion for the debugging of constraints programs
(already used for failure analysis in [18]). Constraints programs are not easy
to debug because they are not algorithmic programs [20]. Negative semantics
provided by explanations can be a useful tool for debugging. An approach
of constraint program debugging consists in comparing expected semantics
(what the user want to obtain) with the actual semantics (what the solver has
computed). The symptoms, which express the differences between the two
semantics, can be either a wrong answer, or a missing answer. The role of di-
agnosis is then to locate the error (for example an erroneous constraint) from
a symptom. In logic programming, it is easier to understand a wrong answer
than a missing answer because a wrong answer is a logical consequence of the
program then there exists a proof of it (which should not exist). Here, it is
easier to understand missing answer because explanations are proof of value
removals. Explanations provide us with a declarative view of the computation
and we plan to use their tree structure to adapt declarative diagnosis [21] to
constraint programming.

In [22] a framework for declarative debugging was described for the CLP

13

Ferrand, Lesaint and Tessier

scheme [16]. Symptom and error are connected via some kind of proof tree
using clauses of the program. The diagnosis amounts to search for a kind of
minimal symptom in the tree. In [22], the solver was only seen as a (possibly
incomplete) test of unsatisfiability (well-behaved solver of [16]) so constraint
solving was not fully taken into account. But, for CLP in finite domains,
constraint solving involves domain reduction for which we have defined in this
paper another kind of proof tree: explanation trees. In a future work we plan
to integrate these two kinds of proof trees in order to have finer connections
between symptom and error.

Acknowledgement

This paper has benefitted from works and discussions with Patrice Boizumault
and Narendra Jussien.

References

[1] Peter Aczel. An introduction to inductive definitions. In Jon Barwise,
editor, Handbook of Mathematical Logic, volume 90 of Studies in Logic and
the Foundations of Mathematics, chapter C.7, pages 739–782. North-Holland
Publishing Company, 1977.

[2] Krzysztof R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221(1–2):179–210, 1999.

[3] Krzysztof R. Apt. The role of commutativity in constraint propagation
algorithms. ACM TOPLAS, 22(6):1002–1034, 2000.

[4] Krzysztof R. Apt and Eric Monfroy. Automatic generation of constraint
propagation algorithms for small finite domains. In Constraint Programming
CP’99, number 1713 in Lecture Notes in Computer Science, pages 58–72.
Springer-Verlag, 1999.

[5] Frédéric Benhamou. Heterogeneous constraint solving. In Michael Hanus and
Mario Rofŕıguez-Artalejo, editors, International Conference on Algebraic and
Logic Programming, volume 1139 of Lecture Notes in Computer Science, pages
62–76. Springer-Verlag, 1996.

[6] Frédéric Benhamou and William J. Older. Applying interval arithmetic to real,
integer and boolean constraints. Journal of Logic Programming, 32(1):1–24,
1997.

[7] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). Journal
of Logic Programming, 27(3):185–226, 1996.

[8] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant
assertions mathematical foundation. In Symposium on Artificial Intelligence
and Programming Languages, volume 12(8) of ACM SIGPLAN Not., pages 1–
12, 1977.

14

Ferrand, Lesaint and Tessier

[9] Romuald Debruyne, Gérard Ferrand, Narendra Jussien, Willy Lesaint, Samir
Ouis, and Alexandre Tessier. Correctness of constraint retraction algorithms.
Technical Report 2002-09, LIFO, University of Orléans, Université d’Orléans,
BP 6759, F-45067 Orléans Cedex 2, 2002.

[10] Yves Deville, Vijay Saraswat, and Pascal Van Hentenryck. Constraint
processing in cc(fd). Draft, 1991.

[11] Daniel Diaz and Philippe Codognet. The GNU-Prolog system and its
implementation. In ACM Symposium on Applied Computing, volume 2, pages
728–732, 2000.

[12] François Fages, Julian Fowler, and Thierry Sola. A reactive constraint logic
programming scheme. In International Conference on Logic Programming. MIT
Press, 1995.

[13] Gérard Ferrand, Willy Lesaint, and Alexandre Tessier. Theoretical foundations
of value withdrawal explanations in constraints solving by domain reduction.
Technical Report 2001-05, LIFO, University of Orléans, Université d’Orléans,
BP 6759, F-45067 Orléans Cedex 2, 2001.

[14] Eugene C. Freuder, Chavalit Likitvivatanavong, and Richard J. Wallace. A
case study in explanation and implication. In CP 00 Workshop on Analysis
and Visualization of Constraint Programs and Solvers, 2000.

[15] Thom Frühwirth. Constraint handling rules. In A. Podelski, editor, Constraint
Programming: Basics and Trends, volume 910 of Lecture Notes in Computer
Science, pages 90–107. Springer-Verlag, 1995.

[16] Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. Semantics
of constraint logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

[17] Narendra Jussien. Relaxation de Contraintes pour les Problèmes dynamiques.
PhD thesis, Université de Rennes 1, 1997.

[18] Narendra Jussien and Samir Ouis. User-friendly explanations for constraint
programming. In ICLP’01 11th Workshop on on Logic Programming
Environments, 2001.

[19] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An
Introduction. MIT Press, 1998.

[20] Micha Meier. Debugging constraint programs. In Ugo Montanari and
Francesca Rossi, editors, International Conference on Principles and Practice
of Constraint Programming, volume 976 of Lecture Notes in Computer Science,
pages 204–221. Springer-Verlag, 1995.

[21] Ehud Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished
Dissertation. MIT Press, 1982.

[22] Alexandre Tessier and Gérard Ferrand. Declarative diagnosis in the CLP
scheme. In Pierre Deransart, Manuel Hermenegildo, and Jan Ma luszyński,

15

Ferrand, Lesaint and Tessier

editors, Analysis and Visualisation Tools for Constraint Programming, volume
1870 of Lecture Notes in Computer Science, chapter 5, pages 151–176. Springer-
Verlag, 2000.

[23] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[24] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic
Programming. MIT Press, 1989.

16

	Introduction
	Preliminaries
	Domain reduction
	Deduction rules
	Value withdrawal explanations
	Conclusion
	Acknowledgement
	References

